触敏机器人抓手

申请号 CN201380013238.1 申请日 2013-03-08 公开(公告)号 CN104271322B 公开(公告)日 2016-09-21
申请人 品质制造有限公司; 发明人 杰弗里·A·罗斯; 詹姆士·亚当·罗斯; 史蒂芬·D·罗斯; 雷蒙德·库珀;
摘要 本 发明 提供一种可以测量线位移和/或 角 位移 的位移测量单元。位移测量单元可包括位于导电 流体 中的移动和固定 电极 。可使用电性测量测定移动电极相对于固定电极的移动距离。位移测量单元可包括 活塞 和/或柔性壁。位移测量单元可用于触敏 机器人 抓手。触敏机器人抓手可包括多个物理上 串联 和/或并联的位移测量单元。触敏机器人抓手可包括处理器和/或 存储器 ,该处理器和/或存储器基于位移测量和/或其他测量识别物体。处理器可根据其特性确定如何操作物体。
权利要求

1.一种位移测量单元,包括:
导电流体
连接至导电流体的固定电极
电力及物理耦合至导电流体并用于相对于固定电极移动的可移动电极;
耦合至可移动电极和固定电极的用于产生穿过单元的电压的交流(AC)电压源;和耦合至可移动和固定电极并用于测量依赖可移动电极相对于固定电极移动的电性的电性测量装置。
2.权利要求1的位移测量单元,其中,导电流体用于防止可移动电极和固定电极之间的电荷积聚。
3.权力要求1的位移测量单元,其中,位移测量单元用于在可移动电极相对于固定电极移动时改变固定电极和可移动电极之间的导电流体的体积。
4.权利要求3中的位移测量单元,其中,电性测量装置用于在导电流体的体积改变时测量从包含电压、电流、阻抗和电阻的群组中选择的电性变化。
5.权利要求1的位移测量单元,其中,电性测量装置是从包含欧姆计、安培计、伏特计和模拟-数字转换器的群组中选择的。
6.权利要求1的位移测量单元,还包含一个用于从电性测量值计算位移的处理器。
7.权利要求6的位移测量单元,其中,处理器用于从电性测量值计算线性位移和位移中的至少一个。
8.权利要求6的位移测量单元,其中,处理器用于校正到位移的电性测量值。
9.权利要求1的位移测量单元,其中,固定电极包括一个平板。
10.权利要求1的位移测量单元,还包括一个导电流体贮液器。
11.权利要求10的位移测量单元,还包括用于调节导电流体的压力的压力控制器
12.权利要求1的位移测量单元,其中,导电流体是不可压缩的。
13.权利要求1的位移测量单元,其中,可移动电极包括至少一种从由、镓、导电油墨和钨组成的群组中选择的材料。
14.权利要求1的位移测量单元,其中,导电流体包括至少一种从由氯化钠、氯化和镓合金组成的群组中选择的材料。
15.权利要求1的位移测量单元,其中,可移动电极用于沿循环路径相对于固定电极移动。
16.权利要求15的位移测量单元,还包括:
圆环状的腔,其中圆环状的腔包含循环路径;
后盖,其中,固定电极和后盖耦合;
活塞,其中,可移动电极和活塞耦合,并且其中,活塞和可移动电极用于沿循环路径移动;和
与活塞耦合的气囊,其中,气囊用于防止导电流体从圆环状的腔中泄漏出去。
17.权利要求1的位移测量单元,还包括:
后盖,其中,固定电极和后盖耦合;
活塞总成,包括:
活塞,其中,可移动电极与活塞耦合;以及
活塞杆,其中活塞与活塞杆的近端耦合。
18.权利要求17的位移测量单元,其中,活塞包括非导电材料。
19.权利要求17的位移测量单元,还包括活塞扩展室和活塞收缩室。
20.权利要求19的位移测量单元,还包括用于添加额外导电流体至活塞扩展室并将导电流体从活塞收缩室移除的
21.权利要求17的位移测量单元,还包括连接至活塞杆远端的触头,其中触头连接至第二位移测量单元。
22.权利要求17的位移测量单元,还包括:
用于基于储存于存储器的计算机代码来控制活塞移动的处理器;和
用于输出位移测量值的输出装置。
23.权利要求17的位移测量单元,还包括:
活塞室;和
用于通过将一定量的导电流体添加至活塞室或从活塞室移除而移动活塞的正排量泵,其中,正排量泵与导电流体绝缘。
24.权利要求23的位移测量单元,其中,正排量泵包括使正排量泵与导电流体隔离的塑料体。
25.权利要求23的位移测量单元,还包括用于控制导电流体流向活塞室流量的
26.权利要求17的位移测量单元,还包括连接至活塞的气囊,其中气囊用于防止导电流体从位移测量单元中泄露。
27.权利要求1的位移测量单元,还包括用于围绕导电流体、可移动电极和固定电极的顺应壁。
28.权利要求27的位移测量单元,还包括剪切力传感器,其中顺应壁还包括接触面,其中剪切力传感器与接触面相连接,其中剪切力传感器包括至少一种从由压敏电阻材料和压电材料组成的群组中选择的材料,其中压电材料包括聚偏二氟乙烯(PVDF)膜,且其中剪切力传感器垂直于接触面。
29.权利要求27的位移测量单元,其中,顺应壁由组成。
30.权利要求1的位移测量单元,还包括:
包括接触面的柔性壁;
一个或多个与导电流体接触的固定电极,其中一个或多个固定电极包括固定电极;和多个与柔性壁连接且与导电流体相接触的可移动电极,其中多个可移动电极包括可移动电极;
电源;和
用于有选择地将一个或多个固定电极和可移动电极连接至电源和从电源处断开的控制电路
31.权利要求30的位移测量单元,其中,控制电路包括多路器。
32.权利要求31的位移测量单元,其中,控制电路用于在任何时候将一个或多个固定电极中的最多一个或多个可移动电极中的最多一个连接至电源。
33.权利要求32的位移测量单元,其中,控制电路被配置为允许同时对仅直接相对的固定电极和可移动电极供电。
34.权利要求30的位移测量单元,其中,控制电路包括对应于多个可移动电极的多个晶体管,其中每个晶体管的源极均与电源电力耦合,且每个晶体管的漏极均与相应的移动电极电力耦合。
35.权利要求30的位移测量单元,还包括嵌入在柔性壁中的集成电路,其中集成电路包括电性测量装置、控制电路、多路器和晶体管中的至少一个,且其中柔性壁包括柔性印刷电路板
36.权利要求35的位移测量单元,其中,集成电路包括纳米管
37.权利要求30的位移测量单元,其中多个可移动电极均嵌入在柔性壁中。
38.权利要求37的位移测量单元,其中多个可移动电极包括微流通道,以加强与导电流体的电力耦合。
39.权利要求1的位移测量单元,还包括用于测量导电流体温度的温度传感器。
40.权利要求39的位移测量单元,其中温度传感器与贮液器、液压线、可移动电极、固定电极、包含可移动和固定电极的室和邻近接触面的一部分小室中的至少一个相接触。
41.权利要求1的位移测量单元,还包括从由压阻式传感器和聚偏二氟乙烯(PVDF)膜传感器组成的群组选择的剪切力传感器,其中,剪切力传感器垂直于可移动电极。
42.一种触敏机器人抓取系统,包括:
第一抓取部件,包括第一组多个位移测量单元,每个位移测量单元包括:
导电流体,
电力连接至导电流体的固定电极,和
电力耦合至导电流体并用于相对于固定电极移动的可移动电极;
耦合至每个位移测量单元的可移动电极和固定电极的用于产生穿过单元的电压的交流(AC)电压源;以及
第一电性测量装置,用于测量第一电性同时有选择地耦合至所选择的位移测量单元的固定电极和可移动电极,其中第一电性取决于可移动电极相对于固定电极的移动。
43.权利要求42的触敏机器人抓取系统,还包括:
用于接收第一电性测量值并生成由第一组多个位移测量单元所感知的物体的模型的处理器;和
与处理器电力通信并用于存储测量值的存储器。
44.权利要求43的触敏机器人抓取系统,其中,处理器用于:
根据所接收的测量值中测定物体的周长;以及
根据所测定的周长,来生成物体的三维表征。
45.权利要求43的触敏机器人抓取系统,其中,存储器用于存储物体的图。
46.权利要求45的触敏机器人抓取系统,其中,处理器通过比较物体的模型和物体的图,测定被第一组多个位移测量单位所感知的物体的方位和位置中的至少一个。
47.权利要求46的触敏机器人抓取系统,还包括多个伺服电动机,其中,多个伺服电动机控制第一抓取部件和第二抓取部件的移动,并且处理器指导多个伺服电动机改变物体的方向,从而可以完成制造操作。
48.权利要求47的触敏机器人抓取系统,其中,处理器指导多个伺服电动机改变物体的方向,以符合预先确定的方向。
49.权利要求43的触敏机器人抓取系统,其中,处理器相对于第二抓取部件移动第一抓取部件,使得固定电极不接触移动电极。
50.权利要求42的触敏机器人抓取系统,其中,第一组多个位移测量单元被配置在多个层内,其中多个层之间彼此机械串联,并且其中在每个层内的位移测量单元彼此机械并联在一起。
51.权利要求50的触敏机器人抓取系统,其中多个层包括由包含柔性壁的无活塞位移测量单元组成的最后一层,并且其中,除最后一层以外的每层均包括包含活塞的位移测量单元。
52.权利要求42的触敏机器人抓取系统,还包括压力监视装置,用于测量导电流体的压力。
53.权利要求52的触敏机器人抓取系统,还包括用于根据压力测量值和第一电性测量值中的至少一个来相对于第二抓取部件移动第一抓取部件的处理器。
54.权利要求42的触敏机器人抓取系统,还包括第二抓取部件、第三抓取部件、第四抓取部件,其中,第一抓取部件与第二抓取部件相对设置,第三抓取部件与第四抓取部件相对设置,并且第一抓取部件垂直于第三抓取部件。
55.权利要求42的触敏机器人抓取系统,还包括:
第二抓取部件,包含第二组多个位移测量单元,第二组多个位移测量单元内的每个位移测量单元均包括:
导电流体,
电力耦合至导电流体的固定电极,和电力耦合至导电流体的可移动电极;和用于测量被感知物体的第二电性同时连接至在至少两个不同位移测量单元内的可移动电极的第二电性测量装置。
56.权利要求55的触敏机器人抓取系统,其中,第二电性测量装置用于测量物体的电容。
57.权利要求56的触敏机器人抓取系统,还包括用于计算物体的介电常数和/或电容率的处理器。
58.权利要求57的触敏机器人抓取系统,还包括用于对一个或多个材料存储介电值和/或电容率值的存储器,其中处理器还用于通过将物体的介电常数和/或电容率与存储的介电值和/或电容率值相比较来测定物体的材料。
59.权利要求57的触敏机器人抓取系统,其中,第二电性测量装置进一步通过测量当在移动电极之间不存在物体时的电容来校准。
60.权利要求56的触敏机器人抓取系统,其中,第二电性测量装置用于在相应多个频率和/或振幅下施加电功率的同时来测量多个电容。
61.权利要求55的触敏机器人抓取系统,还包括应变仪,其中应变仪包括包含长度—敏感电阻器的应变梁。
62.权利要求55的触敏机器人抓取系统,还包括电动机和导螺杆,其中电动机和导螺杆用于移动第二抓取部件。
63.权利要求55的触敏机器人抓取系统,还包括快速更换转台,以在物体上执行一个或多个操作。
64.权利要求63的触敏机器人抓取系统,其中快速更换转台根据第一电性和第二电性中的至少一个来确定执行哪项操作。
65.权利要求63的触敏机器人抓取系统,其中快速更换转台包括旋转接头
66.权利要求55的触敏机器人抓取系统,还包括用于移动第二抓取部件的凸轮导承。
67.权利要求42的触敏机器人抓取系统,其中第一抓取部件包括机器人脚,其包括:
第一组多个位移测量单元;
用于测量导电流体的流体压力的压力传感器
用于测量针对足部底部的剪切力的一个或多个剪切传感器;和
用于根据来自第一组多个位移测量单元的多个位移测量值和流体压力中的至少一个来测定机器人重量和机器人负载中的至少一个的处理器,
其中,第一组多个位移测量单元用于支持足部并测量地面轮廓。

说明书全文

触敏机器人抓手

[0001] 相关申请
[0002] 本专利申请要求2012年3月8日提交的第61/608,407号、2012年6月5日提交的第61/655,949号、2012年7月18日提交的第61/673,114号、2012年8月15日提交的第61/683,
