混合动车辆、混合动力车辆的控制方法

申请号 CN200880004750.9 申请日 2008-02-06 公开(公告)号 CN101605684B 公开(公告)日 2012-09-05
申请人 丰田自动车株式会社; 发明人 渥美善明;
摘要 一种混合动 力 车辆(100),其被构成为能够车辆外部充电,该混合动力车辆具备:将 电池 (B1)与外部工业电源(55)进行电联结的连接器(50);吸收 燃料 蒸气的吸收部;和活性化部,该活性化部在由连接器(50)使蓄电装置与外部电源联结的期间,将吸收部活性化为燃料蒸气容易脱离的状态。吸收部包括 吸附 燃料蒸气的罐。活性化部包括从电池和外部电源的至少一方接受电力并对罐进行加热的加热器。混合动力车辆还具备进行针对罐的除气的除气机构。由此,能够提供一种不缩短EV能够行驶的距离而能够处理燃料蒸气的混合动力车辆。
权利要求

1.一种混合动车辆,该混合动力车辆被构成为能够从车辆外部进行充电,具备:
蓄电装置(B1);
将所述蓄电装置(B1)与外部电源(55)进行电联结的联结部(50);
吸收燃料蒸气的吸收部;和
活性化部,其在由所述联结部(50)使所述蓄电装置(B1)与所述外部电源(55)联结的期间,将所述吸收部活性化为所述燃料蒸气容易脱离的状态。
2.根据权利要求1所述的混合动力车辆,其中,
所述吸收部包括收容有吸附所述燃料蒸气的吸附剂的罐(189),
所述活性化部包括从所述蓄电装置和所述外部电源的至少一方接受电力并对所述罐(189)进行加热的加热器(179),
所述混合动力车辆还具备进行针对所述罐(189)的除气的除气机构。
3.根据权利要求2所述的混合动力车辆,其中,
所述混合动力车辆还具备控制所述加热器(179)和所述除气机构的控制装置(60),所述控制装置(60),判断所述罐(189)的饱和度,在所述饱和度大于第一值时使所述加热器(179)和所述除气机构动作。
4.根据权利要求2所述的混合动力车辆,其中,
所述除气机构包括产生负压内燃机(4),
所述混合动力车辆还具备控制所述加热器(179)和所述除气机构的控制装置(60),所述控制装置(60),在判断为下次的车辆起动时需要所述内燃机(4)的启动时,在所述内燃机(4)的启动之前预先使所述加热器(179)动作。
5.根据权利要求3或4所述的混合动力车辆,其中,
所述混合动力车辆还具备检测或者推定车辆的起动时刻的时刻决定部,所述控制装置(60),以使得在检测出或者推定出的所述起动时刻之前升温结束的方式使所述加热器(179)动作。
6.一种混合动力车辆的控制方法,该混合动力车辆被构成为能够从车辆外部进行充电,所述混合动力车辆包括:蓄电装置(B1);将所述蓄电装置(B1)与外部电源(55)进行电联结的联结部(50);吸收燃料蒸气的吸收部;活性化部,该活性化部在由所述联结部使所述蓄电装置(B1)与所述外部电源(55)联结的期间,将所述吸收部活性化为所述燃料蒸气容易脱离的状态;和使所述燃料蒸气从所述吸收部脱离的除气机构,
所述控制方法包括:
将电力从所述外部电源(55)充电到所述蓄电装置(B1)的步骤(S4);
通过从所述外部电源(55)供给的电力使所述活性化部动作的步骤(S25);和在所述活性化部的动作开始后使所述除气机构动作的步骤(S26)。

说明书全文

混合动车辆、混合动力车辆的控制方法

技术领域

[0001] 本发明涉及混合动力车辆、混合动力车辆的控制方法、混合动力车辆的控制程序以及存储有该程序的存储介质。
[0002] 背景技术
[0003] 近年来,作为环保汽车,将电机发动机并用于车轮的驱动的混合动力汽车正在受到注目。也研究了在这样的混合动力汽车中能够从外部充电的结构。如此一来,通过在家中等进行充电而减少去加油站补给燃料的次数,对驾驶者来说变得方便,并且通过利用便宜的深夜电力等在成本方面也适宜。
[0004] 日本特开平8-37793号公报公开了一种混合动力汽车,该混合动力汽车具备:可以由外部充电单元进行充电的电池;可以由来自电池的电力驱动车轮的驱动用电动机;用于车轮的驱动的发动机;控制电动机和发动机的工作的控制单元。
[0005] 如此,设为能够从外部电源对车辆充电的结构,从外部电源频繁地进行电池充电,由此不断良好地保持电池的SOC(State Of Charge),则能够使发动机的动作频度降低。例如,在与用于使发动机动作所必要的燃料的成本相比、用于由外部电力进行充电所必要的成本较低的情况下,设想进行这样的充电操作的情况。
[0006] 然而,在使发动机长期不动作而放置的情况下,如果气温等升高则明显地产生燃料蒸气(fuel vapor)。例如在汽油发动机中,在油箱中产生大量的汽油蒸发气体。若汽油蒸发气体的量达到活性炭罐等无法捕集的量,则该蒸发气体被排放到大气中,与实现较低公害的车辆的混合动力汽车的目的背向而驰。
[0007] 对于这样的问题,例如,虽然可以考虑在行驶中用加热器等强制性地对罐进行加热并进行强制除气,使燃料蒸气混入到进气中并燃烧,但是由于此时的加热器的消耗电力而会缩短EV能够行驶的距离,从而会降低作为车辆的商品性。

发明内容

[0008] 根据该发明的目的,提供不缩短EV能够行驶的距离而能够处理燃料蒸气的混合动力车辆、混合动力车辆的控制方法、混合动力车辆的控制程序以及存储有该程序的存储介质。
[0009] 本发明概括来说是被构成为能够从车辆外部进行充电的混合动力车辆,该车辆具备:蓄电装置;将蓄电装置与外部电源进行电联结的联结部;吸收燃料蒸气的吸收部;和活性化部,该活性化部在由联结部使蓄电装置与外部电源联结的期间,将吸收部活性化为燃料蒸气容易脱离的状态。
[0010] 优选的是,吸收部包括收容有吸附燃料蒸气的吸附剂的罐。活性化部包括从电池和外部电源的至少一方接受电力并对罐进行加热的加热器。混合动力车辆还具备进行针对罐的除气的除气机构。
