发动机自动停止和自动再起动控制

申请号 CN200910146078.3 申请日 2009-06-05 公开(公告)号 CN101603470B 公开(公告)日 2015-02-11
申请人 福特环球技术公司; 发明人 马休·艾伦·博伊斯奇;
摘要 本 发明 涉及 发动机 自动停止和自动再起动控制。提供控制在发动机 怠速 停止工况中可以关闭的发动机的发动机操作的系统和方法。该发动机可以包括高压直接喷射 燃料 系统。在一个 实施例 中,一种方法包括在低于 阈值 的至少第一燃料 导轨 温度 中,在选择的发动机怠速停止工况中自动停止发动机操作;及在高于阈值的至少第二燃料导轨温度中,在选择的发动机怠速停止工况中保持发动机操作。通过本发明,可以避免燃料喷射控制精确度的劣化,从而避免粗劣的再起动、增加排放、和/或发动机失火。
权利要求

1.一种控制在发动机怠速停止工况中可以关闭的发动机的发动机操作的方法,所述发动机包括高压直接喷射燃料系统,所述方法包括:
在低于阈值的第一燃料导轨温度中,在选择的发动机怠速停止工况中自动停止发动机操作;及
在高于阈值的第二燃料导轨温度中,在选择的发动机怠速停止工况中保持发动机操作,并且在高于阈值的第二燃料导轨温度中,停止或减少燃料操作同时继续燃料喷射直到燃料导轨压降到低于阈值,然后自动停止发动机操作。
2.如权利要求1所述的方法,其特征在于,实施在选择的发动机怠速停止工况中自动停止发动机操作而没有驾驶员请求的发动机关闭。
3.如权利要求1所述的方法,其特征在于,还包括甚至在高于阈值的第二燃料导轨温度中,响应于驾驶员请求的发动机关闭停止发动机操作。
4.如权利要求1所述的方法,其特征在于,在选择的发动机怠速停止工况中保持发动机操作包括停用发动机的自动停止。
5.如权利要求1所述的方法,其特征在于,选择的发动机怠速停止工况包括发动机冷却剂温度高于阈值。
6.如权利要求1所述的方法,其特征在于,还包括在选择的发动机怠速停止工况中自动停止发动机之前基于高压燃料导轨的先前燃料导轨温度调节随后的再起动的操作。
7.一种控制在发动机怠速停止工况中可以关闭的发动机的发动机操作的方法,所述发动机包括高压直接喷射燃料系统,所述方法包括:
在低于阈值的第一燃料导轨温度中,在选择的发动机怠速停止工况中自动停止发动机操作,而没有驾驶员请求的发动机关闭,且在第一发动机输出扭矩量下再起动发动机;及在高于阈值的第二燃料导轨温度中,在选择的发动机怠速停止工况中自动停止发动机操作,而没有驾驶员请求的发动机关闭,且在高于第一发动机输出扭矩量的第二发动机输出扭矩量下再起动发动机。
8.如权利要求7所述的方法,其特征在于,还包括以增加的发动机输出扭矩对电池充电,从而在所述低于阈值的第一燃料导轨温度中的选择的发动机怠速停止工况和所述高于阈值的第二燃料导轨温度中的选择的发动机怠速停止工况中保持期望的怠速转速;在高于阈值的第二燃料导轨温度中,相比较于在低于阈值的第一燃料导轨温度中的燃料喷射器的燃料脉冲宽度,增加燃料喷射器的燃料脉冲宽度,从而实现精确的燃料喷射控制。

说明书全文

发动机自动停止和自动再起动控制

技术领域

[0001] 本发明涉及发动机自动停止和自动再起动控制。

背景技术

[0002] 车辆可以使用在怠速或停止车辆工况也称为发动机怠速停止工况中自动关闭的发动机以提高燃料效率和降低排放。
[0003] 美国专利6,817,329提供一种管理自动发动机关闭操作的方法。在该示例中,响应于高发动机冷却剂温度停用自动发动机关闭操作。在发动机关闭之后,在发动机室温度冷却到接近环境温度之前可以继续上升一段时期,因为冷却系统在发动机关闭之后不操作。当发动机室温度,如发动机冷却剂温度所示在发动机关闭之前已较高时,发动机室温度上升到一定平会潜在地造成在发动机关闭期间各种发动机构件的损坏。因此,通过响应于高发动机冷却剂温度停用自动发动机关闭,可以避免发动机构件的过热
[0004] 然而,本发明人在此认识到上述方法的各种问题。在一个示例中,执行自动关闭操作的发动机可以使用高压直接燃料喷射。在此,当在高燃料导轨温度下关闭发动机时,这甚至可以发生在低发动机冷却剂温度下,由于在关闭期间继续加热导致燃料导轨压可以上升到高于期望的水平。因此,在随后的发动机起动中,由于高于期望的燃料导轨压力结合燃料喷射器动态范围上的限制,燃料喷射控制精确度会劣化。劣化的控制精确度然后会导致粗劣的再起动、增加排放、和/或发动机失火。