324号、2012年10月4日提交的第61/709,822号和2013年2月20日提交的第61/767,130号美国临时专利申请的优先权,并通过引用将其全部包括在内。

技术领域

[0003] 本公开涉及可用于机器人和机器人抓手的位移测量单元。附图说明
[0004] 图1A和1B为接触传感器
[0005] 图2为一排触摸感应单元。
[0006] 图3A-3C为抓手的实施例
[0007] 图4为控制抓手位置和方向的系统。
[0008] 图5为一个抓取系统,该抓取系统基于从接触式传感器获取的信息控制抓手的闭合、位置和方向。
[0009] 图6A和6B为接触式传感器的横断面图和侧面图,该接触式传感器具有传感器单元,该传感器单元具有活塞总成。
[0010] 图6C为具有传感器单元的接触式传感器的横断面图,该传感器单元包括气囊和活塞总成。
[0011] 图7为接触式传感器的侧面图,该接触式传感器具有多个以并联和串联连接的活塞传感器单元。
[0012] 图8A和8B为触敏抓取系统的侧面图,该触敏抓取系统具有多个相对的接触式传感器阵列。
[0013] 图9为校正接触式传感器和抓取物体的方法流程图
[0014] 图10为传感器阵列的横断面图,该传感器阵列具有多个未被绝缘壁隔离的电极
[0015] 图11为不带内部绝缘壁的传感器阵列的顶视图。
[0016] 图12A为柔性基底的底视图,该柔性基底用于不带内部绝缘壁的传感器阵列。
[0017] 图12B为不带内部绝缘壁传感器阵列的另一实施例的前透视图。
[0018] 图13为传感器阵列的横断面图。
[0019] 图14为具有控制电路的传感器及不带内部绝缘壁的传感器阵列的示意图。
[0020] 图15为具有控制多路复用器的传感器及不带内部绝缘壁的传感器阵列的示意图。
[0021] 图16A为具有相对传感器单元的相对介电常数传感器的示意图。
[0022] 图16B为具有相对传感器单元的电阻率传感器的示意图。
[0023] 图17为抓手套组的示意图,该抓手套组具有与位移传感器串联的电动机
[0024] 图18为快速释放抓取系统的侧视图和旋转接头的剖视图。
[0025] 图19为可能具有旋转接头的快速更换转台的侧视图。
[0026] 图20为带凸轮导承的凸轮驱动机器人抓手的横断面图,该凸轮导承用于操纵抓取传感器阵列。
[0027] 图21A和21B为当侧传感器阵列板位于平面位置时,机器人抓手的侧透视图。
[0028] 图22A和22B为当侧传感器阵列板垂直于底部传感器阵列板时,机器人抓手的侧透视图。
[0029] 图23为当侧传感器阵列板位于锐位置时,机器人抓手的侧透视图。
[0030] 图24A和24B为蒙皮壁板的横断面图,该蒙皮壁板配置为机器人提供动,如机器人抓手或类似物。
[0031] 图25为具有多个集成电池的骨架元件的横断面图。
[0032] 图26A和26B为不同类型电池绕组的前透视图。
[0033] 图27A-27C为内部电池部分的横断面图。
[0034] 图28为具有加热元件的电池的前透视图。
[0035] 图29A和29B为旋转液压接头的前透视图和顶透视图。
[0036] 图29C和29D为活塞的前透视图,以及可用于旋转液压接头的后盖的前透视图。
[0037] 图29E-29H为中轴和外轴的横断面图,以及其中装配的旋转液压接头。
[0038] 图30A和30B为附加旋转液压接头实施例的横断面图。
[0039] 图31为被线性液压缸旋转的机械接头的示意图。
[0040] 图32为由多个机械接头耦合多个传感器,以形成机器人手指的示意图。
[0041] 图33A-33C为机器人手指的不同配置的侧透视图,该机器人手指由多个传感器耦合多个接头而形成。
[0042] 图34为具有多个机器人手指的机器人手的前透视图。
[0043] 图35为可联接至内核的后盖的前透视图。
[0044] 图36为带外止口和内止口的骨架元件的前透视图。
[0045] 图37为三自由度的复合球形接头的示意图。
[0046] 图38包括紧密复合接头的顶透视图、前透视图和侧透视图。
[0047] 图39为包括具有多种自由度的多个接头和多个骨架元件的手臂的示意图。
[0048] 图40是为提供灵活性和平衡性而提供的机器人脚的示意图。
[0049] 图41为使用机器人脚行走的方法流程图。
[0050] 图42为一种机器人完整骨骼系统的示意图。
[0051] 最佳实施例的详细描述
[0052] 在自动化生产中,机器人系统已经变得越来越普遍。有些系统包含所谓的末端效应抓手。机器人系统包括常常操纵一件物体至指定位置的末端效应抓手。在许多情况下,适当组装或制造至关重要,以使物体被完全放置在指定位置。然而,已知抓取系统仅在将物体于一个精确的位置上插入抓手时,才能够准确操纵物体至指定位置。这就要求手动定位物体并手动使抓手包围物体。手动定位和包围需要额外的时间的劳力。
[0053] 抓取系统可采用多个传感器及一个或多个处理器,以便更深刻地理解被抓取系统抓住的物体。处理器可包括一种通用装置,比如 或其他“现成的”微处理器。处理器可包括一种专用处理装置,比如ASIC、SoC、SiP、FPGA、PAL、PLA、FPLA、PLD、微控制器或其他定制的或可编程的装置。在一些实施例中,处理器可由不止一个通用装置和/或专用装置组成。抓取系统还可包括一个包含指令或数据的存储器。存储器可包括静态RAM、动态RAM、闪存、ROM、CD-ROM、磁盘、磁带、磁性、光学或其他计算机存储媒体。在一些实施例中,处理器和/或存储器可控制多个抓取系统和/或接收来自传感器的测量值。可通过电线、有线或无线网路或其他通讯手段,将抓取系统连接至处理器和存储器。
[0054] 接触式传感器
[0055] 图1A举例说明了一个单一接触式传感器100,其可用于描述被抓取系统抓住的物体。传感器由包含固定电极120和可移动电极130的传感单元110组成。传感单元110充满了导电流体112。导电流体112可在电极120和130之间传递电荷,以防止电极之间的电位差造成电荷积聚。可有选择地使用介电流体代替导电流体。介质流体和导电流体可以称为电力运转的流体。将电源140连接至两个电极120和130上,以形成一个通过导电流体的完整电路。
[0056] 可移动电极130能够改变固定电极120的相对位置。当物体压在接触式传感器上时,可移动电极130将被推向固定电极120。随着可移动电极位置的改变,电路的电阻和其他属性也将改变。电阻取决于电极120和130之间的距离。当电极120和130之间的距离最大时,电路的电阻将达到最大值。对于许多导电流体112而言,距离和电阻之间将呈近似直线关系。或者或另外,电极之间的电容可随电极之间距离的改变而改变。电性测量装置150可用于测量随可移动电极130位置改变而改变的电路属性。来自电性测量装置150的测量值可用于测定电极120和130之间的距离。
[0057] 许多不同类型的电性测量装置150和电路配置都是皆有可能的。在插图实施例中,电源140是一个恒定电压源,电性测量装置150是所阐述配置中的一个安培计。但是,可以重新配置接触式传感器100,以获得一个恒流电源并设置一个与传感单元110并联的伏特计。欧姆计既可用作电源,也可用作测量装置。可将电阻器或其他电路元件与传感单元110并联或串联放置,这样就可以将安培计与恒流电源一起使用,或伏特计与恒定电压源一起使用。
伏特计可测量穿过串联电阻器的电压降,从而测定传感单元的电性。对于具有变化电容的电路,可使用电容计测量电容,和/或电容器电压、电容器电流,和/或测得电容器阻抗。电源可供应直流电或交流电。电源也可在定期抽样间隔期间或占空度小于100%时应用电力。技术中的这些技巧会识别出其他可能的电路,这样就可以使电性测量装置150测量灵活、可移动电极的位置变化。电压、电流或电阻的任何测量均可使用欧姆定律V=IR转换为其他测量。对于较复杂的系统,可能还需要基尔霍夫电路定律完成转换。
[0058] 许多不同种类的导电流体112可能包括混有氯化钠、氯化或其他盐的,当与水;醋;镓;镓合金;伍德合金;镓合金;钠合金;及硫酸混合时,就会创造一种电解质。一般来说,导电流体112可包含任何盐、酸和/或。可将无毒防冻剂,如丙二醇或丙三醇,和/或有毒防冻剂,如乙二醇,添加进水基导电流体中。许多导电流体均有市售,包括:铟泰公司熔点为7.6摄氏度的镓合金46L;瑞特金属公司熔点为-19摄氏度的Gallinstan。这些金属在高温下会变成液体,并提供高电导率。氯化钾可通过多种市场渠道获得,比如带有饱和AgCI的科尔帕默KCL 3M。导电流体112的选择取决于成本、安全性和所需精确度。镓合金和钠钾合金可能会贵些。受热时,钠钾合金遇空气即产生剧烈反应,不过之后会形成一层抑制进一步反应的化涂层。释放出氢气时,镓铝合金遇水即产生强烈反应,且没有任何抑制活动。此外,导电流体112的选择会影响电源140和电性测量装置150的要求。高导电流体可能消耗更多的能量,除非使用低电压源140。当使用恒定电流源时,更多电阻液可能消耗更多的能量。更高的导电流体可能还需要更高灵敏度的电性测量装置150。
[0059] 电极120和130由插图实施例中的平板组成。电线122和132连着平板和电源140以及电性测量装置150。电极120和130可能是由、铝或其他任何技术中已知的导电材料组成。电极120和130的大小将取决于被抓取系统所抓取物体的大小和分布。对于小而复杂的物体,平板的表面面积大约是10Λ-4平方英寸。
[0060] 图1B更详细地说明了传感单元110的结构。可移动电极130附加在柔性墙114上。传感单元壁116的剩余部分分别由一种热固性或热塑性塑料、一根软线电缆和一个弹性体组成,例如硅橡胶,或者类似的东西。当可移动电极130被压缩至固定电极120的时候,固定电极120还包括一个允许导电流体112(电介质)流入贮液器170的隔板160。当可移动电极
130被压缩的时候,压力控制器180可能允许导电流体112进入贮液器170。当可移动电极130不再被压缩的时候,压力控制器180迫使导电流体112返回感应室118。为防止可移动电极的压缩改变导电流体的电特性,导电流体112可能是不可压缩的。
[0061] 在本实施例中,压力控制器180可能由一个金属板182和一个机械弹簧184组成,根据胡克定律,后者给金属板182加压。硅层186可能粘在金属板182上。或者,在没有金属板182的时候,金属层186可以充当一个金属弹簧。硅层186可能密封贮液器170的后端,以防止导电流体112的可能泄漏或者丢失。在其他实施例中,液压或者气动弹簧可能用来代替机械弹簧184。机械弹簧可能是一个简单的弹性体弹簧效应,或者由压力调节器等类似的东西控制的流体流动。压力控制器180也可能由一个压力测试装置和/或压力调节装置组成,这个装置测定导电流体112的压力。压力测试装置可以测试金属板182和/或硅层186的运动,或者它还可以使用技术中已知的方法来测定导电流体112的压力。压力控制器180可能包含一个压阻压力传感器(图中没有显示),后者与金属板182、硅层186、和/或柔性壁114相接触。
压阻压力传感器可能附加在金属板182上,与硅层186相接触。压阻压力传感器可以用来测量单元上的剪力。在一些实施例中,通过测量液压系统的内联压力可以得出压力结果。
[0062] 在其他实施例中,除硅以外的材料也可以用来制造柔性壁114。柔性壁要符合正被抓取物体的结构,且可能是绝缘的。相匹配的材料包括乳胶、塑料、天然和人工合成橡胶以及硅。因为柔性壁114将会被用来抓取物体,用来制造它的材料可能要有高摩擦系数,以便更好抓取物体。在一些实施例中,可移动电极130要有良好的伸缩性。在那些实施例当中,可移动电极可能包括导电聚合物,例如导电或掺杂硅或氟硅橡胶。或者,在金属电极足够薄,有良好的收缩性,或者它的表面面积足够小,能够和被抓取物体的表面轮廓相符的时候才会被使用。
[0063] 传感器阵列