[0011] 更优选的是,混合动力车辆还具备控制加热器和除气机构的控制装置。控制装置,判断罐的饱和度,在饱和度大于第一值时使加热器和除气机构动作。
[0012] 更优选的是,除气机构包括产生负压内燃机。混合动力车辆还具备控制加热器和除气机构的控制装置。控制装置,在判断为下次的车辆起动时需要内燃机的启动时,在内燃机的启动之前预先使加热器动作。
[0013] 更优选的是,混合动力车辆还具备检测或者推定车辆的起动时刻的时刻决定部。控制装置,以使得在检测出或者推定出的起动时刻之前升温结束的方式使加热器动作, [0014] 本发明,根据另一方式,是一种被构成为能够从车辆外部进行充电的混合动力车辆的控制方法,该混合动力车辆包括:蓄电装置;将蓄电装置与外部电源进行电联结的联结部;吸收燃料蒸气的吸收部;活性化部,该活性化部在由联结部使蓄电装置与外部电源联结的期间,将吸收部活性化为燃料蒸气容易脱离的状态;和使燃料蒸气从吸收部脱离的除气机构。控制方法包括:将电力从外部电源充电到蓄电装置的步骤;通过从外部电源供给的电力使活性化部动作的步骤;和在活性化部的动作开始后使除气机构动作的步骤。
[0015] 本发明还有另一种方式,是一种计算机能够读取的存储介质,该存储介质存储有用于使计算机执行上述的混合动力车辆的控制方法的程序。
[0016] 根据本发明,在作为能够进行外部充电并使发动机的启动频度变低的混合动力车辆中,得到即使处理燃料蒸气也不会使EV能够行驶的距离缩短这样的效果。 [0017] 附图说明
[0018] 图1是本实施方式的车辆100的概略框图
[0019] 图2是表示图1所示的变换器20、30以及电动发电机MG1、MG2的等效电路的电路图。
[0020] 图3是表示在使用计算机作为控制装置60的情况下的一般的结构的图。 [0021] 图4是表示关于由图1所示的控制装置60进行的充电开始的判断的程序的控制构造的流程图
[0022] 图5是用于对车辆100的发动机4的周边进行说明的概略图。
[0023] 图6是用于说明控制装置60将除气要求标志设为开启/关闭的控制的流程图。 [0024] 图7是用于说明在从外部进行充电时对于罐的加热器加热的控制的流程图。 [0025] 图8是表示变形例的车辆和充电装置的结构的框图。
[0026] 图9是用于说明变形例中主控制ECU314执行的罐预热处理的流程图。 具体实施方式
[0027] 下面,参照附图对本发明的实施方式进行详细说明。此外,对图中相同或相当的部分附以相同的符号而不重复其说明。
[0028] (整体结构)
[0029] 图1是本实施方式的车辆100的概略框图。
[0030] 参照图1,该车辆100包括:电池单元BU;升压转换器10;变换器(inverter,逆变器)20、30;电源线PL1、PL2;接地线SL;U相线UL1、UL2;V相线VL1、VL2;W相线WL1、WL2;电动发电机MG1、MG2;发动机4;动力分配机构3;和车轮2。
[0031] 该车辆100是将电机和发动机并用于车轮的驱动的混合动力汽车(Hybrid Vehicle)。
[0032] 动力分配机构3是与发动机4和电动发电机MG1、MG2结合来在其间分配动力的机构。例如作为动力分配机构能够采用具有太阳轮行星架、齿圈这三个旋转轴的行星齿轮机构。这三个旋转轴分别与发动机4、电动发电机MG1、MG2的各旋转轴相连接。例如,通过将电动发电机MG1的转子设为中空并将发动机4的曲轴穿过该转子的中心,能够使发动机4和电动发电机MG1、MG2机械地连接到动力分配机构3。
[0033] 此外,电动发电机MG2的旋转轴通过未图示的减速齿轮、差动齿轮等结合至车轮2。另外动力分配机构3的内部还可以组装针对电动发电机MG2的旋转轴的减速器。 [0034] 并且,电动发电机MG1被组装到混合动力汽车中,作为由发动机驱动的发电机工作,并且作为能够进行发动机启动的电动机工作。电动发电机MG2被组装到混合动力汽车中,作为驱动混合动力汽车的驱动轮的电动机。
[0035] 电动发电机MG1、MG2是例如三相交流同步电动机。电动发电机 MG1包括由U相线圈U1、V相线圈V1、W相线圈W1构成的三相线圈作为定子线圈。电动发电机MG2包括由U相线圈U2、V相线圈V2、W相线圈W2构成的三相线圈作为定子线圈。
[0036] 并且,电动发电机MG1利用发动机的输出来产生三相交流电压,将其产生的三相交流电压输出到变换器20。另外,电动发电机MG1通过从变换器20接收的三相交流电压而产生驱动力,进行发动机的启动。
[0037] 电动发电机MG2通过从变换器30接收三相交流电压而产生车辆的驱动转矩。另外,电动发电机MG2,在车辆的再生制动时,产生三相交流电压并输出到变换器30。 [0038] 电池单元BU包括:负极连接到接地线SL的蓄电装置、即电池B1;测定电池B1的电压VB1的电压传感器70;和测定电池B1的电流IB1的电流传感器84。车辆负载包括:电动发电机MG1、MG2;变换器20、30;和向变换器20、30供给已升压的电压的升压转换器10。 [0039] 电池B1能够使用例如镍氢电池、锂离子电池、铅蓄电池等的二次电池。另外,也能够使用大容量的双电层电容器来替代电池B1。
[0040] 电池单元BU将从电池B1输出的直流电压输出到升压转换器10。另外,通过从升压转换器10输出的直流电压对电池单元BU内部的电池B1进行充电。
[0041] 升压转换器10包括:电抗器L;npn型晶体管Q1、Q2;和二极管D1、D2。电抗器L的一端连接至电源线PL1,另一端连接至npn型晶体管Q1、Q2的连接点。npn型晶体管Q1、Q2串联连接在电源线PL2与接地线SL之间,在基极接收来自控制装置60的信号PWC。并且,在各npn型晶体管Q1、Q2的集电极与发射极之间分别连接用于使电流从发射极侧流向集电极侧的二极管D1、D2。