发明内容

[0005] 在一个方法中,通过一种控制在发动机怠速停止工况中可以关闭的发动机的发动机操作的方法可以解决上述问题的至少一些,该发动机包括高压直接喷射燃料系统,该方法包括:在低于阈值的至少第一燃料导轨温度中,在选择的发动机怠速停止工况中自动停止发动机操作,而没有驾驶员请求的发动机关闭,及在高于阈值的至少第二燃料导轨温度中,在选择的发动机怠速停止工况中保持发动机操作。当自动停止发动机操作时考虑燃料导轨压力影响,有可能避免在随后的再起动中导致不期望的高燃料导轨压力的工况。例如,通过停用在这种工况下的自动停止,甚至当发动机冷却剂温度低于可以导致构件劣化的温度时可以减少劣化的操作。
[0006] 此外,通过本公开的方法的另一方面可以解决上述问题的至少一些,在高于阈值的第二燃料导轨温度中,继续燃料喷射直到燃料导轨压力降到低于阈值,然后自动停止发动机操作。以此方式,有可能延迟发动机关闭直到燃料导轨压力可以充分减少。因此,在随后的再起动中,可以实现合适的加燃料控制。在一个示例中,通过停止燃料,通过继续的喷射和发动机操作/燃烧可以减少压力,从而充分降低燃料压力以实现发动机关闭操作。以此方式,即使由于燃料的温度较高在关闭期间燃料压力上升,在随后的再起动中也可以实现精确的加燃料。
[0007] 通过本公开的方法的又一方面可以解决上述问题的至少一些,该方法包括在选择的发动机怠速停止工况中发动机的自动停止之前基于高压燃料导轨的先前的燃料导轨温度,调节随后的再起动操作。以此方式,即使在停止期间燃料导轨压力上升影响再起动时的燃料喷射控制,由于例如发动机在较大输出扭矩下操作,喷射器的较大喷射脉冲宽度可以实现充分精确的喷射控制。在一个示例中,可以进一步获得附加的扭矩输出以再生电池充电状态。
[0008] 通过控制在发动机怠速停止工况中可以关闭的发动机的操作的发动机控制设备的另一方面可以解决上述问题的至少一些。发动机控制设备包括高压直接喷射燃料系统,发动机控制设备包括发动机控制器,该发动机控制器配置为在低于阈值的至少第一燃料导轨温度中,在选择的发动机怠速停止工况中自动停止发动机操作;及在高于阈值的至少第二燃料导轨温度中,减少燃料泵操作,保持发动机操作,及停用发动机的自动停止直到燃料导轨压力降到低于阈值压力。
[0009] 应理解以简单的形式提供上述发明内容,在具体实施方式中进一步详述选择的概念。这并不意味着确定请求保护的主题的关键或主要特征,其范围由权利要求唯一地确定。此外,请求保护的主题不限于解决上述或本公开的任何部分中的缺点的实施方式。
附图说明
[0010] 图1是示出示例车辆系统的示意图;
[0011] 图2-图4是示出根据本发明的示例操作的高级流程图