[0064] 图2阐明了传感单元阵列200。它可以用来测量一个物体的不同区域,这个物体压迫着个体传感单元210a、b、c、d。每一个传感单元210a、b、c、d和它的电性测量装置250a、b、c、d相连接。当一个物体接触列举的阵列200时,它将会产生这个物体的二维测量组。阵列200可以探测这个物体和这个物体不同组成部分的长度和深度。通过在阵列200(进入图片中或者在图片之外)的顶部或下面堆积的附加传感单元,会创造一个阵列,这将创造物体的一个三维测量组。在这个结构中,可以探测到物体和组成物体的不同部分的宽度。是使用阵列传感两维还是三维将取决于抓手的应用。同样的,阵列是包含少数的传感器还是大量的传感器取决于传感需求。
[0065] 每个传感单元210a、b、c、d均由隔板260a、b、c、d和贮液器270a、b、c、d组成。如本实施例所示,固定电极220a、b、c、d可能和隔板260a、b、c、d是分离的。可移动电极230a、b、c、d可附加在柔性壁214上。在本实施例中,传感单元210a、b、c、d由热固性或热塑性或弹性壁216隔开,相互分离。在其他实施例中,导电流体112可以在贮液器270a、b、c、d之间流动,或者所有单元210a、b、c、d均可共享一个常用的贮液器。此外,实施例可能有未被热固性或热塑性壁216分开的感应室218a、b、c、d。然而,这可能在不同传感单元210a、b、c、d内的可移动电极230a、b、c、d和固定电极220a、b、c、d之间产生交叉导电性。在一些实施例中,单板可由固定电极220a、b、c、d组成,或固定电极220a、b、c、d可能相互之间电力耦合。在这些实施例中,可以将电性测量装置250a、b、c、d和电路配置成测量单一可移动电极230a、b、c、d的电性。举例来说,可以将安培计放置在电源240和可移动电极230a、b、c、d之间,而非固定电极
220a、b、c、d和电源240之间。
[0066] 抓手
[0067] 图3A、3B和3C举例说明了可能包括传感器阵列200的抓手的各种各样的实施例。抓手可以有两个310、三个320或四个330抓取部件。技术中这些技巧会识别出如何使抓手包含有四个以上的抓取部件。在一些实施例中,根据抓手的功能,可以将传感器阵列200放置在先前存在的抓取部件的内部、外部或内外部两边上。对于那些打算抓取物体外部的抓手,可以将传感器阵列200放置在抓取部件的内部上。对于那些打算从内部抓取物体的抓手,例如,从内部抓取一个容器或瓶子,可以将传感器阵列200放置在抓取部件的外部上。在其他实施例中,抓取部件完全由带有定义抓取部件形状和结构的柔性壁214和热固性或热塑性壁216的传感器阵列200构成。可移动电极230a、b、c、d位于抓取部件的一边,这是为了接触到被抓取的物体。对于在两边接触物体的抓取部件,传感单元210a、b、c、d可面向两个方向。在其他实施例中,单一传感单元可能有一个在其各边均有可移动电极的固定电极。
[0068] 对于有两个抓取部件310的抓手来说,半圆柱形抓取部件312和314可以提供更多与正被抓取物体的接触面积。在其他实施例中,这两个抓取部件可以每个都是扁平的,也可以一个是扁平的,另一个是半圆柱形的,或者他们两个均为使与正被抓取物体的接触面积最大化的任何其他形状。形状取决于待抓取的特定物体。可以这样配置具有三个抓取部件320的抓手,以使抓取部件322、324、326均为扁平的且近似于形成三角形的各边。三角形可以是等边三角形、等腰三角形或钝角三角形。对于任何一个三角形,在抓取部件之间形成的角中,至少要有两个为锐角。根据待抓取的物体,抓取部件322、324、326还可以是除了扁平外的任何形状。同样地,具有四个抓取部件330的抓手可能有近似于形成正方形各边的扁平抓取部件332、334、336、338。然而,抓取部件330还可能形成其他四边形,并且可能有除了扁平外的其他形状的抓取部件332、334、336、338。技术中这些技巧会识别出包括三维形状的其他形状,例如半球,这大约是由所给定数量的抓取部件配置形成。抓取部件的上述任何实施例,无论是圆形、三角形或正方形,均可拥有一个或多个额外的部件(未显示),其可以相对于抓取部件的运动作垂直移动。这些额外的部件之后可能在正方形、三角形或圆形的内部移动,以从第三个轴测量物体的尺寸,以便创建一个更完整的正被抓取物体的三维剖面。
额外的部件会分别进入到如图3A、3B和3C所示两个部件312和314之间、三个部件322、324、
326之间或四个部件332、334、336、338之间。
[0069] 抓取部件312和314被设计成彼此相对移动,以便其可以抓取物体。当抓取部件312和314彼此之间最接近时或抓取物体时,抓取部件310可被描述成封闭的。当抓取部件312和314彼此之间最远时,抓取部件310可被描述成打开的。控制抓取部件312和314位置的制动器可打开并关闭抓取部件310。还有,定位销杆和导销可控制抓取部件312和314的路径,以确保他们正确对齐。当需要非常精确的定位时,可使用高精度导销。制动器运动可使用气动、液压或电动达或技术中已知的其他方式完成。电动机和导螺杆可用于产生抓取部件
312和314的线性驱动。
[0070] 另外,抓手可由改变抓手在三维空间中线性位置的制动器控制。额外的制动器还可以使抓手沿一条或多条轴旋转。这些制动器可以准确控制抓手和正被抓取物体的运动,以允许自动化抓手用于高精度装配、制造、插入、生产、外科手术、测量或其他已知用途。
[0071] 抓取系统
[0072] 图4举例说明了系统400,其用于在至少一个抓手410已接近物体之后,操作一个或多个抓手410和440。尽管本实施例中显示了两个抓手410和440,第二个抓手440可由技术中已知的其他工具取而代之,如钻、铣、粉末涂敷、装配或其他操作工具。在本实施例中,抓取物体的抓手410可沿X和Z轴移动。制动器420和430(例如,伺服器)可使用导螺杆422和432来控制抓手410沿这些轴移动。
[0073] 第二个抓手440只能沿Y轴移动,且可由制动器450和导螺杆452控制。另一个制动器(未显示)也可绕Y轴旋转第二个抓手440。这可使被第一个抓手410抓住的物体拧入被第二个抓手440抓住的物体。在所述实施例中,纵然各个抓手410和440仅限于沿一些轴移动,但是抓手410和440可沿所有轴彼此相对移动。由此,系统400能够纠正沿X、Y或Z轴的位置的偏移量。在其他实施例中,各个抓手410和440均可沿所有轴移动并绕所有轴旋转。在一些实施例中,第二个抓手440是一个常规抓手,第一个抓手410是一个触摸灵敏式抓手。可使用其他“现成的”机器人系统,控制带有4至6个操纵轴的抓手。典型“现成的”系统包括库卡集团的KR系列,或者操纵器,如发那科机器人技术工业机器人,可被纳入抓手驱动中。机器人系统,如发那科M-liA,可能把单个抓手的移动并入三个x-y-z轴发动机控制系统中。替代控制方案可使用单一的液压发动机来控制三个液压接头。
[0074] 图5举例说明了触敏机器人抓取系统500,其中处理器510用来控制系统。抓取系统500可能是完整机器人系统(未显示)的一个组件,其可能包括视觉系统、接近性检测、安全关闭、计算机集成、可编程逻辑控制器(PLCs)、激光探测和测距、计算机地理建模和/或机器人臂。完整的机器人系统可能是自动的、半自动的或操作员控制的。在所阐述的实施例中,液压系统520由带有电线516的处理器510控制。液压系统520可用于打开或关闭抓手410和
440、集中或个别调节贮液器270上的压力、调节压力控制并控制方向流体阀。可使用脉冲宽度调制调节压力和流体控制阀。可将电性测量值和压力测量值从抓手410和440处,越过电线511和514,发送至处理器510。处理器510还可通过使用电线512、513、515,控制制动器
420、430、450,这就可以使处理器510修改抓手410和440的位置。或者,制动器420、430、450可以是线性或光线状的液压制动器,且电线512、513、515可以控制压力和流体方向阀。在其他实施例中,处理器510可以控制组件,并可以无线或通过其他已知的通讯方法,接收测量值。
[0075] 处理器510可接收关于物体的抽样和量化测量数据,该数据从各个抓取部件410、440中的电性测量装置250a、b、c、d和压力测量装置获取。各个抓取部件410、440中的剪切传感器(未显示)和温度传感器(未显示)可将测量值发送给处理器510。处理器510可将此抽样数据转换为待抓取物体的地理模型。处理器510可将此模型与存储器中存储的物体图作对比。通过将存储在存储器中地理图形和/或蓝图与测量尺寸和/或抓取物体电脑生成的地理图形作对比,可识别物体。在一个实施例中,一个或多个神经网络可进行对比。物体的地理图形可与可能对这些图形进行的操作一起存储。可通过诸如AutoCAD之类的设计程序,将物体与存储在存储器中的二维和/或三维图片和/或显示进行对比。然后,基于此信息,处理器
510决定如何使用制动器420、430、450正确操作物体。
[0076] 将原始测量数据转移到处理器510之前可将其抽样并量化。抽样率取决于抓取系统500用于什么。当物体以重要方式被抓取时,原始测量数据可被每秒成千上万次抽样。然而,如果仅需一次即可确定方向,对于每个被抓取的物体,处理器510可能仅每秒抽样几次或一次。处理器510操作抽样数据的时间也确定原始测量数据多久抽样一次。当处理器完成上一次计算并准备好进行另一个计算时,处理器才抽样测量数据。在一些实施例中,抓取一个物体可能导致一个或多个移动电极230与固定电极220倾斜成一个角度。因此,电极220和230的测量距离可能随着电极230的倾斜而增加。在倾斜可能使处理器能够检测并校正倾斜误差的实施例和/或配置中,可能需要较高抽样率。在一些实施例中,压力测量数据和电性测量数据可以用不同比率抽样。
[0077] 每个抽样的位数(量化)也将取决于抓手系统的应用。对于可能有大幅度测量波动的较精密测量或系统,可能需要32、64或更高位数的样本。量化率也可能受限于测量装置250的敏感性。对于敏感度较低的测量装置,使用高于16位或8位的每个样本作用较小或没有作用。在一些实施例中,测量装置250在测量过程中可能进行抽样和量化。在其他实施例中,处理器510或另一个组件进行抽样和量化。抽样和量化的测量数据可存储在存储器中。
[0078] 为将抽样测量数据转换为物体的地理模型,处理器510首先将测量数据校正为位移。在一些实施例中,通过将移动电极230移动到已知距离,抽样的电性测量值(例如,电压、电容、电流、电阻、阻抗等)可转换为位移测量值,这样处理器可以确定该距离的电性测量值。通过穿过一系列由已知增量分开的位移(例如,由等距增量分开),测量电性,可得到数据点集。处理器可为整个检测到的校正值集生成一个线性拟合,或者它可为每对检测值生成一个线性内插。在其他实施例中,可使用非线性功能来拟合检测到的校正值或在检测到的值中间插入。离散数据点集、数据点的拟合,和/或数据点的一个或多个插入可被称为位移曲线的电性测量。或者,为校正抓手,抓手可慢慢握紧扁平物体或与抓取部件类似形状的物体。使用从此过程中获取的信息,处理器510可将电性测量值映射为任意单位的直线距离比例,和/或生成距离与电压的比例。每个测量值可映射为一个离散值。处理器510量化电性测量值所使用的步数取决于距离和测量增量。可选择最小离散增量(例如,最小步数)相当于理想位移测量分辨率。例如,为测量精确度为.001英寸的.750英寸的距离,处理器510可将电压范围细分为750个量化步数,每一步对应.001英寸增量。处理器510可单独校正各个传感器单元210,或者处理器510可为所有传感器单元210使用平均校正。在一些实施例中,温度传感器允许处理器510进一步校正导电流体112的温度。为确定流体温度,温度传感器可接触移动电极、固定电极、小室、靠近接触面的小室一部分、流体线和/或储液罐。电性测量与位移的曲线可将温度作为输入,输出温度修正的位移。或者,此外,根据校正温度的温度变化,处理器510可构造成为电性测量与位移曲线做预先修正,和/或校准可包括为不同温度确定多个电性测量与位移曲线。温度测量值可用于调整电性测量与位移曲线的电性测量值输入,和/或调整从电性测量与位移曲线中计算的位移。