[0042] 另外,能够使用例如IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)作为上述的npn型晶体管以及以下本说明书中的npn型晶体管,另外能够使用功率MOSFET(Metal Oxide SemiconductorField-Effect Transistor,金属化物半导体场效应管)等电力开关元件来 代替npn型晶体管。
[0043] 变换器20包括U相臂22、V相臂24和W相臂26。U相臂22、V相臂24和W相臂26并联连接在电源线PL2与接地线SL之间。
[0044] U相臂22包括串联连接的npn型晶体管Q11、Q12。V相臂24包括串联连接的npn型晶体管Q13、Q14。W相臂26包括串联连接的npn型晶体管Q15、Q16。在各npn型晶体管Q11~Q16的集电极和发射极之间分别连接用于使电流从发射极侧流向集电极侧的二极管D11~D16。并且,在各相臂中的各npn型晶体管的连接点分别经由U、V、W各相线UL1、VL1、WL1连接至电动发电机MG1的各相线圈的不同于中性点N1的线圈端。
[0045] 变换器30包括U相臂32、V相臂34和W相臂36。所述U相臂32、V相臂34和W相臂36并联连接在电源线PL2与接地线SL之间。
[0046] U相臂32包括串联连接的npn型晶体管Q21、Q22。V相臂34包括串联连接的npn型晶体管Q23、Q24。W相臂36包括串联连接的npn型晶体管Q25、Q26。在各npn型晶体管Q21~Q26的集电极和发射极之间分别连接用于将电流从发射极侧流向集电极侧的二极管D21~D26。并且,在变换器30中,各相臂中的各npn型晶体管的连接点分别经由U、V、W相线UL2、VL2、WL2连接至电动发电机MG2的各相线圈的不同于中性点N2的线圈端。 [0047] 车辆100还包括:电容器C1、C2;继电器电路40;连接器50;控制装置60;AC线ACL1、ACL2;电压传感器72~74;以及电流传感器80、82。
[0048] 电容器C1连接在电源线PL1与接地线SL之间,降低电压变动引起的对电池B1和升压转换器10的影响。电源线PL1与接地线SL之间的电压VL由电压传感器73测定。 [0049] 电容器C2连接在电源线PL2与接地线SL之间,降低电压变动引起的对变换器20、30以及升压转换器10的影响。电源线PL2与接地线SL之间的电压VH由电压传感器72测定。
[0050] 升压转换器10将经由电源线PL1从蓄电单元BU供给的直流电压进行升压并输出至电源线PL2。更具体地,升压转换器10,基于来自控制装置60的信号PWC,使电流随着npn型晶体管Q2的开关动作而流动。通过该电流将磁场能储存到电抗器L中。并且,通过使电流与npn型晶体管Q2截止的时间同步地经由二极管D1流向电源线PL2而将其储存的能量释放,由此进行升压动作。
[0051] 另外,升压转换器10,基于来自控制装置60的信号PWC,将经由电源线PL2从变换器20和30中的任一方或者双方接受的直流电压降压至电池单元BU的电压平并对电池单元BU内部的电池充电。
[0052] 变换器20,基于来自控制装置60的信号PWM1,将从电源线PL2供给的直流电压转换为三相交流电压并驱动电动发电机MG1。
[0053] 由此,电动发电机MG1以产生由转矩指令值TR1指定的转矩的方式被驱动。另外,变换器20,基于来自控制装置60的信号PWM1,将电动发电机MG1通过接收来自发动机的输出而发电产生的三相交流电压变换为直流电压,并将变换后的直流电压输出至电源线PL2。 [0054] 变换器30,基于来自控制装置60的信号PWM2,将从电源线PL2供给的直流电压转换为三相交流电压并驱动电动发电机MG2。
[0055] 由此,电动发电机MG2以产生由转矩指令值TR2指定的转矩的方式被驱动。另外,变换器30,在搭载有车辆100的混合动力汽车的再生制动时,基于来自控制装置60的信号PWM2,将电动发电机MG2通过接收来自驱动轴的旋转力而发电产生的三相交流电压变换为直流电压,并将变换后的直流电压输出至电源线PL2。
[0056] 此外,这里所说的再生制动包括:当由驾驶混合动力汽车的驾驶者进行了脚制动操作时的再生发电所伴随的制动;虽然不进行脚制动操作但通过在行驶中将加速踏板设为关闭(释放加速踏板)而进行再生发电的同时使车辆减速(或停止加速)。 [0057] 继电器电路40包括继电器RY1、RY2。作为继电器RY1、RY2,例如能够使用机械触点式继电器,但也可以使用半导体继电器。继电器RY1 设置在AC线ACL1与连接器50之间,根据来自控制装置60的控制信号CNTL来接通/断开。继电器RY2设置在AC线ACL2与连接器50之间,根据来自控制装置60的控制信号CNTL来接通/断开。
[0058] 该继电器电路40,根据来自控制装置60的控制信号CNTL,在AC线ACL1、ACL2和连接器50之间进行连接/切断。即,继电器电路40,当接收到来自控制装置60的H(逻辑高)电平的控制信号CNTL时,使AC线ACL1、ACL2电连接到连接器50;当接收到来自控制装置60的L(逻辑低)电平的控制信号CNTL时,使AC线ACL1、ACL2从连接器50电切断。 [0059] 连接器50是用于将交流电压从外部的工业电源55输入到电动发电机MG1、MG2的中性点N1、N2之间的端子。作为该交流电压,例如能够从家庭用工业电力线输入交流100V。输入到连接器50的电压由电压传感器74测定并将其测定值发送到控制装置60。 [0060] 电压传感器70,检测电池B1的电池电压VB1,并将检测出的电池电压VB1输出至控制装置60。电压传感器73检测电容器C1两端的电压,即、检测升压转换器10的输入电压VL,并将检测出的电压VL输出至控制装置60。电压传感器72检测电容器C2两端的电压,即、检测升压转换器10的输出电压VH(相当于变换器20、30的输入电压,以下相同),并将其检测出的电压VH输出至控制装置60。