具体实施方式

[0012] 图1是示出示例车辆系统100的示意图,该车辆系统100利用发动机控制设备112控制在发动机怠速停止工况中可以关闭的发动机10的发动机操作。该示例车辆系统100如图所示为并联混合动力电动车辆系统,车辆系统100的发动机10包括高压直接燃料喷射燃料系统116。应理解在车辆系统100的替代的实施例中,其他的发动机和车辆配置是可能的,例如车辆系统可以是串联混合动力电动车辆系统、或非混合动力电动车辆系统,如汽油车辆系统或柴油车辆系统。
[0013] 在如图1所示的示例车辆系统100中,车辆系统的驱动力由发动机10和/或连接到发动机10的起动机/发电机118的电动达产生。从发动机10和/或起动机/发电机118到驱动轮126(例如前轮)的驱动力通过扭矩变换器系统120、变速器系统122、及差动驱动系统124提供。起动机/发电机118由电池128提供的电能驱动。在起动机/发电机
118和电池128之间可以连接能量转换系统130以将电能转化为期望的形式,如期望的电压电流、和/或电流类型(例如AC或DC)。
[0014] 当发动机10提供的驱动力不足以满足需要的驱动力时,来自电池128的电能可以用来通过起动机/发电机118补偿发动机10。或者,当发动机10关闭时(例如在发动机怠速停止工况中),来自电池的电能可以用作驱动力的唯一来源。另一方面,当发动机10提供的驱动力超过需要的驱动力时,发动机10产生的多余的驱动力可以通过起动机/发电机118转换为电能并存储在电池128中。类似地,在再生制动中,驱动力可以从驱动轮126传回到起动机/发电机118以转化为电能且随后存储在电池128中。
[0015] 继续参考图1,高压直接喷射燃料系统116可以包括高压燃料导轨119,该高压燃料导轨119输送由高压燃料泵121加压的燃料到直接燃料喷射器123用于喷射到发动机汽缸129中。高压燃料导轨119可以包括感测燃料导轨压力的一个或多个燃料导轨压力传感器125和感测燃料导轨温度的一个或多个燃料导轨温度传感器127。为简化仅示出一个燃料导轨压力传感器125和一个燃料导轨温度传感器127。
[0016] 车辆系统100的发动机控制设备112可以包括发动机控制器12。发动机控制器12可以连接到各种传感器134且可以配置为从各种传感器134接收多种传感器信号。传感器134可以包括车辆速度传感器、节气开度传感器、发动机转速传感器、电池充电状态传感器、点火开关传感器、制动器开关传感器、挡位传感器、驾驶员需求传感器、包括发动机冷却剂温度传感器、燃料导轨温度传感器、进气温度传感器、排气温度传感器的各种温度传感器、及包括燃料导轨压力传感器的各种压力传感器。发动机控制设备112还可以连接到车辆系统的各种驱动器136且还可以配置为控制各种驱动器136,包括燃料喷射器123和燃料导轨燃料泵121的操作。
[0017] 发动机控制设备112还可以配置为在选择的工况下如怠速工况下自动停止发动机操作,而没有驾驶员请求的发动机关闭。然而,在高燃料导轨温度工况下,由于升高的导轨温度在关闭工况下燃料导轨压力可以上升到不期望的高水平。因此,发动机控制设备可以通过执行如图2-图4在本文中所述的例程200-400中的一个或多个基于燃料导轨温度调节自动发动机停止。
[0018] 现具体参考图2,例程200可以包括在202确认存在怠速停止工况208。在208规定的怠速停止工况例如可以包括在210发动机操作(例如实施燃烧)。在212,可以检查电池128的充电状态(SOC)超过预定最小阈值。在一个示例中,期望电池128的SOC至少超过30%充电以实现自动发动机关闭。在214,可以指示起动机/发电机118的马达为操作准备。在216,可以确定车辆运行速度在期望的范围之内。在一个示例中,期望的范围可以不超过30mph。在218,可以检查空调的状态,确定空调未发出再起动发动机10的请求,若期望空气调节时可能请求。在220,可以估计和/或测量进气温度以确定其是否在选择的温度范围内。在一个示例中,可以通过位于进气歧管中的温度传感器估计进气温度。在222,可以估计和/或测量发动机温度以确定其是否在选择的温度范围内。在一个示例中,可以从发动机冷却剂温度推断发动机温度,当发动机冷却剂温度高于阈值时可以选择发动机怠速停止工况。在224,可以估计驾驶员请求的扭矩以指示其低于预定阈值。在226,可以分析连接到发动机10的排气歧管的排放控制装置以确定没有发动机再起动的请求。