[0079] 待抓取物体图形可存储在处理器510可进入的存储器中。图形可由AutoCAD设计程序创建。物体可以以多种方式在存储器存储。测量值或其他关于物体大小和形状的数据,可由用户或其他计算机系统直接输入到存储器中。或者,每次将物体设置在不同预先确定的方向,抓手410可手动接近物体一次或多次。进一步,如果抓手410和/或压力控制器180以液压或气动方式控制,可手动调节抓手410发出的压力和/或导电流体112的压力。根据传感器阵列200的测量值,处理器510生成物体的图形。图形被处理器510存储在存储器中。
[0080] 一旦处理器510已被校准,并且图形和/或形状已被存储在存储器中,抓取系统500可开始操作物体。物体可被振动漏斗机、传送带或其他技术内已知的方法供应给抓手410。光学、视觉和/或声系统可检测待抓取物体的位置。物体也或者相反触发一个微型开关,就物体的存在向抓取系统500发出信号。处理器510然后将抓手410移动到物体的预期位置,并尝试抓取物体。一旦抓手在恰当位置,处理器510使抓手410接近物体。如果物体易碎或仅有限压力应施加于物体,处理器510会监控压力测量值和/或电性测量值,以确定在什么范围抓手410接近物体。在一些实施例中,处理器510也监控从个体传感单元接收的电性测量数据。如果电极220、230靠太近或接触,传感单元可消耗过多电流,并损害或耗尽电源240。如果任何传感单元210的电极220、230靠太近,处理器会停止靠近抓手410。在其他实施例中,电路可设计为防止电流过度消耗,或者多孔绝缘材料可放置在传感单元210中,该多孔绝缘材料允许导电流体112流动,但防止电极220、230接触。
[0081] 当物体被抓取的时候,它的定位与定向并不被知晓。然后处理器510使用来自于电性测量装置的数据创造出物体的地理模型。在一些实施例当中,当物体被抓取的时候,处理器510可以创造出物体的几个地理模型。在其他实施例中,当抓手410不再接近物体的时候,处理器510只能创造出物体的一个单个地理模型。通过将抽样数据转换成位于物体宽薄部分之间的位移、检测边缘和边界,处理器510可以制造地理模型,将抽样数据直接转换成阵列,或者使用其他任何未知的方法描述物体。处理器510所创造的地理模型的类型取决于储存器中保留的图表类型。地理模型或许可以这样定义,它简化了与储存器中保留附图的对比。
[0082] 可以用不同的方法将存储器中的附图同处理器510创造的物体地理模型相比较,以此决定物体的定位与定向。如果模型包括边缘和边界,处理器510就会试图按照图表特征来排列这些边缘和边界。例如,处理器510试图将这些距离与附图中期望的或测量的距离相匹配。为了找到匹配,处理器510试图将地理模型和附图之间的平均平方误差最小化;其试图将地理模型中任何点和图表中相应的点之间的最大误差最小化;其可以使用最小化误差技术当中任何其它已知方法。在一些实施例中,如果误差不能被减小到一个特定的临界值或者置信水平,处理器510将确定没有找到匹配。如果没有找到匹配,处理器510将试图放下物体,重新抓取,或者向操作员发送信号。
[0083] 如果发现了一个匹配模型和附图的方法,处理器510就会确定操作方法,这个操作方法用来匹配地理模型和储存器当中保留的期望的定位与定向。在一些实施例当中,附图包括期望的定位与定向。在其他实施例中,期望的定位与定向被分开存储。物体可能不在抓手中心,因此处理器510需要补偿物体的偏移。物体也可以沿着相对于附图的一条或者多条轴线旋转。处理器510也可以使用制动器420、430和450旋转抓手410和440、横向移动抓手410和440,直到物体处于合适的位置。
[0084] 在一些实施例中,触敏抓手将物体放置于一个常规的抓手中,这需要将物体精准地放置。在其他实施例中,如果按照抓手410和440功能的一部分,将物体移动,在它们的正常运转当中可能发生改正。在另外一些实施例中,相对于通过抓手410、440和制动器420、430和450的手动运动,产生的物体的合适定位与定向以及物体的合适运动,处理器510也要相应运动。处理器510将这些信息保存到储存期当中。在其中一些实施例中,处理器510将会完全遵守指定的运动数。在其他实施例中,处理器510将会按照指示保存一个或者多个定位与定向,它使用最有效的运动接近于定位与定向。仍旧在一些其他实施例中,一旦处理器
510到达一个期望的定位与定向,它就会进行一项活动,例如,拧紧一个螺栓,或者锯切运动中的一个动作。一旦活动完成,处理器510就会重复运动。每次重复就是一个循环。处理器
510已经设定了程序,将会进行预设好的循环次数。
[0085] 几种不同类型的物体的附图可一次被储存在存储器中。针对存储器中的所有附图,处理器510试图匹配正在被抓取的物体。根据检测到的物体,处理器510按照程序使用存储器中的电脑代码来进行不同的功能。处理器510按照指示将不同抓手410和440中的不同物体聚集到一起。在一个实施例中,基于探测到的物体种类,处理器510将物体分在不同的位置。在其他实施例中,处理器510被设计成通过同一物体的一系列不同的任务进行循环。在制造背景下,抓手410和440有多样的定位件来插入螺栓和/或制造、焊接、和/或装备部件。在最初的位置再次开始之前,处理器510会指示抓手410和440在各位置插入螺栓或者进行另外一次制造过程。通过使抓手410和440抓取多个物体并释放与期望物体不相匹配的物体,处理器510试图找到一个正确的部分。在释放一个错误物体之后,处理器510可以任意地或系统地移动抓手410和440,并试图找到一个新物体。普通传感器,如压阻的、电容性的、近距离的、感应的、光学的、红外线的、声波的、激光的、或者默克尔触觉单元等,可以帮助传感物体和/或制造过程。附加的传感器有可能位于抓手上,也有可能不在抓手上。
[0086] 包括活塞的传感器单元
[0087] 图6A和6B为接触式传感器600a的横断面图和侧面图,其包含一个使用活塞总成的传感器单元610a。活塞总成包括一个活塞杆691a,它附加在活塞690a和触头695a上,后者接触相关的物体。传感器单元包含两个小室:一个活塞扩展室692a和一个活塞收缩室694a。在所述实施例中,每个小室692a和694a包括一个导电流体612a,通过一个或者多个贮液器(未显示)和(未显示),612a可以被添加到小室692a和694a中或者从小室692a和694a中移除。或者,可以使用介电流体。通过添加或者移除液体,泵(未显示)可扩展或收缩活塞690a。在其他实施例中,一个小室包含一种流体,同时其他的没有,和/或只有一个泵,和/或一个双向阀没有被使用。一个正位移泵可以被用来增加运动的准确性。在单个和/或多个液压泵中,正位移泵可以移动固定数量且对应于活塞线性位移的流体。
[0088] 在传感单元610a和可移动电极630a的近端,传感单元610a还进一步包括一个固定电极620a组成。可移动电极630a可能附加在活塞690a上。该配置允许电极620a、630a测量在扩展或收缩过程中活塞690a的移动距离。在所述实施例中,电极620a、630a处于扩展室692a中,但在其他实施例中,它们也可能或被放置于收缩室694a中。电极620a、630a或许被单独嵌在后盖和活塞中,以防止从电极的铅丝中泄露。
[0089] 所述电极620a、630a为平板。电极620a、630a可由导电材料组成,如铜、银、金、铝、氯化银、钨、钽、钶、、钼、镓、导电油墨诸如此类。导电流体612a可包含溶于水的盐,如氯化钠、氯化钙、氯化钾等等;醋;镓;伍德合金;镓合金,如镓铝合金或共熔镓铟合金;钠钾合金;或硫酸。可将无毒防冻剂,如丙二醇或丙三醇,和/或有毒防冻剂,如乙二醇,添加进水基导电流体中。导电流体612a也可包含与电极620a、630a类似的材料,以防止浸出。例如,如果电极620a、630a为银或氯化银电极,导电流体612a可为氯化银饱和氯化钾。一些腐蚀性较强的导电流体612a,如镓-铟合金或其他液态金属,可溶解大多数金属。在这些实施例中,电极
620a、630a可包含抗腐蚀能力较强的材料,如钨或钽,或抗腐蚀材料,如钶、钛或钼。在一些实施例中,不含电极620a、630a的小室692a、694a中的液体将为非导电性的。在其他实施例中,小室692a、694a将共享包含导电流体612a的共用贮液器。如以前,电极620a、630a可由交流电或直流电供电。
[0090] 墙616a、活塞690a和活塞杆691a可由绝缘材料制成,如聚酸酯、其他硬聚合物等等。在一些实施例中,壁616a可为导电材料,如钛、、铝等等,导电材料覆盖一层绝缘材料或绝缘材料套管,使它们与电极620a、630a绝缘。因为当暴露于紫外光(UV)或其他特定光频时,像氯化银之类的材料分解,壁616a可包含能够阻拦紫外光或其他特定光频的光的材料。对于腐蚀性导电流体612a,壁616a可选择抗腐蚀的聚合物或金属。
[0091] 此外,壁616a可选择能够抵抗外界元件损害的材料。这使得传感器单元610a能够接触危险材料。传感器单元610a甚至可插入充油油缸,如在施工设备行业中的推土机等。根据所选应用,传感器单元610a的大小可小至纳米制造的传感器单元,大至数米长、数米宽或更大。
[0092] 在所述实施例中,电线622a、632a结合到电极620a、630a上,电线632a经过收缩室694a穿过传感器单元600a远端。在其他实施例中,电线632a穿过扩展室692a和传感器单元
600a的末端。在活塞690a、活塞杆691a和壁616a一部分具有传导性的实施例中,这些元件可充当电线632a的一部分。移动电极630a的电线632a可穿过活塞690a的中心形成外接。
[0093] 电线622a、632a可由电源(未显示)供电,并像接触式传感器100一样连接到电性测量装置(未显示)。电性测量装置测量活塞690a延伸对应的电特性,该电性测量装置可包含分流器、惠斯通电桥等等。接触式传感器600a可包含附加测量装置,如压阻式压力传感器(未显示)和/或聚偏二氟乙烯(PVDF)膜传感器(未显示)。压阻式压力传感器可放置在小室692a、694a中的一个或两个,或放置在贮液器中,测定导电流体612a的压力。PVDF膜传感器可粘到触头695a上。PVDF膜传感器可用来测量目标物体的接触或物体振动,如当物体相对触头695a切线移动时。PVDF膜传感器也可用作剪切传感器,检测与触头695a相切的物体的运动。共同接触面可为多个传感器单元600a共享的连续薄片。例如,共同接触面可包含覆盖多个传感器单元600a的外壳,以防止污染物进入单元600a之间。因此,PVDF膜传感器,如剪切传感器,可为接触面总接触面积的一小部分。
[0094] 接触式传感器600a可被处理器(未显示)和/或存储在存储器中的计算机软件(未显示)控制。处理器也可连接到输出装置(未显示),如数字读出、监视器、扬声器、打印机等等,和输入装置(未显示),如鼠标键盘触摸屏、麦克等,使操作员可以控制接触式传感器600a。或者,计算机软件可配置成自主控制接触式传感器600a的运动。处理器可控制泵(未显示)增加或移动流体612a到扩展和/或收缩室692a、694a。泵可为容积式泵配置为收集固定体积流体,并从出口排出固定体积。容积式泵可使活塞690a以固定和/或可测量增量移动。泵可包含塑料和/或非导电材料,使泵与导电流体612a绝缘。
