减小制动操纵时的转向

申请号 CN201080058250.0 申请日 2010-10-21 公开(公告)号 CN102652085A 公开(公告)日 2012-08-29
申请人 罗伯特·博世有限公司; 发明人 R.科恩哈斯; A.肖恩;
摘要 本 发明 涉及一种用于在车辆被 制动 同时被转向的行驶状态中在车辆中减小转向 力 矩的方法。通过将制动力移动到后 车轮 上,与标准的制动力分布相比可更加容易地使前车轮转向。通过这一措施可大大地减小电转向力支持装置的所要求的最大功率。
权利要求

1. 用于在车辆被制动同时被转向的行驶状态中在车辆中减小转向矩的方法,其特征在于,检查是否车辆被制动并且同时被转向,并且在这种行驶状态中自动地提高后车轮上的制动力(pH)。
2. 按照权利要求1所述的方法,其特征在于,至少部分地降低前车轮上的制动力(pv),或者将其调节得比在标准模式时要小。
3. 按照权利要求1或2所述的方法,其特征在于,将后车轮上的制动力(pH)调节得比前车轮上的制动力(pv)大。
4. 按照前述权利要求中的任一项所述的方法,其特征在于,对于车辆的行驶方向进行监控,并且当车辆向后行驶时只制动后车轮。
5. 按照前述权利要求中的任一项所述的方法,其特征在于,对于转向(δL)进行监控,并且只要识别出转向角变化(δL)就自动地提高后车轮上的制动力(pH)。
6. 按照前述权利要求中的任一项所述的方法,其特征在于,对于车辆速度(v)进行监控,并且当车辆速度(v)小于规定的阈值时自动地提高后车轮上的制动力(pH)。
7. 按照前述权利要求中的任一项所述的方法,其特征在于,当转向角(δL)和/或转向角变化超过一种阈值时,自动地改变制动力。
8. 按照前述权利要求中的任一项所述的方法,其特征在于,在所有车轮上的制动力的总和符合所希望的制动要求。
9. 控制器,它包括用于执行前面所要求保护的方法中的任一个方法的装置。