[0061] 电流传感器80检测流向电动发电机MG1的电机电流MCRT1,并将检测出的电机电流MCRT1输出至控制装置60。电流传感器82检测流向电动发电机MG2的电机电流MCRT2,并将检测出的电机电流MCRT2输出至控制装置60。
[0062] 控制装置60,基于从设置在外部的ECU(Electronic Control Unit,电子控制单元)输出的电动发电机MG1、MG2的转矩指令值TR1、TR2以及电机转速MRN1、MRN2、来自电压传感器73的电压VL、以及来自电压传感器72的电压VH,生成用于驱动升压转换器10的信号PWC,并且将其生成的信号PWC输出至升压转换器10。
[0063] 另外,控制装置60,基于电压VH、电动发电机MG1的电机电流MCRT1以及转矩指令值TR1,生成用于驱动电动发电机MG1的信号PWM1,并将其生成的信号PWM1输出至变换器20。进而,控制装置60,基于电压VH、电动发电机MG2的电机电流MCRT2以及转矩指令值TR2,生成用于驱动电动发电机MG2的信号PWM2,并将其生成的信号PWM2输出至变换器30。
[0064] 这里,控制装置60,基于来自点火开关(或点火钥匙)的信号IG和电池B1的充电状态SOC,生成用于控制变换器20、30的信号PWM1、PWM2,使得由供给到电动发电机MG1、MG2的中性点N1、N2间的工业电源用的交流电压对电池B1充电。
[0065] 此外,控制装置60,基于电池B1的充电状态SOC,判断是否能够从外部进行充电。当判定为能够进行充电时,将H电平的控制信号CNTL输出到继电器电路40。另一方面,控制装置60,在判定为电池B1几乎处于满充电状态、不能进行充电时,将L电平的控制信号CNTL输出到继电器电路40,在信号IG表示停止状态的情况下,使变换器20和30停止。 [0066] 车辆100还包括EV驾驶开关52。EV驾驶开关52是用于设定为EV驾驶模式的开关,是这样的开关:用于设定为以在深夜或清晨的住宅密集区的低噪音化、在室内停车场车库内的排气降低化作为目的而减少发动机动作并能够仅以电机进行行驶的EV驾驶模式。
[0067] 该EV驾驶模式,在EV驾驶开关52被复位到关闭状态、电池的充电状态处于规定值以下、车速处于预定速度以上、或者加速踏板开度变为规定值以上的情况下自动解除。 [0068] 在希望积极地使用预先已从外部的工业电源充电的电力的情况下,通过EV驾驶开关52设定为将车辆的动作模式从通常的HV模式切换到EV驾驶模式即可。 [0069] 车辆100还包括显示车辆的状况并且还作为针对车辆导航系统等的输入装置而发挥作用的触摸显示器58。
[0070] 另外,控制装置60,内置有能够读取、写入数据的存储器57。此外, 可以设为:控制装置60通过电动动力转向计算机、混合动力控制计算机、驻车辅助计算机等多个计算机来实现。
[0071] (对从车辆外部充电的说明)
[0072] 接下来,对车辆100中从工业电源55的交流电压VAC产生直流的充电电压的方法进行说明。
[0073] 控制装置60,在从车外进行充电的情况下,将npn型晶体管Q11~Q16(或者Q21~Q26)设为导通/截止,使得同相位的交流电流流向变换器20(或30)的U相臂22(或32)、V相臂24(或34)以及W相臂26(或36)。
[0074] 在同相位的交流电流流向U、V、W的各相线圈的情况下,电动发电机MG1、MG2中不产生转矩。并且通过协调控制变换器20和30使交流电压VAC变换为直流的充电电压。 [0075] 图2是表示图1所示的变换器20、30以及电动发电机MG1、MG2的等效电路的电路图。
[0076] 在图2中,变换器20的npn型晶体管Q11、Q13、Q15被统一表示为上臂20A,变换器20的npn型晶体管Q12、Q14、Q16被统一表示为下臂20B。同样地,变换器30的npn型晶体管Q21、Q23、Q25被统一表示为上臂30A,变换器30的npn型晶体管Q22、Q24、Q26被统一表示为下臂30B。
[0077] 如图2所示,该等效电路能够看作将经由图1的继电器电路40和连接器50电连接到中性点N1、N2的单相工业电源55设为输入的单相PWM转换器。于是,通过以将变换器20、30分别作为单相PWM转换器的各相臂而动作的方式进行开关控制,能够将来自工业电源55的单相交流电力变换为直流电力并向电源线PL2供给。
[0078] 以上图1~图2所说明的控制装置60,虽然能够以硬件来实现,但也能够使用计算机以软件来实现。
[0079] 图3是表示在使用计算机作为控制装置60的情况下的一般的结构的图。 [0080] 参照图3,作为控制装置60的计算机包括CPU90、A/D转换器91、ROM92、RAM93、和接口部94。
[0081] A/D转换器91将各种传感器的输出等的模拟信号AIN转换为数字信号并输出到CPU90。另外CPU90通过数据总线地址总线等的总线96连接到ROM92、RAM93、和接口部94并进行数据授受。
[0082] 在ROM92中存储有例如由CPU90执行的程序、被参照的映射图(map)等的数据。RAM93例如是CPU90进行数据处理时的作业区域、暂时存储各种变量。