[0095] 图6C为具有气囊618b和活塞总成的接触式传感器600b的横断面图。像不带气囊的接触式传感器600a一样,接触式传感器600b可包括固定和移动电极620b、630b;扩展和收缩室692b、694b;活塞杆691b、活塞头690b和触头695b;导电流体612b;和单元壁616b。单元壁616b可限定圆柱形的腔。电线(未显示)可插入注塑成型的单元壁616b、活塞头690b和/或活塞杆691b。
[0096] 气囊618b可围绕扩展室692b,防止导电流体612b泄露。收缩室694b可包含气体而不是液体。在一个实施例中,扩展和/或收缩室692b、694b可各包括气囊618b和/或波纹管。或者,单个气囊和/或波纹管可围绕扩展和收缩室692b、694b,并附接到活塞690b的两侧。如果不包括气囊和/或波纹管,较小的传感器单元尤其易于泄露。气囊618b和/或波纹管可为绝缘套管,使单元壁616b与导电流体612b绝缘。气囊618b和/或波纹管可包含医用橡胶。气囊618b和/或波纹管可配置成在活塞690b附近自身内折,和/或被压缩时卷起。气囊618b可完全密封流体612b,无需使用O型环,并在正常情况下消除泄露的可能性。
[0097] 有很多方式可使移动电极相对于固定电极移动,同时改变分离它们的电力运转流体的体积。带活塞的传感器单元610a和不带活塞的传感器单元110为不受限制的典型实施例。这些实施例的变式和/或尚不明确的实施例也考虑在内。例如,固定电极可粘到活塞上,移动电极可粘到配置成与物体相互作用的外壳上。
[0098] 具有并联和串联传感器单元的传感器阵列
[0099] 图7为接触式传感器700的侧面图,该接触式传感器具有多个以并联和串联连接的传感器单元层710、720、730、740。一些所述的传感器单元层710、720、730包含活塞(未显示),并以传感器单元610a的方式运转。其他传感器单元层740可包含带柔性壁的传感器单元阵列,如传感器单元110和200。在另一实施例中,仅传感器单元110,仅传感器单元610,或两者的不同组合可代替使用。第一传感器单元710被安排在传感器700的近端,它是多个传感器单元710、720、730、740中最大的一个。在所述实施例中,最大的传感器为1英寸×1英寸。在其他实施例中,根据特定应用,它可更大或更小。多个中等传感器单元720可与最大传感器单元710串联;多个小型传感器单元730可与中等传感器单元720串联;多个接触式传感器单元740最后一层可与小型传感器单元730串联。接触式传感器单元740最后一层可配置为抓取、接触和/或与物体相互作用。最终、小型和中型传感器单元740、730、720可分别被布置在小型传感器单元730、重型传感器单元720和最大传感器单元710的触头上。其中一个在最后一层的传感器单元740可考虑与在前层的任何传感器单元710、720、730机械串联,该前层传感器单元可调节在最后一层的传感器单元的位置。如果任何一个移动不会影响另一个的位置,和/或如果传感器单元710、720、730、740在同一层,传感器单元710、720、730、740可考虑物理并联。
[0100] 在所阐述的实施例中,每个中型传感器单元720,均有9个小型传感器单元730;每个大型传感器单元710,均有9个中型传感器单元720,这就给了各个级别传感器单元之间9比1的比例。结果就是,中型传感器单元720可能大约为3英寸×3英寸,小型传感器单元730可能大约为1英寸×1英寸。在其他实施例中,比例可能大于或小于9比1,或者大型对中型比例可能与中型对小型比例不同。最终的传感器单元740与小型传感器单元730可能有一比一的比例。在其他实施例中,该比例可能较大,也可能较小。如所阐述实施例中看到的那样,从一层到下一层传感器单元的比例可能因层各异。或者,所有层的比例是不变的。尽管举例说明了四层成串联的传感器单元710、720、730、740,在其他实施例中,可能会用更多或更少数量的串联层。对于传感器单元的接触头715、725、735、745,还有许多可能的形状,比如正方形、圆形、三角形、六角形或诸如此类。通过堆叠活塞传感器单元710、720、730,可以减少各个传感器单元710、720、730中活塞的行程长度。例如,最大型传感器单元710可能有.5英寸的行程长度;中型传感器单元720每个都可能有.25英寸的行程长度,且最小型传感器单元730每个都可能有.125英寸的行程长度。这就使得不需要最小型传感器730有大的行程长度,就可以有总长.875英寸的行程长度。在所阐述的实施例中,三层710、720、730的总长度为2英寸。
[0101] 大量的传感器单元710、720、730、740可能导致用于测量和控制各个传感器单元的相当数量的电线(未显示)和相当数量的电性测量装置(未显示)。可通过同时多路传输来自传感器单元710、720、730、740的电线上的信号,减少电线和电性测量装置的数量。可以以固定的顺序时分多路复用信号,或者处理器可以控制多路传输。可使用集成电路或通过机械手段,完成多路传输。对于集成电路,可将芯片放置在各层活塞传感器单元710、720、730的基片718、728、738上。接触传感器单元740的最后一层可包括接触传感器单元740内部用于多路传输的集成电路。在一些实施例中,仅多路复用一些层或传感器单元710、720、730、740。多路复用器之前或之后,可用一个或多个放大器创建更高的精度并减少噪音。放大器对于低电阻导电液体也是必要的,比如镓合金。此外,在从测量线将信号多路传输至样品之前或之后,可使用一个或多个模拟变数字转换器(ADC)并量化信号。可在各种实施例中使用模拟或数字化多路分解,使信号分离。接触式传感器700可以是一种模化设计,其可按长度和/或高度堆叠。可将接触式传感器700附加在任何配置内抓手钳或手指上,使得灵活的设计能够抓住各种尺寸和形状的物体。接触式传感器700可以用最后传感器层740上的单独柔性外皮设计。可将多个接触式传感器700作为完整的单元堆叠在一起,各个模块均有覆盖最后传感器层740的单独外皮。接触式传感器700可用薄壁设计,并可紧密堆叠,以防止污染物进入模块之间,并减少不测量物体地理的面积。分离个别单元的总厚度可以为.020英寸或更少,包括壁在内。
[0102] 图8A和8B为触敏抓取系统800a和800b的侧面图,该触敏抓取系统具有多个相对的接触式传感器阵列。触敏抓取系统阵列800a和800b可用于抓取物体860。像接触式传感器阵列700一样,各个接触式传感器阵列810、820、830、840、850均可由第一层811、821、831、841、851;第二层812、822、832、842、852;第三层813、823、833、843、853;和第四层814、824、834、
844、854构成。最后接触层(未显示)也可加入某些实施例中。各个接触式传感器阵列810、
820、830、840、850内的最后触体均可能由单一绝缘壁和/或外皮物理连接在一起,或者最后触体可能分成各部分,与任何第一层811、821、831、841、851;第二层812、822、832、842、852;
第三层813、823、833、843、853;和第四层814、824、834、844、854,或最后一层的横截面积相对应。绝缘壁和/或外皮可由硅橡胶或类似物构成。单一绝缘壁和/或外皮可以增加扩展的活塞的稳定性,和/或防止污染物进入传感器单元之间。
[0103] 在一些接触式传感器阵列810、820、850中,第一层811、821、851可以由多个传感器单元构成。在所阐述的实施例中,第一及第二接触式传感器阵列810、820与第四及第五接触式传感器阵列840、850直接相对。第三接触式传感器阵列830可以与第一及第二传感器阵列810、820相垂直的。第四及第五传感器阵列840、850可以与第一及第二传感器阵列810、820,以及第三传感器阵列830相垂直。抓取阵列800a内的传感器810、820、830可以位于二维平面内。在抓取阵列800b中,五个传感器阵列810、820、830、840、850可占据一个三维空间。在其他实施例中,可能有更多或更少数量的传感器阵列810、820、830、840、850在一维、二维或三维空间内。例如,也许有两个、四个或六个接触式传感器阵列和/或模块相对垂直和/或相互对立。接触式传感器阵列810、820、830、840、850还可以互相成60°角,并形成三角形。所阐述的实施例被配置成从外部抓取物体,但是其他实施例可以被配置成从内部抓取物体。
[0104] 图9为校准触敏抓取系统800a和抓取物体860的方法900的流程图。类似的方法可用于抓取系统800b。在抓取物体860之前,可通过全收缩902各个传感器单元内的活塞(未显示)至最小扩展位置,校准触敏抓取系统800a。最小扩展位置可与机械停止、贮液器的注液限制、活塞的全扩展或收缩和/或电极接触相一致。接下来,各层811、812、813、821、822、823、831、832、833内的传感器单元可扩展904,直至传感器阵列810、820、830的接触表面
815、825、835相互接触。这是传感器阵列810、820、830的最大扩展位置,其可以由接触压力调节。在一些实施例中,扩展可在收缩之前进行。可通过绘图906所测量最小和最大扩展位置-位移,校准接触式传感器800a。校准可包括测定所测量位移曲线的电性,比如电压-距离曲线。传感器阵列810、820、830、840、850内各个传感器,均可创建电压-距离曲线和/或电压-距离的数字校准。在一些实施例中,能够测量最大和最小扩展位置之间的位移,并将其输入处理器(未显示)中,以正被测量的位移定义物理计量单位。在其他实施例中,正被测量的位移可表示为最小和最大扩展位置之间位移的分数或百分比。位移可以相对于最大扩展位置和/或相对于最小扩展位置来表示。
[0105] 一旦抓取系统800a被校准,它可以用来抓取物体860。通过将908收缩至最小的扩展位置,在传感器阵列810、820和830的811、812、813、821、822、823、831、832和833层的传感器单元开始了。只有当物体860被接触面815、825和835接触或者每一个活塞到达最大扩展位置时,在第一层的811、821和831里的每一个活塞才会被扩展至910,而接触面815、825和835与第一层的811、821和831相串联。在一些实施例中,首次接触完成后,每一个活塞都要继续扩展,直到每一个传感器单元811、821和831被压力传感器测量到预定的最大压力时,活塞才会停止扩展。在其它实施例中,只有每一层的传感器单元可能具有压力传感器,直到与活塞相串联的传感器单元的压力传感器到达预定的临界值,活塞才会被扩展。多个传感器单元被连接在一个单个的调压器上和/或液压泵上,当调压器和/或泵探测到内联压力时,扩展就会受到限制。通过被一个或者多个液压阀单个或者集体地控制,压力受到传感器单元的调节。
[0106] 一旦在第一层811、821和831里的每一个活塞扩展至与已经有足够压力的860接触,或者每个活塞都到达最大的扩展点,抓取系统800a可开始扩展第二层812、822和832里的活塞912。再一次,直到物体860带着足够的压力和接触面815、825和835接触,每个活塞才停止扩展,而接触面815、825和835与第二层812、822和832里的每一个活塞相串联,或者直到活塞到达最大扩展点,每个活塞才停止扩展。
[0107] 直到与第三层813、823和833里的每个活塞相串联的接触面带着足够的压力接触,或者到达最大扩展值,第三层813、823和833才会被扩展至914。在那些实施例中,处理器控制着多路复用,仅仅通过传感器单元的多路复用测量与控制,处理器就能加速操作,而这些传感器单元还没有带着足够的压力与物体860相接触。在一些实施例中,活塞的压力受控于同样的泵送和贮存系统,该系统使用单个或者复合控制阀来控制选中的活塞压力,以便使扩展结果同步,直到一个压力反馈环路表明接触压力已经足够为止。压力反馈可以从位于接触面815、825和835的后部的压阻式传感器(未显示)获取。在某些实施例中,单个串联阵列使用一个泵。因此,在一些实施例中,多层811、812、813、821、822、823、831、832、833可同时扩展。