[0019] 若在202不满足怠速停止工况,则例程结束。若在202满足怠速停止工况,例程200可以通过在204首先评估燃料导轨温度(T燃料导轨)工况超过预定阈值在发动机关闭之前调节发动机操作。估计的燃料导轨温度工况可以指示潜在的燃料导轨压力限制。例如通过燃料导轨温度传感器127可以估计燃料导轨温度。在燃料导轨温度低于预定阈值的工况中,在206,可以执行自动怠速停止,从而在选择的发动机怠速停止工况中自动停止发动机操作,而没有驾驶员请求的发动机关闭。当满足所有的怠速停止工况时实施自动停止,及当燃料导轨温度工况低于阈值时进一步实施自动停止,可以避免在怠速停止中发动机构件的过热和/或燃料导轨过压力工况。
[0020] 在燃料导轨温度高于阈值的工况中,在230,可以保持发动机操作,同时减少燃料泵121的操作。这可以包括调节高压燃料泵121的操作以加压高压燃料泵,同时继续喷射燃料到发动机汽缸。在一个示例中,可以停止燃料泵,在另一个示例中,在低发动机功率中,可以调节燃料泵以实现通过喷射器的低压力,从而实现在喷射的燃料质量上的精确控制。应理解在替代的实施例中,可以通过配置到高压泵控制器中的倾泄机构如倾泄实现压力减少。此外,可以停用发动机的自动停止。然而,应理解在驾驶员请求的发动机关闭事件中,甚至在燃料导轨温度高于阈值时,可以停止发动机操作。
[0021] 或者,可以继续减少燃料泵操作和燃料喷射直到燃料导轨压力降到低于阈值,在此之后可以自动停止发动机。因此,通过响应于燃料导轨温度高于阈值使燃料泵关闭继续燃料喷射,可以解决燃料导轨压力高于阈值工况,其中阈值工况关联于高于阈值工况的燃料导轨温度。以此方式,当自动停止发动机操作时通过考虑燃料导轨压力影响,可能避免在随后的再起动中导致不期望的高燃料导轨压力的工况。
[0022] 在替代的实施例中,而不是按照230的操作,例程可以保持发动机操作,包括燃料泵操作以继续怠速操作,而没有自动关闭发动机。在204,可以保持发动机怠速操作直到燃料导轨温度降到低于阈值。
[0023] 发动机控制设备112还可以配置为在选择的工况中,如在怠速停止之后自动再起动发动机操作。然而,在高燃料导轨温度和压力工况下再起动时,在较小喷射量下的燃料喷射控制精确度会劣化。因此,发动机控制设备112可以通过执行如图3在本文所述的例程300基于当前燃料导轨温度调节自动发动机再起动。
[0024] 在310,可以规定自动再起动工况。这些可以包括在312确定发动机10当前处于怠速停止状态。在314,可以估计驾驶员请求的扭矩,且可以指示驾驶员请求的扭矩高于预定阈值。在316,可以检查空调状态以确定是否产生再起动的请求,当期望空气调节时可能请求。在318,可以估计电池128的SOC以指示电池的SOC低于预定阈值。在一个示例中,期望电池128至少30%充电。因此,可以请求发动机起动以将电池充电到期望的值。
[0025] 在320,可以监测排放控制装置以确定是否产生再起动发动机的请求。在一个示例中,通过温度传感器可以估计和/或测量排放控制装置的温度,且若温度低于预定阈值时,可以请求发动机再起动。在322,可以估计和评估车辆速度是否高于预定阈值。例如,若车辆速度高于较小阈值(例如3mph),可以请求发动机起动。在324,例如通过读取踏板位置传感器确定加速器踏板位置以确定加速器踏板是否接合和/或制动器踏板是否释放。最终,在326确定发动机10的电力负载是否高于预定阈值,响应于此请求发动机起动(例如为减少电池128的消耗)。在一个示例中,电力负载可以包括用户操作的附件装置、电动空调等。
[0026] 一旦规定自动再起动工况,例程300可以包括在302确认满足自动再起动工况。若该工况不满足,例程可以结束,且可以保持发动机的怠速停止状态。然而,若满足该工况,则在304,例如通过燃料导轨温度传感器127可以估计和/或确定燃料导轨温度(T燃料导轨),且可以确定该温度是否高于预定阈值。若温度不高于阈值,则在306,以第一预定发动机起动转速和第一目标发动机扭矩执行自动再起动工况。