[0083] 接口部94,例如或进行与其他的ECU的通信、或进行在使用能够电改写的闪存等作为ROM92的情况下的改写数据的输入等、或进行来自存储卡、CD-ROM等的计算机能够读取的存储介质的数据信号SIG的读入。
[0084] 此外,CPU90从输入输出端口授受数据输入信号DIN、数据输出信号DOUT。 [0085] 另外,控制装置60并不限于这样的结构,也可以通过包含多个CPU来实现。 [0086] (充电时的控制)
[0087] 图4是表示关于由图1所示的控制装置60进行的充电开始的判断的程序的控制构造的流程图。此外,该流程图的处理每隔一定时间或者每当预定的条件成立时从主例程调用而执行。
[0088] 参照图4,控制装置60,基于来自点火钥匙的信号IG,判断点火钥匙是否被设定在关闭位置(步骤S1)。控制装置60,若判定为点火钥匙没有被设定在关闭位置(步骤S1中“否”),则判定为将工业电源55连接到连接器50来进行电池B1的充电是不合适的,将处理前进到步骤S6并将控制返回到主例程。
[0089] 若步骤S1中判定为点火钥匙被设定在关闭位置(步骤S1中“是”),则控制装置60基于来自电压传感器74的电压VAC来判断是否连接了充电用插头而正在将来自工业电源55的交流电力输入到连接器50(步骤S2)。控制装置60,在没有检测出电压VAC时,判断为交流电力没有输入 到连接器50(步骤S2中“否”),将处理前进到步骤S6并将控制返回到主例程。
[0090] 另一方面,若检测出电压VAC,则控制装置60判定为来自工业电源55的交流电力被输入到连接器50(步骤S2中“是”)。这样一来,控制装置60判断电池B1的SOC是否低于阈值Sth(F)(步骤S3)。这里,阈值Sth(F)是用于判定电池B1的SOC是否充分的判定值。
[0091] 控制装置60,若判定为电池B1的SOC低于阈值Sth(F)(步骤S3中“是”),则激活输出到继电器电路40的输入允许信号EN。并且,控制装置60,使两个变换器20、30各自的各相臂按同样的开关状态来动作,同时将两个变换器20、30分别看作单相PWM转换器的各相臂来进行开关控制,执行电池B1的充电(步骤S4)。其后,将处理前进到步骤S6并将控制返回到主例程。
[0092] 另一方面,在步骤S3中,若判定为电池B1的SOC为阈值Sth(F)以上(步骤S3中“否”),则控制装置60判断为没有必要进行电池B1的充电,执行充电停止处理(步骤S5)。具体来说,控制装置60,使变换器20、30停止,并且不激活输出到继电器电路40的输入允许信号EN。其后,将处理前进到步骤S6并将控制返回到主例程。
[0093] (关于燃料消耗的说明)
[0094] 以上,对能够从外部充电的混合动力车辆进行了说明。在这样的能够从外部充电的混合动力汽车中,可以料想电动汽车行驶(EV行驶)的区域扩大、发动机启动时间减少。因此,在例如夏天这样的高温时、刚供给燃料后等,虽然燃料蒸气大量被罐吸附、需要除气的可能性变高,但是因为不启动发动机所以存在不能进行除气这样的问题。于是,首先对向该混合动力车辆的内燃机供给燃料的结构进行说明。
[0095] 图5是用于对车辆100的发动机4的周边进行说明的概略图。
[0096] 参照图5,发动机4包括用于将进气导入到汽缸盖的进气管道111、和用于从汽缸盖进行排气的排气管道113。
[0097] 从进气管道111的上游依次设置有空气过滤器102、空气流量计104、 进气温传感器106、节气(throttle valve)107。节气门107通过电子控制节气门(electronic control throttle)108来控制其开度。在进气管道111的进气门的附近设置有喷射燃料的喷射器110。
[0098] 在排气管道113中从排气门侧开始依次配置有空燃比传感器145、催化剂装置127、氧传感器146、催化剂装置128。发动机4还包括:在设置于汽缸体的汽缸中上下移动的活塞114;检测随着活塞114的上下移动而旋转的曲轴的旋转的曲轴位置传感器143;检测汽缸体的振动并检测爆震发生的爆震传感器144;以及安装于汽缸体的冷却水路的水温传感器148。
[0099] 控制装置60,根据加速踏板位置传感器150的输出控制电子控制节气门108而使进气量变化,另外根据从曲轴位置传感器143得到的曲轴转向点火线圈112输出点火指示,向喷射器110输出燃料喷射时间。另外根据进气温传感器106、爆震传感器144、空燃比传感器145、氧传感器146的输出校正燃料喷射量、空气量以及点火正时。 [0100] 车辆100还包括燃料箱180、燃料186、燃料余量传感器184、罐189、和罐除气VSV(vacuum switching valve,真空开关)191。通过燃料泵186经由管道185抽取的燃料被加压后送出到管道187。并且在预定的定时喷射器110被开启后,燃料被喷射到进气管道111内。
[0101] 另外在燃料箱180内蒸发了的燃料蒸气,在由高温引起体积增加抑或被供油的情况下从燃料箱180挤出,经由管道188被罐189的内部的活性炭吸附。并且通过由控制装置60打开罐除气VSV191,将吸附的燃料蒸气经由管道190、192放出到进气管道111内。罐除气VSV191能够根据从控制装置60给予的控制信号的占空比来改变燃料蒸气的流量。 [0102] 由驾驶者操作油箱门开闭开关170后,盖(1id)181被打开,然后取下燃料盖(fuel cap)182,从加油站等的燃料供给装置向燃料供给管道183供给燃料。
[0103] (由罐补充的燃料蒸气的除气)
[0104] 若较浓的燃料蒸气经由管道190、192放出到进气管道111内,则由加速踏板的踏下量等决定的通常的燃料喷射量会显得过多。