[0108] 一旦每个活塞结束扩展,处理器可以计算物体860的每个接触点的位置916。这个过程就是取代已经进入第四层814、824、834的柔性壁,以及增加位移,该位移由与活塞相串联的第三层813、823、833;第二层812、822、832以及第一层811、821、831进行。在抓取系统800a中,计算出的多个总位移可以用来制作物体860的一个地理模型和/或决定物体的具体位置和方向。地理模型包括一个微分容积和/或周长,它们取决于传感器单元相对于标准参考点的运动。通过传感器单元所进行的位移,每个传感器单元的预定面积会增加,以此来决定相应的体积。多个容积可被总计来决定总容积,和/或地理模型靠每个传感器单元的容积来合成。基于产生的地理模型和设定的位置,物体860可以被操作。对于附加的物体,可以使用步骤902、904和906来重新校准抓取系统800a,或者抓取系统800a可以跳到步骤908并跳过校准。
[0109] 带传感器的传感器阵列不能被绝缘壁分开
[0110] 图10为传感阵列1000的横断面图,这个传感阵列包括一系列没有被绝缘壁分开的电极1020a-d、1030a-d。包含一个导电流体的单个传感室1018包括所有的电极1020a-d、1030a-d,其允许电能在任何固定电极1020a-d和任何可移动电极1030a-d之间导电。如传感单元层110,可移动电极1030a-d可能被嵌在一个柔性衬底1014上。然后当柔性衬底1014在压住物体以抓取物体时,可移动电极1030a-d开始移动。柔性衬底1014包含乳胶、塑料、天然和/或合成橡胶,和/或硅树脂。可移动电极1030a-d的连接也被嵌在柔性衬底1014上,以阻止其暴露给导电流体。在一些实施例中,电极1020a-d和1030a-d还包含导电油墨。导电油墨被印在一台喷墨打印机上或者在柔性衬底1014上。导电油墨表面覆盖有银、氯化银、钨或者钽,使用蒸、化学淀积、蚀刻术、电解、浸渍,或类似物。淀积材料可以防止导电油墨和导电流体接触,从而保护导电油墨不受导电流体的腐蚀。在一些实施例中,固定电极1020a-d被一个单个的大型电极替代,该电极与所有可移动的电极1030a-d相互作用。固定电极1020a-d和一个多路复用器(未显示)相连接,以用来循环通过每一个电极1020a-d。可移动电极
1030a-d连接到同一个多路复用器和/或一个单独的多路复用器。处理器通过电极对1020a、
1030a;1020b、1030b;1020c、1030c;1020d、1030d来接通,每对按照创造一个闭合电路的顺序来排列。在有两个多路复用器的实施例中,多路复用器可以一起循环和/或一个共同选择的信号可以被发送到两个多路复用器,以确保相对的电极对1020a-d、1030a-d被激活,或者固定电极对于所有的可移动电极1030a-d都是一个单个电极。
[0111] 图11为不带内部绝缘墙的传感器阵列1100的顶视图。在一个两维阵列中,传感器阵列1100包含16个单个传感元件1110。每一个传感元件1100包含一个带有可移动电极(未显示)的活塞(未显示),或者可移动电极被直接附加在柔性衬底1114上。因此,没有内部绝缘壁的传感器阵列将会依靠像传感器阵列200的绝缘壁或者像传感器710、720和730层的活塞来执行。在触摸传感器700的一些实施例中,终层740包含没有绝缘壁的传感器阵列1100。相似地,在接触式敏感抓取系统800a和800b的第四层814、824、834、844和854靠没有绝缘壁的传感阵列1100执行。柔性衬底1114由乳胶;塑料;天然和人工合成橡胶,例如硅橡胶;硅树脂;及类似物支成。
[0112] 图12A为柔性基底1214a的底视图,该柔性基底用于不带内部绝缘壁的传感器阵列1200a。柔性基底1214a包括多个接触点1211a(这里也涉及到“凸区”)。接触点1211a包括一种导电材料,例如导电油墨,它被印在柔性衬底1214a上。多个电线1212a可提供与电极
1230a的外接。电线1212a也被喷墨印刷在衬底1214a上。在所述实施例中,多个电线1212a从同一侧的传感器阵列1200a的内部完全退出。多个电线1212a覆盖着绝缘体,以便只有剩余的接触点1211a曝光。然后可移动电极1230a附加到接触点1211a上。
[0113] 图12B为不带内部绝缘壁传感器阵列1200b的另一实施例的前透视图。在一个实施例中,传感器阵列1200b的尺寸为0.25英寸×0.25英寸×0.25英寸。不像传感器阵列1200a,多个电线1212b可在多个不同侧面上退出传感器阵列1200b的内部。可将多个接触点1211b和多个电线1212b喷墨印制在柔性衬底1214b上。柔性衬底1214b可由硅构成。额外的衬底层1215b可覆盖电线1212b,并仅让接触点1211b外露。可移动电极1230b可附加在外露的接触点1211b上。在一个实施例中,可将移动电极1230b喷墨印制在外露的接触点1211b上。
[0114] 柔性衬底1214b和额外的衬底层1215b可附加至传感器阵列体1240b上。柔性衬底1214b、额外的衬底层1215b和传感器阵列体可包括沿着外边缘的外部电线1244b。在已将柔性衬底1214b、额外的衬底层1215b和传感器阵列体1240b彼此附加之前和/或之后,可将外部电线1244b喷墨印制在柔性衬底1214b、额外的衬底层1215b和传感器阵列体1240b的外部。外部电线1244b可耦合至多路复用器(未显示)上,并可涂入绝缘材料中。绝缘材料可以是坚硬的聚四氟乙烯(例如, ),比如由化学处理有限公司或美国Durafilm生产的。
或者,或另外,多个电线1212b和/或外部电线1244b可以是柔性扁线/电缆,并可附加至柔性衬底1214b、额外的衬底层1215b,和/或传感器阵列体1240b上。柔性扁线/电缆可从Z-轴连接器公司、自助交易或贸泽电子获得。
[0115] 密封后,填充孔1242b可允许将导电流体或介电流体添加至传感器阵列1200b上。填充孔(未显示)可耦合至填充洞1242b上,以添加流体。传感器阵列1200b可在离心机中旋转,还附加进水管,以移除通过进水管的气泡。一旦移除任何气泡,填充孔1242b就可密封。
[0116] 图13为传感器阵列1300的横断面图。在所阐述实施例中,传感器阵列1300包括16个可移动电极1330和16个固定电极1320。或者,在其他实施例中,可能包括更多或更少的电极1320、1330,和/或可移动电极1320可以是一个面积等于或小于16个固定电极1330面积总和的单一电极。电极1320、1330可包括一种导电材料,比如银墨、导电油墨、任何前述的导电材料或类似物。可将可移动电极1330喷墨印制或附加至如上所述的柔性衬底(未显示)上。固定电极1320可附加在固定电极壳1325上。固定电极壳1325可由高杨氏模量非导电材料制成,如碳纤维加固材料。柔性衬底和/或固定电极壳1325可电力或机械地耦合至一个或多个侧壁1340上。一个或多个侧壁1340可包括一个或多个印刷电路板(PCBs)1341,如单面和/或双面PCBs。侧壁1340可由柔性材料制成,如扁线/电缆、硅橡胶、柔性PCB或诸如此类的。对于带有物体的接触压力,侧壁1340可以弯曲并允许可移动电极1330靠近固定电极1320。在一个实施例中,两个相反的侧壁1340可包括PCBs 1341、埋线的硅橡胶、和/或柔性电缆,且另外两个侧壁1340可以不包括PCBs 1341、电线、和/或柔性电缆。其他围绕传感器阵列1300的侧壁也可是柔性的。一个或多个侧壁1340可电力地耦合固定和/或可移动电极1320、1330至基板1350上。基板1350可包括一个用作电力地耦合固定和/或可移动电极1320、1330至多路复用器1360的双面PCB。基板1350可包括穿孔和/或过孔,以将电极1320、1330耦合至多路复用器1360上。多路复用器1360可与如上所述的测量和/或处理元件(未显示)电力耦合。
[0117] 传感器阵列1300可用电力操作流体(未显示)填充。固定电极壳1325可包括支持固定电极壳1325的支管1326。支管1326可隔开固定电极壳1325和壁1340,从而创建一个挡板,并允许流体环固定电极壳1325流动。可包括气囊1318,以防止电力操作流体渗漏。气囊1318可用比侧壁1340较低的杨氏模量设计。在一个实施例中,侧壁1340可包括具有较大厚度的硅橡胶,且气囊1318可包括较小厚度的硅橡胶。气囊1318可配置成允许气囊随着流体的位移而膨胀,以便侧壁1340不膨胀。侧壁1340可包括杨氏模量高于气囊1318的材料,和/或杨氏模量与气囊相同但比气囊1318更厚的材料,以防止侧壁变形。支管1326和气囊1318可允许电力操作流体位移,以便柔性衬底能够符合物体(未显示)。可选择气囊1318的厚度和/或弹性模数,以便允许柔性衬底具有足够的位移来符合物体的形状。柔性衬底和气囊1318两者可包括相似的物质,如硅橡胶。在一些实施例中,气囊1318和柔性衬底的尺寸和厚度可以相似。或者,比柔性衬底薄的气囊1318可减少柔性衬底边侧的膨胀。
[0118] 传感器阵列1300还可以包括一个剪切传感器1371、一个压力传感器1372和一个温度传感器(未显示)。剪切传感器1371可以与柔性衬底和/或可移动电极1330接触,并探测柔性衬底相对面的剪切力。剪切传感器1371可垂直于电极1330和/或平行于一个或多个侧壁1340。在一些实施例中,不止一个剪切传感器1371可用于探测多个方向和/或位置的剪切力。剪切传感器1371可以是一个PVDF膜传感器、一个压阻式传感器或诸如此类。压力传感器
1372可与气囊和/或电力操作流体接触。温度传感器的探头可附加在一个或多个侧壁1340上、液压流体线(未显示)内、与柔性衬底接触、与物体接触、与气囊1318接触、与固定和/或可移动电极1320、1330接触、和/或与电力操作流体接触。电引线(未显示)可耦合剪切传感器1371、压力传感器1372、和/或温度传感器至一个或多个侧壁1340。一个或多个侧壁1340和/或多路器1360可以将传感器测量值传输至处理器。
[0119] 插入注塑成型可用于形成壁1340。壁1340可包含软电缆和/或喷墨印刷电线、基板1350和支管1326,并可限制传感器1371、1372、电极1320、1330和气囊。支管1326可附加值软电缆,和/或支管1326可插入注塑成侧壁1340。在一个实施例中,壁1340、基板1350、气囊
1318、PCBs1341、固定电极壳1325和柔性衬底均通过硅橡胶相互耦合。支管1326、气囊和气囊外罩1318以及PCBs1341对侧壁1340增加支持。在注射模塑期间,至剪切传感器1371的电引线、压力传感器1372、温度传感器、移动和/或固定电极1320、1330及诸如此类可用可塑塑料覆盖,如热塑性的。可塑塑料可电力地绝缘除了电极1320、1330外任何电气连接进入接触电力操作流体。
[0120] 图14为具有控制电路的传感器1400及不带内部绝缘壁的传感器阵列的示意图。控制电路可控制电极对1410a-d的功率,以允许准确的测量。各个电极对1410a-d可由开关1420a-d控制,其确定来自电源1440的功率是否流入那个电极对1410a-d。开关1420a-d可作为由硅、砷化镓、碳纳米管等做成的场效应晶体管来实现。场效应晶体管可使其电源与电源
1440相连接,并使其漏板与电极对1410a-d之一相耦合。开关1420a-d可嵌入或嵌在柔性衬底上,或可远离电极对1410a-d放置。例如,由碳纳米管制成的场效应晶体管可尤其抵抗抗因柔性衬底挠曲造成的损伤。薄膜金属可用于将开关1420a-d与电极对1410a-d电力耦合到一起。