[0027] 相反,若确定燃料导轨超温工况,则在308,可以设定高于第一预定值的发动机起动转速和/或发动机目标扭矩执行自动再起动,预期随之发生高燃料压力相关的燃料喷射限制。在一个示例中,发动机起动转速和发动机扭矩两者可以设定高于第一预定值。在另一个示例中,例如可以通过燃料喷射质量流率设置将发动机设定到高于第一预定值的功率水平。发动机目标转速然后可以保持恒定,以便允许怠速和慢行速度保持稳定,同时可以只增加扭矩设置以实现类似的功率增加。
[0028] 具体地,通过改变燃料喷射器电流脉冲的脉冲宽度可以控制燃料喷射量,该燃料喷射量具有限制的动态范围。在再起动时,当燃料导轨压力过高(例如高于阈值)时,这可以发生在燃料导轨温度过高时,用来输送较小喷射量的脉冲宽度较小以致低于燃料喷射器的动态范围,使其较难以实现精确的燃料喷射控制。通过以设定高于预定发动机起动转速的发动机起动转速和/或设定高于预定发动机目标扭矩的发动机目标扭矩(及响应于燃料导轨超温工况)执行自动再起动,燃料喷射的脉冲宽度指令转换回到燃料喷射器的更精确的范围。以此方式,可以在自动再起动的时候适当地解决燃料导轨压力上升,而对燃料喷射控制精确度没有不利影响,从而避免粗劣再起动、排放增加、及失火增加的可能性。
[0029] 在替代的实施例中,在选择的发动机怠速停止工况中发动机自动停止之前发动机控制设备112可以基于估计的先前燃料导轨温度和压力调节随后的自动再起动的操作。发动机控制设备112可以配置为在执行怠速停止之前首先解决与燃料导轨温度高于阈值相关的高燃料导轨压力工况,因此进一步调节立即跟随自动再起动发生的操作。因此,即使在关闭中燃料导轨压力上升,可以在随后的再起动中通过执行如图4在本文所述的例程400实现燃料喷射控制。
[0030] 现参考图4,在例程400,在402如在202,确认是否满足如在208(图2)先前详述的怠速停止工况标准。若未满足该标准,则例程可以结束。若满足怠速停止工况,则在404,分析燃料导轨温度的超温工况。若温度不高于预定阈值,则可以在410执行自动怠速停止,从而停止发动机操作。相反,若在404,燃料导轨温度高于预定阈值,则在406,可以首先延迟自动怠速停止。此外,为解决随后的关联于燃料导轨温度的高燃料导轨压力工况高于阈值工况,可以停用燃料泵121,同时可以控制喷射器123以继续燃料喷射。继续的燃料喷射以及关闭的燃料泵121可以允许燃料导轨压力降到在预定范围内的值。
[0031] 在408,可以监测燃料导轨压力(P燃料导轨)以确认其是否降到低于预定阈值。如关于预定燃料压力阈值(基于在发动机关闭工况中的期望的燃料压力上升)的附加压力相关输入可以分别在434和432提供到例程400。若燃料导轨压力不低于预定阈值,则例程400可以返回到406,且继续减少燃料泵操作同时继续燃料喷射,直到燃料导轨压力降到低于阈值,在此之后,可以自动停止发动机。然而,若燃料导轨压力低于预定阈值,则在410,可以直接执行怠速停止。以此方式,响应于燃料导轨超温工况可以延迟怠速停止直到燃料导轨压力减少。
[0032] 在发动机的随后自动再起动之前,在412,例程400可以包括确认是否已满足如在310(图3)先前详述的自动再起动工况。若未满足自动再起动工况,例程400可以保持怠速停止状态直到满足自动再起动工况。若且当自动再起动工况满足时,则在414可以估计和分析燃料导轨压力是否超过第二预定阈值。该第二阈值可以是精确燃料喷射控制所要求的最小泵送导轨压力值。若估计的燃料导轨压力低于预定阈值,即若燃料导轨压力在操作准备范围内,则在416,可以第一预定发动机起动转速和第一目标发动机扭矩执行自动再起动。然而,在一些情况中,发动机有可能在怠速停止状态中保持较长时间,因此在随后的自动再起动的时候由于燃料导轨温度上升,燃料导轨压力上升高于期望的操作准备范围。若在414估计的燃料导轨压力不低于预定阈值,则在417,可以设定高于第一预定发动机起动转速和第一目标发动机扭矩的第二发动机起动转速和第二发动机目标扭矩执行自动再起动。