[0105] 若由空燃比传感器145检测到变为燃料浓,则控制装置60使燃料喷射量减少到空燃比传感器145表示希望的空燃比为止。另外,在使燃料喷射量减少的状态下进行罐的除气,若燃料蒸气成分逐渐变稀薄,则空燃比传感器145此次检测到变为燃料稀。于是,控制装置60使燃料喷射量增加到空燃比传感器145表示希望的空燃比为止。如此,通过空燃比传感器145和控制装置60来进行燃料喷射量的反馈控制。
[0106] 控制装置60,在被反馈控制的燃料喷射量比通常的燃料喷射量少的情况下,认为处于罐吸附了较多的燃料蒸气并且燃料蒸气被导入到进气管道111。也就是说,控制装置60,能够通过燃料喷射控制量判断是否需要对罐进行除气、即罐的饱和度是否高于基准值。 [0107] 换言之,混合动力车辆具备控制加热器179和用于产生负压并进行除气的发动机的控制装置60。控制装置60判断罐189的饱和度,当饱和度大于第一值时由加热器179进行加热,然后使发动机动作。
[0108] 图6是用于说明控制装置60将除气要求标志设为开启(ON)/关闭(OFF)的控制的流程图。该流程图的处理,每隔一定时间或者每当预定的条件成立时从预定的主例程调出而执行。
[0109] 参照图5、图6,在处理开始时首先在步骤S11中,控制装置60判断是否进行了燃料补给。
[0110] 若补给燃料,则燃料箱内的压力增加,燃料蒸气流入罐中,所以罐吸收燃料蒸气。于是,还是需要进行罐的除气。
[0111] 例如,在燃料余量传感器184的检测结果表示为燃料增加的情况下、在随之移动的燃料计的指针向增加方向移动了的情况下,判断为进行了燃料补给。 [0112] 在步骤S11中,在判断为没有进行燃料补给的情况下处理前进到步骤S12,控制装置60判断燃料箱的温度是否超过预定值。
[0113] 若燃料箱的温度较高,则因为可以认为燃料蒸气的浓度也较高并且由于体积的膨胀使得燃料蒸气流入罐中,所以判断为需要罐的除气。
[0114] 例如,可以从发动机负荷等推定燃料箱附近的升温,也可以将温度传 感器设置于燃料箱来检测燃料箱的温度。另外,也可以设置检测气温的温度传感器,设为燃料箱温度与气温联动来推定温度。
[0115] 在步骤S12中,如果燃料箱温度未超过预定值,则处理前进到步骤S13,判断发动机4是否处于运行中。在步骤S13中如果发动机4处于运行中,进而在步骤S14中判断罐189的除气是否处于执行中。
[0116] 如果步骤S13中发动机处于停止中、或者步骤14中除气不处于执行中,则不改变除气要求标志,处理前进到步骤S18,控制移向主例程。
[0117] 在步骤S14中若判断为罐189的除气处于执行中,则前进到步骤S15。 [0118] 在步骤S15中,控制装置60判断在执行除气过程中使用了空燃比传感器145的燃料喷射量的反馈控制值是否表示导入到进气中的燃料蒸气量较大。换言之,如果燃料喷射量被控制在比基于加速踏板的踏下量而确定的通常的燃料喷射量少预定量以上,则因为燃料蒸气的浓度较大,所以能够判断为需要进一步进行罐的除气。
[0119] 在步骤S11中判断为进行了燃料补给的情况下,在步骤S12中判断为燃料箱温度超过预定值的情况下、以及在步骤S15中反馈控制值表示燃料蒸气量较大的情况下,处理前进到步骤S16。
[0120] 在步骤S16中,判断为罐中的燃料蒸气补充量较大且仍然需要除气。并且,控制装置60将除气要求标志设定为开启(ON)状态。除气要求标志以非挥发性的方式存储于图5的控制装置60中的存储器57,在车辆运行结束后也作为表示罐的状态的标志而被保持。 [0121] 在步骤S15中,在反馈控制值不表示燃料蒸气量较大的情况下,处理前进到步骤S17,控制装置60将除气要求标志设定为关闭(OFF)状态。在这种情况下,因为从罐送出的燃料蒸气的浓度非常稀薄,所以判断为不需要除气。
[0122] 若步骤S16或步骤S17的处理结束则在步骤S18中控制移向主例程。 [0123] 图7是用于说明在从外部进行充电时对于罐的加热器加热的控制的流程图。该流程图的处理每隔一定时间或者每当预定的条件成立时从预定主例程调出而执行。 [0124] 如果通过加热器179加热图5的罐189,则在进行了除气时燃料蒸气容易从罐的活性炭脱离。但是,如果在充电期间一直用加热器持续加热则电力的损失很大。因为在起动车辆后若发动机不运行则除气就不能进行,所以优选在使发动机即将开始运行之前预先进行加热器的加热。但是,如果车辆没有与外部电源连接,则如果进行加热器加热,那么好不容易充电到电池的电力被消耗,会缩短EV行驶距离。
[0125] 于是,在驾驶者将充电插头连接到车辆的连接器而能够从外部向车辆供给电力的状态下,如果在车辆即将起动之前预先由加热器进行罐的预热,则能够在罐温热的状态下进行除气,所以优选。这样的话,能够在短时间结束除气,也得到能够在短时间结束发动机的运行这样的效果。
[0126] 参照图7,在该处理开始时,首先在步骤S21中,控制装置60判断充电插头是否处于与图1的连接器50连接中。可以通过由电压传感器74检测出的电压来判断充电插头的连接,也可以设置检测插头与连接器的物理性接触的传感器来检测连接器的连接。 [0127] 在步骤S21中,在判断为充电插头处于与车辆的连接器50连接中的情况下,处理前进到步骤S22。在步骤S22中,判断是否为车辆起动预定时刻之前预定时间以内。车辆起动预定时刻能够通过内置于控制装置的一周的时刻表等由驾驶者预先设定。或者,可以将驾驶者每天早上起动车辆的时间预先存储在内置于控制装置的存储器中,基于此来确定车辆起动预定时刻。另外预定时间设定为由加热器将罐升温到合适的温度所需要的时间以上。
[0128] 在步骤S22中,在判断为是车辆起动预定时刻之前预定时间以内的情况下,处理前进到步骤S23。在步骤S23中控制装置60判断由图6的流程图的处理决定并预先存储于存储器57的除气要求标志是否为开启(ON)状态。