说明书全文

减小制动操纵时的转向

现有技术

[0001] 本发明涉及一种用于在车辆被制动同时被转向的行驶状态时在车辆中减小转向力矩的方法。
[0002] 在制动过程期间,一方面通过车轮本身的制动、另一方面也通过车辆重量移到前车轮的移动而提高前车轮的转向力矩。两者的结果是:为了进行转向运动,必须付出比在车轮不制动时更多的能量。例如在一种“三进程转向”(Wenden in drei Zügen)的转向操纵中或者在以低速制动操纵中,会出现大的转向力矩。必须为这种极端的情况设计传统的电的助力转向器(EPS),并且因此它的功率比较强,并且昂贵。
[0003] 本发明的公开内容因此本发明的任务是减小在车辆制动且同时转向的行驶状态中作用在前车轮上的转向力矩。
[0004] 根据本发明,这个任务通过在权利要求1中规定的特征得到完成。本发明的其它一些方案是从属权利要求的主题。
[0005] 根据本发明建议,与标准模式(即无附加的转向运动的制动操纵)相比,在车辆被制动同时被转向的行驶情况时,自动地提高在后车轮上的制动力。通过这一措施实现:后车轮制动器承担着所希望的总的制动力的比较更大的一部分。这样减轻了前车轮的负载,并且前车轮上的转向力矩就变得比较小了。因此助力转向的伺服达的最大功率可以设计得较小一些,并且其尺寸更小一些。
[0006] 根据一种优选的实施形式,在对于车辆进行转向的制动过程中至少部分地减小前车轮上的制动力,或者将该制动力调节得比在标准模态时小。相对地在后车轮上提高制动力。通过这一措施,总的制动力至少部分地从前车轮移动到后车轮,并且减轻了前车轮的负载,这又导致减小了前车轮上的转向力矩。
[0007] 优选地将后车轮上的制动力调节得比前车轮上的大。
[0008] 在一定的行驶情况中、例如在倒车时,车辆也可只通过后车轮制动器进行制动。在这种情况中,在后车轮制动器上提高制动力。前车轮保持完全或者基本不制动。例如可通过车轮转速传感器的监控来识别这种类型的行驶操纵。
[0009] 只有当车辆主动转向时、也就是转向发生变化时,才进行前述的、制动力到后车轮制动器上的移动。在制动操纵期间——其中转向角保持恒定,例如当一直向前行驶时或者以恒定的半径转弯行驶时,相反地应以一种标准模式来制动车辆。例如可借助于转向角传感器来识别转向角的变化。
[0010] 由于安全的原因,只是在车辆速度低时才应进行所述根据本发明的、对于制动力的移动。根据本发明可以规定一种速度阈值,例如20公里/小时,或者更低。在触发自动功能时,必须低于这个阈值。在车辆速度较高时,应以标准模式来制动所述车辆。
[0011] 根据本发明的一种特别的实施形式可以规定,只有当转向角的变化比规定的阈值更大或更快时才自动地将制动力移动到后车轮制动器上。当转向角较小时,或者当转向角变化缓慢时,应该以标准制动模式来制动所述车辆。
[0012] 优选地,根据本发明的制动力的分布是制动力矩中立的(neutral)。也就是说,制动力的总和应该与标准模式时的总的制动力相应,并且因此不影响驾驶员所期待的车辆减速。
[0013] 下面借助于附图对本发明进行更加详细的示范性说明。这些附图是:图1:用于在车辆前车轮上降低转向力矩的方法的流程框图
图2:在“转向三进程(Wenden in drei Zügen)”的操纵时在前车轮-和后车轮上的转向角、速度和制动压力的曲线图。
[0014] 图1为用于减少车辆前车轮上的转向力矩的方法的简化流程框图。在车辆被制动且同时转向的行驶状态中,与标准的制动操纵(也就是无转向运动的制动操纵)相比,前车轮的制动不是那么强烈,并且因此减轻了它的负载。因此可减小前车轮上的转向力矩。
[0015] 在本方法开始以后,首先在步骤S1中检查,车辆速度v是否小于规定的阈值v0,例如20公里/小时,或者更小。此外可以确定,车辆是前行还是倒车。当速度v小于阈值v0时,在步骤S2中检查,转向角的时间变化量是否大于规定的阈值。否则,本方法分支返回到起始处。当在步骤2中转向角的时间变化量大于所述阈值时,在步骤S3中还要检查,是否操作了制动踏板。这可借助于传统的制动踏板传感器来进行。如果已操作了制动踏板,则前车轮-和后车轮制动器的制动力相对于标准的制动操纵自动地发生变化。否则,本方法分支返回到起始处。最后在步骤S4中,还是借助于车轮转速传感器在前行和倒车之间进行区分。
[0016] 步骤S5涉及的是这样一种行驶情况,即车辆朝向前方向运动(v>0),并且其中车辆被制动,且驾驶员在一定的时刻开始进行操作,为的是例如转向。在这种情况中,减小前车轮制动器上的制动力,并且提高后车轮制动器上的制动力。在这种情况中,制动力的变化是制动力矩中立地进行的,这样就不会影响车辆的减速。
[0017] 步骤S6涉及的是这样一种行驶情况,即车辆倒车(v<0),例如处于三进程的转向操纵的第二阶段中。在这种情况中,提高后车轮制动器上的制动力,前车轮保持完全不制动,或者基本上不制动。
[0018] 在这两种情况中,与标准模式中的制动相比较,可减小前车轮上的转向力矩。
[0019] 图2示出了在转向操纵期间在三个进程中在前车轮上的转向角δL、车辆速度v、制动压力pv的时间曲线,以及在后车轮上的制动压力pH的时间曲线。首先,从直行中制动车辆,其中,操作所有的车轮制动器。在时刻t1转向操纵开始,其做法是驾驶员将车辆朝一个方向转向。正如从曲线1可以看到的那样,转向角δL线性地增高。只要识别到转向角有变化,则在前车轮上的制动压力pv完全下降(请见特性曲线3的段5),并且相应地提高后车轮上的制动压力(请见特性曲线4的段6)。在这种情况下,总的制动力矩保持恒定。
[0020] 在时刻t2时,在最大转向角δL时车辆停住。现在后车轮上的制动压力也完全下降,正如在特性曲线4上看到的那样。紧接着车辆加速倒车,同时在这期间转向角下降,并且最后变为负的(请见特性曲线1)。在时刻t3时驾驶员又开始制动。因为有倒车,所以只是后车轮上的制动压力建立。前车轮保持不制动。在时刻t4时,当方向盘为最大反向偏转时车辆停住。然后所述后车轮上的制动压力完全降低。在此之后,车辆又重新向前加速,并且方向盘处于中立的位置(请见特性曲线1)。这样,转向操纵结束。
QQ群二维码
意见反馈