[0121] 在一些实施例中,开关1420a-d一次仅向一对电极1410a-d供电,如仅直接相对的电极。在所述实施例中,各个可移动电极(未显示)与其相对的固定电极(未显示)配对。处理单元等可在开启的开关1420a-d之间循环,直至每个电极对1410a-d之间的位移被测量。电路的内阻抗可控制最大抽样率,这仍考虑到精确测量。在一些实施例中,开关1420a-d可与可移动电极结合。在其他实施例中,开关1420a-d可与固定电极结合。一些实施例既有用于固定电极又有用于可移动电极的开关1420a-d。非相对电极可在抓取面(未显示)测量剪切力。电路可包含一个或多个多路复用器(未显示),以巩固到单个测量装置(未显示)的信号;每个电极对1410a-d均有一个测量装置。多路复用技术之前或之后,信号也可被放大和过滤。巩固的信号可在抽样之前被多路分解并传送到处理单元,或者处理单元可被编程为正确解释信号。
[0122] 图15为具有控制多路复用器1520的传感器1500及不带内部绝缘壁的传感器阵列的示意图。多路复用器1520可使电仅被供应给选中的电极对1510a-d。在所述实施例中,各个固定电极(未显示)互相电力耦合。或者,此外,可移动电极(未显示)也可相互结合。在其他实施例中,单个固定电极可与所有可移动电极相互作用,或者固定电极和可移动电极可以不相互结合。第一多路复用器(未显示)可与固定电极连接,第二多路复用器(未显示)可与可移动电极相连接。或者,单个多路复用器可在固定电极和可移动电极对接转。分流器1530允许处理单元1550测量相对地面的电压。在其他实施例中,可使用惠斯通电桥而不是分流器1530测量电阻。
[0123] 在所述实施例中,处理单元1550控制多路复用器1520。在一些实施例中,处理单元1550可包含微处理器(未显示)和集成电路,如FPGA、ASIC等等(未显示)。多路复用器1520可在集成电路中应用,或者是由集成电路控制的现成的ASIC。集成电路也可包含ADC,用来测量分流器1530两端的电压。在用高带宽链路将位移输出给微处理器之前,集成电路也可有效处理并行计算,将电压测量值转换为位移。这使集成电路管理控制电路、进行低层次计算,同时处理器使用从集成电路接收的预处理数据进行高层次建模。嵌入柔性衬底的碳纳米管集成电路可包含全部或部分开关、电极、微处理器、多路复用器和/或多路分配器。微流通道可用于具有非常小接触面积的电极,以增强导电流体、固定电极和可移动电极之间的电耦合。
[0124] 测定物体的相对介电常数和/或电阻率
[0125] 抓取系统可用于测量被抓取物体的电容。因为电容偏板之间的距离已知,物体的相对介电常数可由电容测定。在一些实施例中,测定相对介电常数可包含计算物体的介电常数。或者,此外,可测量待抓取物体的电阻。来自抓取系统的物体长度和物体面积测量值,可与测量的电阻一起使用,用于测定物体的电阻率。在一些实施例中,可为绝缘体测定相对介电常数,为导体测定电阻率,为半导体测定相对介电常数和电阻率。
[0126] 通过比较测定/测量值与不同材料已知值,或者与不同物体之前的测量值相比较,相对介电常数和/或电阻率可用于确定物体的构成。一旦知道物体的材料,即可从该材料预测物体的性质或物体的重量。相对介电常数和/或电阻率也可用于测定物体的纯度,或物体上危险物质的存在。这些测定有利于半导体行业等等。测量相对介电常数和/或电阻率的附加数据考虑到更好的过程控制、提高效率和优等品。
[0127] 图16A为具有相对传感器单元1611a、1612a的相对介电常数传感器1600a的示意图。相对传感器单元1611a、1612a可包含活塞和/或柔性壁。在所述实施例中,可移动电极1631、1632可被用作电容器的极板,其中物体1660充当电容器的电介质。在其他实施例中,固定电极1621、1622或者固定和可移动电极1621、1622、1631、1632均被用作电容器的极板。
单独电压线可提供给可移动电极1631、1632,或者一个或多个开关可用作在位移测量和电容测量之间转换。
[0128] 在一些实施例中,可在电容测量期间进行位移测量,固定电极1621、1622的电压可与可移动电极1631、1632相同,或允许浮动。相应地,相对移动电极1631、1632可处于相同电压,其中一个在位移测量期间可以浮动,和/或相对电极1631、1632在位移测量期间不同时通电,防止电容干扰。在实施例中,通过在可移动电极1631、1632上施加相同极性电压,物体1660可被排斥,或者当电压施加到电极1631、1632两端时,物体1660可在电极1631、1632之间吸引。这可用来抓取或释放物体,如当使用微机械时。
[0129] 在一些实施例中,传感器1600a可以仅使用一对直接相对的电极。或者,也可使用预先决定的多个电极和/或非直接相对的电极。例如,用直接相对的电极测量中空物体的介电常数需要特大电压,因此在这种情况下,可选择彼此相对成角的电极。或者,物体1660的形状可使可移动电极1631、1632成角度而不是彼此直接相对。该角度在一些实施例中为0度到180度之间,在其他实施例中可在180度到180度之间。对于角板,穿过物体1660的电场可能弯成弓形。电场的弓形弯曲取决于物体1660的厚度和材料。电压会增加直至电场延伸至物体1660以外。如果测定的介电常数为空气的介电常数和/或物体1660的介电常数有变化,可表明物体1660的边缘。在另一个实施例中,边缘检测也可通过下列方式进行,将电容器的一个极板改变到不同传感器单元的可移动电极,直至检测到空气的介电常数。
[0130] 物体1660的电容率探测到的改变可以被用来测定物体壁的厚度。不同的电容器极板装置可以被用来探测电容率的变化。电容器极板被密密麻麻地排列,例如系列电容器极板对准,会引起电场形成一个在电容器极板之间的拱。拱形区域的测量电容取决于每种材料的电容率,电场穿过这些物质,例如物体壁或在物体壁后的材料,如水或空气。例如,一个小电场通过系列极板电容器应用到一杯水当中,这个电场首先穿透玻璃。当电场增加的时候,电场可以穿透水和玻璃。当电场增加时,电容也改变,这个改变意味着电场正在穿过一种有不同电容率值的材料。
[0131] 在电容极板之间的电场可以创造出一个带有系列极板对准的拱。当拱形电场增加的时候,穿过电容器从低值往高值加压会使电场从一层伸向不同材料的另一层。为了测定材料的改变,电容器电压也被监测。电压曲线的改变也能被用来鉴别目标材料不同层面的厚度。作为增加电压的一种功能,物体不同物质的介电常数的改变可以在电压-时间曲线中引起波纹。将这些改变同被存储值相比较,可以用来测定物体壁的厚度。
[0132] 电容器两端的电压可以用方程式来表达:
[0133]
[0134] 在时间t电容器两端的电压用V来表示,V(0)表示在时间点0的时候电容器两端的电压。C是电容器的电容值,且i(T)是出入电容器的电流。电容器出入的阻抗可以表示成为:
[0135]
[0136] 其中Z是电容器的阻抗,j2=-1,ω表示角频率,f表示通常频率,和C表示电容器的电容值。当通过物体不同层面的电压和/或频率增加到设定值,电容器电压、电流、和/或阻抗可以被用来探测介电常数的改变。检测电压曲线的形状可以预测壁厚和物体材料。为了同测定的曲线作比较,不同的电压和/或频率曲线可以被储存在处理器中。
[0137] 不同物质的电容率值,包括有着多层不同材料的物质,使用处理器可以将其同测量值相比较。一个组合等价电容率可根据所测的电容计算。组合等价电容率值可能取决于电场穿过的每种材料的电容率值。此外,通过比较相对于电容改变的应用电压和/或频率的改变,处理器可以计算出电容率的简略值。然后组合等价电容率和/或电容率简略值可以和储存的电容率值和/或储存的电容率简略值作对比,以此来决定物体壁的厚度和/或决定包含的物体1660的材料。测定物体壁的厚度对于调节压力很重要。抓手施加在物体1660的压力通过不同信息的反馈受到控制。反馈包括物体的材料、壁厚、电压的改变、阻抗的改变、频率的改变、和/或电容率的改变,当电场投射过壁,遇到另一种材料。
[0138] 电源1640a和测量装置1650a可能被用来测量电容、电容器阻抗、和/或物体1660两端的电容器电压。在一些实施例中,电源1640a和测量装置1650a可能是一个单个装置。在其他实施例中,附加电极(未显示)可能被用来创造多个电容器电路,它受到多路复用器和/或多路分配器(未显示)的控制。通过使用直流电压(DC)和测量电流和/或充电时间;使用恒定电流和测量电压变化率和/或充电时间;使用交流电(AC)和测量产生的电压;使用交流电压和测量产生的电流;使用和改变产生的交流电流;使用和改变交流电流的频率和测量电容器电压;使用和改变交流电压的频率和测量电容器电流;使用桥接电路;诸如此类。使用恒定电压交流电源或者恒定电流交流电源、大小、相、和/或产生的电流或者电压的复杂呈现都能被测量。可变频率切换功率可被用来提供不同频率、功率、和/或电压的直流和交流电源。因为性能随着频率大幅度改变,电源1640a和测量装置1650a可能有广泛的可编程频率范围。在一些实施例中,几个测量值被平均,以增加准确性。应用于上述任何测量系统中的电压很低,为的是避免超过物体1660的击穿电压,或者在物体1660中产生太多的热量,这是大部分交流电源测量的问题。
[0139] 在一些实施例中,穿过物体的多个电容可依据相应的多个频率来测量。在实施例15
中,频率不同于零(直流电)到10 赫兹或者更高。这可能包括从低频率到高频率的扫描。同样的,在测量值中,可移动电极1631、1632的两端电压会增加成多个值。测量值也可以被用来测定介质弛豫和/或材料的耗散因数。材料的介电常数也依据曝光到电场的材料时限以及材料的温度。这样,可测量多个曝光时间的电容,和可能被测量的电介质的温度。
[0140] 物体的相对介电常数决定于一个或者多个所测的电容。在一些实施例中,使用处理器可以计算相对介电常数。因为壁、空气间隙等等在可移动电极1631、1632之间,它们有助于电容测量,在测定物体的相对介电常数之前,出于考虑这些传感部件电容率的原因,传感器1600a可能被初次校准。或者,通过将液体应用到机器人抓手中,气隙就会被减少或者消除。在一些实施例中,液体包含极性溶剂,例如水。由于水的高介电常数,电容流量测量值就会被增加,允许用较低的电压给予更准确的测量值。为了校准传感器1600a,传感器单元1611a、1612a首先会被放在一起,直到他们相接触。然后,在一个或者多个的频率段上,传感器部件的一个或者多个电流容量被测量。
[0141] 传感器组件的相对电容率可根据方程式确定:
[0142]
[0143] 其中£sensor为传感器组件的相对电容率,dsensor为移动电极之间的距离,ε0为真空电容率,且A为电极1631、1632的面积。在一些实施例中,真空电容率和电极面积均可为预定值,且存储每一个频率的值£sensor/dsensor,来解释传感器组件。传感器组件的电容率可在第904步骤位移校准期间确定。在一些实施例中,在计算传感器组件和/或存储£sensor期间,可用预先确定的位移分离传感器单元1611a、1612a。方程式3由来自国际单位制(SI)的单位组成。在其他实施例中,高斯单位制或其他单位制可用于计算电容率。在高斯单位制中,电容率k可根据方程式计得:
[0144]
[0145] 然后,物体1660的相对电容率可使用下列方程式由测得的电容计算得出:
[0146]
[0147] 其可改写为:
[0148]
[0149] 其中,dsensor为由传感器组件引起的电极之间的距离,£Object为物体1660的相对电容率,且dobject为由物体引起的电极之间的距离。在计算传感器组件的相对电容率时,如果传感器单元1611a、1612a接触,那么方程式(3)中dsensor近似于方程式(5)中的dsensor,且£sensor/dsensor可直接插入方程式(5)。根据先前所讨论的方法得到的距离测量值可用作距离dobject。因为所有其他值均为已知的,然后就可计算得出£object。