[0129] 在步骤S23中,在除气要求标志为开启(ON)状态的情况下,处理前进到步骤S25,在除气要求标志为关闭(OFF)状态的情况下处理前进到步骤S24。
[0130] 在步骤S24中,判断在车辆刚刚起动后是否需要启动发动机。例如,如果长时间不运行发动机则会使得各部分的润滑油用尽等而存在使发动机的状态恶化的危险。另外,也存在气温较低、为了进行供暖而需要发动机的运行的情况。另外,也存在为了进行催化剂等的功能检查(OBD(OnBoard Diagnosis,车载诊断)率监控要求)而需要发动机的运行的情况,该功能检查在美国等规定必须定期进行。
[0131] 如此,即使电池的充电状态处于不需要运行发动机的状态,也存在每隔一定时间必须使发动机启动的情况。并且,能够进行外部充电的混合动力车辆,因为运行发动机的机会可能极少,所以如果存在使发动机启动的机会,则即使除气要求标志为关闭状态,也最好进行一下罐的除气。
[0132] 因此,在步骤S24中,在需要使发动机启动的情况下处理前进到步骤S25。 [0133] 在步骤S25中,控制装置60使用图5的加热器179来加热罐189。由此,燃料蒸气变得容易从罐189脱离。并且在步骤S26中,在车辆起动时控制装置60启动发动机4并执行罐189的除气。此外,在步骤S25与步骤S26之间,驾驶者将充电插头从车辆的连接器50拆下,通过启动钥匙等将步骤S26的车辆起动指示发送给车辆。步骤S26中即使在执行除气期间也可以继续进行由加热器179对罐189的加热。在这种情况下,因为使发动机4运行、能够由电动发电机MG1产生电力,所以由加热器179进行的加热不会引起EV行驶可能距离的直接的减少。
[0134] 在步骤S21、S22、S24中的任一条件不成立的情况下或者在步骤S26的处理结束的情况下,处理前进到步骤S27并且控制移向主例程。
[0135] 从图4和图7可知,本实施方式所述的控制方法包括:将电力从外部电源充电到电池B1的步骤S4;通过从外部电源供给的电力使将罐活性化的加热器动作的步骤S25;和在加热器的动作开始后为了除气而使发动机4动作的步骤S26。
[0136] 基于以上的说明,再次参照图1和图5,对本实施方式进行概括。被构成为能够从车辆外部充电的混合动力车辆100具备:蓄电装置、即电池 B1;将蓄电装置与外部工业电源55进行电联结的连接器50;吸收燃料蒸气的吸收部;和活性化部,该活性化部在通过连接器50将蓄电装置与外部电源联结的期间,将吸收部活性化为燃料蒸气容易脱离的状态。 [0137] 优选的是,吸收部包括收容有吸附燃料蒸气的吸附剂(活性炭等)的罐189。活性化部包括从电池和外部电源的至少一方接受电力来加热罐189的加热器179。混合动力车辆还具备进行针对罐189的除气的除气机构。
[0138] 更优选的是,混合动力车辆还具备控制加热器179和除气机构的控制装置60。控制装置60,判断罐189的饱和度,在饱和度大于第一值时使加热器179和除气机构动作。 [0139] 更优选的是,除气机构包括产生负压的发动机4。混合动力车辆还具备控制加热器179和除气机构的控制装置60。控制装置60,在判断为下次的车辆起动时需要发动机4的启动时,在发动机4的启动之前预先使加热器179动作。
[0140] (变形例)
[0141] 在变形例中,在家中等进行充电时,基于正门被从外部上的情况而将车辆的起动预告信号发送到车辆。预告信号通过经由充电电缆的电力线通信而从家中发送到车辆。 [0142] 图8是表示变形例的车辆和充电装置的结构的框图。
[0143] 参照图8,车辆100A包括:车轮308;驱动车轮308的电机306;向电机306提供三相交流电力的变换器304;向变换器304供给直流电力的主电池302;和进行变换器304的控制的主控制ECU314。也就是说车辆100A,是将电机和发动机并用于驱动的混合动力汽车,对于与发动机相关的部分,因为与图5中说明的结构相同,所以在图8中未进行图示而不重复说明。
[0144] 作为主电池302,能够使用镍氢电池、锂离子电池、铅蓄电池等二次电池、除二次电池之外也能够使用蓄电用的大容量电容器等。
[0145] 车辆100A具有能够从外部充电到主电池302的结构。即车辆100A还包括:设置有从外部提供例如交流100V等工业电源的端子的连接器324;将向连接器324提供的交流电力变换为直流电力并向主电池302提供的 AC/DC变换部310;连接连接器324与AC/DC变换部310的开关322;检测充电装置200的充电插头已连接到连接器324的连接器连接检测部320;和电力线通信部316。
[0146] 主控制ECU314,监视主电池302的充电状态SOC(State Of Charge),并且通过连接器连接检测部320来检测连接器连接。主控制ECU314,在对连接器324连接了充电插头206的情况下,使用电力线通信部316进行与充电装置200侧的通信,确认在电力传送路线上没有发生断路、短路等的异常。如果这样的通信成立,则能够确认在电力传送路线上没有发生断路、短路等的异常。
[0147] 在车辆100A中,电力传递路径是从连接器324经由开关322、AC/DC变换部310而到达主电池302的路径。从电力传递路径中的连接器324到AC/DC变换部310,使用例如交流100V、能量较大的第一电流值传送电力。并且从AC/DC变换器310到主电池302,以已变换为直流的、能量较大的电流值传送电力。
[0148] 另一方面,电力线通信部116,以比上述的电力传递路径中进行送电的第一电流值小的第二电流值进行通信。
[0149] 另外,对于频率,例如,在日本的情况下以50Hz或60Hz的频率的交流信号来进行电力授受,以比上述高或低的频率来进行通信。频率虽然根据国家不同而不同,但电力授受以在15~150Hz的频率的范围内的交流来进行。通信信号设定为具有15~150Hz的频率的范围外的频率。