[0033] 应理解在例程400的替代的实施例中,可以在414进行燃料导轨温度估计替代燃料导轨压力估计,以确定燃料导轨温度是否低于预定阈值。因此,在燃料导轨温度低于阈值的情况中,以第一预定发动机起动转速和第一目标发动机扭矩执行自动再起动。此外,在燃料导轨温度高于阈值的情况中,预期到随之发生高燃料压力相关的燃料喷射限制,定可以第二高发动机起动转速和第二高发动机目标转矩执行自动再起动。通过在417以高发动机起动转速和高发动机目标扭矩再起动发动机,随后的燃料喷射的脉冲宽度可以进入到燃料喷射器的动态范围中,从而提高燃料喷射的精确度。
[0034] 416和417两者然后通向418,在418可以确定驾驶员请求的扭矩值(TQ请求)和实际发动机产生的扭矩值(TQ实际),且在420比较以确定上述扭矩值之差。
[0035] 在一个情况中,若驾驶员请求的扭矩值高于发动机实际产生的扭矩值,则在422,估计电池128的充电状态以确定该值是否高于预定阈值。若电池充分充电,则在424,可以继续自动再起动,电池扭矩可以补偿发动机产生的扭矩以满足驾驶员扭矩需求。然而,若电池不充分充电,则在426,在第一燃料喷射之前可以延长的燃料泵送操作继续自动再起动以允许实现足够的导轨压力用于发动机起动。
[0036] 在另一个情况中,若驾驶员请求的扭矩值等于发动机产生的扭矩,则在428可以继续自动再起动。在另一个情况中,若驾驶员请求的扭矩值低于发动机实际产生的扭矩值,则在430,可以继续自动再起动,此外可以使用发动机产生的额外的扭矩对电池充电。
[0037] 以此方式,通过在选择的怠速停止工况中在先前的自动发动机停止之前基于估计的燃料导轨温度和/或压力工况调节随后的再起动操作,可以调节在先前的发动机怠速停止中的燃料导轨压力上升以便可以减少在再起动中对燃料喷射控制精确度的不利影响。
[0038] 以此方式,混合动力电动车辆的发动机控制器可以配置为在自动停止发动机之前基于高压燃料导轨的先前的燃料导轨温度调节随后的再起动的操作,若先前的燃料导轨温度高于预定阈值,以增加的发动机转速和输出扭矩自动起动发动机,而若先前的燃料导轨温度低于预定阈值,以减少的发动机转速和输出扭矩自动起动发动机。以此方式,在自动再起动中的喷射控制精确度不受在先前自动发动机关闭中的燃料压力上升影响。此外,在随后的时间可以获取和存储附加的扭矩输出以使用。在一个示例中,能量可以获取和存储为电池中的电能。
[0039] 应注意,本文中包括的示例控制和估值例程可用于各种发动机和/或车辆系统配置。本文所述的具体例程可以表示任何数量的处理策略中的一种或多种,如事件驱动、中断驱动、多任务、多线程等。因此,所示的各种步骤、操作或功能可以按所示的顺序执行、并行执行,或在一些情况下略去。类似地,处理的顺序不是实现本文中所述的示例实施例的特征和优点所必需的,而是为便于演示和说明而提供。取决于所使用的具体策略,可以重复执行所示步骤或功能中的一个或多个。此外,所述步骤可以在图形上表示编程到发动机控制系统中的计算机可读存储介质中的代码。
[0040] 应理解,在本文中公开的配置和例程本质上是示例性的,且这些具体实施例不应被视为具有限制意义,因为大量的变体是可能的。例如,上述技术可以应用于V-6、I-4、I-6、V-12、对置4、及其他的发动机类型。本公开的主题包括在本文中公开的各种系统和配置,及其他特征、功能,和/或属性的所有新颖和非显而易见的组合及子组合。
[0041] 本申请的权利要求特别指出视为新颖和非显而易见的特定组合及子组合。这些权利要求可能引用“一个”元素或“第一”元素或其等价。这样的权利要求应被理解为包括对一个或一个以上这样的元素的结合,而不是要求或排除两个或两个以上这样的元素。所公开的特征、功能、元素和/或属性的其他组合及子组合可以通过本申请权利要求的修改或通过在本申请或相关申请中提出新的权利要求来请求保护。这样的权利要求,无论是在范围上比原始权利要求更宽、更窄、等价或不同,都应被视为包括在本申请的主题之内。
QQ群二维码
意见反馈