[0150] 主控制ECU314控制电力线通信部316和电力传递路径。主控制ECU314,首先使用电力线通信部316进行是否与充电装置200进行电力授受的通信,在通信结果表示为进行电力授受的意思的情况下,使用电力传递路径在主电池302与充电装置200之间进行电力授受。
[0151] 充电装置200包括用于对主电池302送电并进行充电的交流电源202。交流电源202能够使用例如工业电源AC100V。
[0152] 充电装置200还包括:充电插头206;充电电缆218;经由充电电缆218将交流电源202连接到车辆100侧的电力传递路径的开关204;和与电 力线通信部116进行通信、控制开关204的电源控制用的主控制ECU208。主控制ECU208能够使用电力线通信部210与电力线通信部316进行通信。车辆的主控制ECU314经由电力线通信部316对主控制ECU208指示开关204的开闭。
[0153] 在充电装置200中,充电电缆218传递第一和第二电流值的电流(AC100V和通信用高频信号)。充电插头206设置在电缆的末端。
[0154] 车辆100A还包括连接充电插头206的连接器、即连接器324。车辆100A的主控制ECU314,在主电池302的充电状态SOC低于预定值时,使开关322从断开状态变化到连接状态,对充电装置200要求供电,使AC/DC变换部310动作并进行主电池302的充电。 [0155] 在存在从车辆100A侧向充电装置200侧的供电要求的情况下,主控制ECU208闭合开关204并开始供电,主控制ECU314使AC/DC变换部310动作并进行对主电池302的充电。
[0156] 若充电结束则主电池302的充电状态SOC变得高于预定值,与此对应,主控制ECU314使AC/DC变换器310停止并将开关322从闭合状态变化到断开状态。并且经由电力线通信部316对充电装置200要求停止供电。于是主控制ECU208使开关204从闭合状态变化到断开状态。
[0157] 此外,在充电装置上设置有显示装置214和输入装置212。显示装置214显示例如充电开始时间、从充电状态预测的充电结束时间等。输入装置212,在作业人员将充电插头206安装到连接器324后,用于输入途中中断充电的指示。
[0158] 充电装置200还包括正门上锁检测部216,该正门上锁检测部216检测通过驾驶者持有的钥匙已从外部将家庭的正门上锁。主控制ECU208,通过正门上锁检测部216的输出接收到驾驶者将正门上了锁的意思的通知,然后将其经由电力线通信部210、充电电缆218以及电力线通信部316发送到主控制ECU314。
[0159] 主控制ECU314收取到该通知,然后由驾驶者将充电插头206从车辆拆下、或者在经过预定的时间之前的期间输出通过加热器179对图5的罐 189进行预热的指示。 [0160] 图9是用于说明变形例中主控制ECU314执行的罐预热处理的流程图。 [0161] 图9的流程图包含步骤S22A的处理来代替图7中说明的流程图的控制中的步骤S22的处理。对于步骤S22A的其他部分,因为主控制ECU314代替控制装置60进行同样的处理所以不重复说明。
[0162] 在步骤S22A的处理中,图8的主控制ECU314,通过使用了充电电缆的电力线通信,接受正门上锁检测部216检测到驾驶者用钥匙将家的正门上了锁这样的通知。在接受到该通知的情况下,从步骤S22A前进到步骤S23。另一方面,在没有该通知的情况下从步骤S22A前进到步骤S27并且控制移向主例程。
[0163] 此外,在图8、图9中,虽然通过电力线通信将正门被上了锁进行了通知,但是也可以通过无线方式从房屋、充电装置向车辆通知。另外,也可以通过遥控钥匙等以无线方式将预告车辆起动的信号发送给车辆。
[0164] 也就是说,混合动力车辆100A具备设定起动预定时刻的计时器、正门上锁检测部216等作为检测或者推定车辆的起动时刻的设备。对应于图5的控制装置60的主控制ECU314使图5的加热器179动作,使得在检测或者推定出的起动时刻之前结束升温。 [0165] 另外,在图1、图8中,虽然示出了通过充电电缆直接连接车辆与充电装置的例子,但是也能够以使用电磁感应等在非接触状态下进行电连接而授受电力的方式进行变形。 [0166] 如此一来,由驾驶者将充电插头206从车辆拆下、或者在经过预定的时间之前的期间,通过从电力存在富余的外部供给的电力使用加热器179对图5的罐189进行预热,在车辆起动后开始运行发动机并进行除气时能够使燃料蒸气良好地从罐脱离。另外,尽管进行了需要较大电力的加热器的预热,但能够抑制电池的电力被消耗并对EV能够行驶的距离产生影响。
[0167] 另外,通过预先将罐预热,能够缩短为了除气而不得不运行发动机的时间。 [0168] 另外,以上的实施方式中公开的控制方法,能够使用计算机以软件来执行。将用于使计算机执行该控制方法的程序从将其以计算机能够读取的方式存储的存储介质(ROM、CD-ROM、存储卡等)读入到车辆的控制装置中的计算机,或者也可以通过通信线路提供。 [0169] 此外,在本实施方式中示出了适用于能够通过动力分配机构将发动机的动力分配并且传递到车轴和发电机的串联/并联型混合动力系统的例子。但是本发明也能够适用于仅为了驱动发电机使用发动机、仅通过使用由发电机发电的电力的电机来产生车轴的驱动力的串联型混合动力汽车。
[0170] 应该认为,本次所公开的实施方式在所有的方面都是例示而不是限制性的。本发明的范围不是由上述的说明而是由权利要求表示,包括与权利要求等同的意思以及范围内的所有的变更。
QQ群二维码
意见反馈