[0150] 相对电容率的计算也可弥补传感器单元1611a、1612a之间的空隙。带有空隙的物体1660的电容率可根据方程式计得:
[0151]
[0152] 其中,假定空气的电容率为1,dplates是基板之间的距离,包括物体的空隙和宽度,Cobject+air为物体1660到位时测得的电容,且Cair为在远距离dplates处物体1660未到位时测得的电容。如果未测得Cair,方程式6也可计算为:
[0153]
[0154] 之后,在考虑空隙和传感器组件的同时,方程式6可以与方程式4结合计算相对电容率,产生方程式:
[0155]
[0156] 其中,dwalls为传感器单元1611a、1612a柔性衬底壁之间的距离(即dwalls和dsensor的总和为电极1631、1632之间的总距离)。
[0157] 物体1660的耗散因数也可在一些实施例中测得。耗散因数也可根据空隙和传感器组件进行纠正。对于带有空隙的测量值,耗散因数可根据方程式计得:
[0158]
[0159] 其中,Dobject为物体1660的耗散因数,Dobject+air为物体到位时测得的耗散因数,且Dair为物体未到位时测得的耗散因数。
[0160] 当物体空隙和/或尺寸的大小不得而知或很难测量时,物体1660的电容率和/或耗散因数可使用双流体方法计算。在双流体方法下,物体的电容可同时在两个不同流体中测得。然后,可以测得每个流体的电容。在一些实施例中,流体之一可为空气。第二个流体可选择为具有已知且稳定介电性能且不与测试物体反应的流体。然后,物体的电容率可根据方程式计得:
[0161]
[0162] 其中,εair为空气的相对电容率,Cobject+air为物体置于空气中测得的电容,Cair为物体未置于空气中测得的电容,Cobject+fluid为物体置于第二流体中测得的电容,且Cfluid为未放置物体时测得的第二流体的电容。
[0163] 然后,计得的物体1660相对电容率可与已知的数值相比较,以确定物体1660的材料。各种材料的已知电容率值可存储进在存储器、数据库等等。材料的电容率值可包括化合物和/或复合材料的电容率值。各种材料均有多个电容率值,存储为可能的不同频率、温度、电极张角、电压和暴露至电场的次数。或者,可存储默认温度和/或电极张角的电容率值,其他温度和/或电极张角的电容率值可由默认值计算得出。正如先前讨论的位移测量,位移测量期间,可采用连续监测电极1631、1632的方法,以纠正位移上张角电极的效应。在一些实施例中,也可以计算并存储材料的介电弛豫和/或耗散因数。
[0164] 然后,通过对比测得值和相对的存储值,找出量佳匹配和/或使存储值和测量值之间的误差最小化,从而选定最有可能的材料。传感器1600a可从最低可能的电压、电流和频率值开始,不断尝试确认材料,以便使施加在物体1660上的能量最小化。可分别或一起递增增加电压、电流和/或频率,以根据电压、电流和/或频率的改变,测量电容器的数值。当决定的确定性或误差达到预先确定的阈值时,传感器1600a可停止。在一些实施例中,传感器仅可使用最低可能的电压、电流和频率来识别物体1660。
[0165] 在实施例中,存储的电容率值可通过使用传感器1600a测量已知材料的直接测量值的方式获得。在一些实施例中,当测得电容率值的直接测量值后,传感器1600a可不需要校正。在其他实施例中,电容率值可从第三方获得,或在实验室中测得。实验室测量值可通过使用现成的测量装置测得,比如惠普的HP 16451B。或者,最初可以存储多个频率、温度和暴露次数的实验室测得的电容率值,且测得的电容率值可用于更新相应值,或可以推断出,以便为该材料提供额外的值。可以测量没有现成数据的化合物的电容率值。
[0166] 测得值可用于确定与理想电容器的偏差,如漏出量;寄生效应;击穿电压;温度偏差;固有电感、电阻或介电损耗等等。当根据测得电路性能计算电容时,如幅值和/或电压、电流相位等等,可通过增加虚拟电路元件解决线性偏差,如漏出量和寄生效应。当分析测得电路性能时,可分别存储以及引用非线性偏差,如击穿电压。然后,可将电源控制保持在击穿电压以下。对于改变电容值的线性偏差,如温度,或对于不同频率下不均匀的寄生效应,如固有电感、电阻或介电损耗,可通过存储特定温度或频率值的偏差量和/或通过修改所存储的电容率值,调和偏差。温度偏差可以以每摄氏度兆比率的电容偏差存储,并可以是正的或者负的。
[0167] 也可存储不同纯度级别的材料或其上有危险物质的物体的电容率值。然后,可在整个生产过程中,不间断监测物体1660或有害物质存在的纯度级别。如果传感器1600a发现了杂质和有害物质,它可提醒操作员或发出警告。在这些情况下,物体1660的介电常数可能是化合物的。
[0168] 一旦知道物体1660的材料,就可调节由传感器1600a构成的抓手的压力,以确保有足够的摩擦来抓住物体,同时也确保物体1660不被抓手损坏。在一些实施例中,抓手的压力最初是极小的。然后,传感器1600a可测定物体材料。一旦知道材料,就可确定材料的性能,如密度、抗压强度、壁厚等。材料性能可存储在存储电容率值的存储器或数据库内。根据物体1660的测得密度、壁厚、合成和尺寸测量,可以测得物体1660的重量。然后,抓手可以确定要施加至物体1660的压力,并增加该值施加压力。在一些实施例中,抓手可施加操作物体1660所必需的最小压力。如果操作物体所需的最小压力可能会损坏物体1660,则抓手可告知操作者,尽管如此,还是要施加操作所需的最小压力,和/或施加不会损坏物体的最小压力。对于物体1660尺寸已知的操作,可以存储预定的压力。
[0169] 电压差从移动电极1631、1632移除后,由于电介质的极化作用,一些能量可能储存在物体1660中。在一些实施例中,物体1660中储存的能量在测定相对电容率后会立即消散。这样,电极1621、1622、1631、1632可切换至测量位移。因为电容器的两极板均电阻式系到地面,物体1660中任何储存的势能均可消散。在另一个实施例中,电容器的两极板均可在事先确定的时间转到接地。如果电容器保持长时间充电,当短暂放电时,由于电介质吸收(也被称为浸渍或电池作用),电容器不可能完全放电。为避免电介质吸收,电容器可仅在有限时间内充电,和/或上述放电方法的时间长度根据电容器充电的时间长度确定。
[0170] 图16B为具有相对传感器单元1611b、1612b的电阻率传感器1600b的示意图。电阻率传感器1600b可以以类似相对电容率传感器1600a的方式配置,但各个传感器单元1611b、1612b可包含额外外部电极1671、1672。在一些实施例中,外部电极1671、1672可为薄金属、导电弹性体、导电聚合物,或者可以电力耦合到物体(未显示)上的、位于传感器单元1611b、
1612b外部的薄膜。为测量电极1621、1622、1631、1632之间导电流体的电阻,电源1640b和电性测量装置1650b可以以前面讨论过任何方式测量物体的电阻。在一些实施例中,电性测量装置1650b可用来测量物体的电阻、测量物体的电容率、测量位移感测电极1621、1622、
1631、1632之间的电容(当介电液体用于位移测量时),和/或用来测量电极1621、1622、
1631、1632之间导电流体的电阻。电阻率测量装置也可用于释放由于电容测量储存在物体中的势能。
[0171] 一旦测量了电阻,可使用方程式计算材料的电阻率。
[0172]
[0173] 其中是材料的电阻率,R是测量的电阻,A是外部电极1671、1672之间物体的横断面积,L是外部电极1671、1672之间的距离。与相对电容率一样,外部电极之间的距离可根据前面讨论的方法通过位移测量值测定。面积可通过表征物体的几何结构确定。在一些实施例中,一个或多个垂直于传感器单元1611b、1612b的额外传感器阵列(未显示)可用来确定物体的面积。或者,平行于传感器单元1611b、1612b的额外传感器阵列(未显示)可使用测量导电流体压力的压力传感器来检测物体的边缘。测定的电阻率可与保存的电阻率值作对比,以类似对比电容率值的方式鉴定物体的材料。可为内部传感器组件电阻、温度变化等等就测量的电阻做出改正。或者,此外,可保存多个温度或温度系数的电阻率值。
[0174] 氧化镓触点
[0175] 氧化镓(Ga2O3)可形成触点,电极可附属于该触点上,如毫米至微米范围内的小型传感器。氧化镓触点可被用作基于活塞的传感器单元610和/或柔性壁传感器单元110。氧化镓触点可与带或不带内部绝缘壁分离传感器的传感器阵列一起使用,比如传感器阵列1000或1100。为生成触点,首先,微流通道,如气缸、小室等等,可使用来自如泵和/或毛细力之类施加的压力充满镓合金。微流通道可至少具有一个开口,该微流通道被充满直至镓合金到达开口。
[0176] 开口外的区域可包含氩气,防止镓与其他元件反应。施加到镓合金应保持在临界值之下,这样镓合金可在开口外流动。镓合金的表面张力可形成圆形,和/或镓合金可模塑成所需的形状。然后可在镓合金上形成氧化镓。氧化镓可通过各种不同方法形成:可氩气中添加氧气或用氧气替换氩气,镓合金与氧气接触时加热镓合金;通过沉淀中和镓盐的酸性或碱性溶液即可得到氧化镓;硝酸镓可被热解;三甲基镓与氧气反应可用于在镓合金上覆盖氧化镓薄膜;纯镓可被用于覆盖镓合金,用纯镓形成的镓合金使用喷溅涂覆法等等;等等。
[0177] 一旦形成尺寸充分的氧化镓层,移动电极可涂覆到氧化镓膜上,和/或氧化镓可被用作可移动电极。在一些实施例中,可移动电极可被细分为共用镓合金液体的多个电极。在与传感器阵列1000和/或传感器阵列1100类似的配置中,一个或多个固定电极可被安装在微流通道的另一端。在一些实施例中,电极可为钨、钽、钶、钛、钼等等。电极可使用喷溅涂覆法、喷墨印刷、丝网印刷、沉积、蚀刻等等附加。
[0178] 电极可通过电线与集成电路相连,该集成电路与传感器单元110、610闭合或断开,以提供电源和/或测量传感器单元110、610的电性。然后,电极可能被绝缘材料和非导电材料覆盖,防止意外电气接触。另一层氧化镓可应用于电极顶部,或硅橡胶可应用于电极。氧化镓或硅橡胶可使用喷溅涂覆法、喷墨印刷、丝网印刷、沉积、蚀刻等等添加。根据此方法构造的传感器单元可与额外传感器单元串联连接,和/或与电动机串联,和/或配置成模块,如接触式传感器700或接触式传感器800。
[0179] 重量测量
[0180] 抓手可测量物体的质量或重量。质量或由质量计算所得的密度能够更精确测定物体的构成。抓手通过将物体放在秤或天平上,测量结束后再次抓取物体来测量质量。或者,抓手可与天平或秤相结合。物体的重量或质量可通过带物体的重量减去不带物体的抓手重量而得,将天平或秤归零以解释抓手重量等等。天平或秤可为分析天平、分析度盘、应变仪度盘等等。应变仪可包含带有长度敏感电阻器的秤杆。可以测量由于秤杆偏向产生的电阻变化,进而测定重量或质量。
[0181] 抓手和传感器的组装
[0182] 不同的封装包可能涉及到此处讨论的抓手和传感器。在抓取系统中,多样的抓手和/或工具相互作用。例如,一个抓手可能抓住一个物体,同时另一个抓手在物体上进行制造操作。制作过程可能包括将两个物体拧在一起,将物体插入其他物体,或者其他具体的制造操作。或者,一个抓手可能将一个物体转移到另一个特殊的抓手上,来进行特殊的操作。例如,一个物体可能被第一个抓手从外部抓取,然后转移给从内部抓取的抓手,这将考虑到物体的插入,等等。
[0183] 在一些实施例中,抓手可能被封装起来,进行预订的操作。在其他实施例中,封装的目的是履行更为通用的功能。在形状和/或功能上,抓手的封装可能类似于人手。对于一个手形的抓手,传感器可能被嵌入手指和手掌。或者,传感器被安装在一个夹紧装置上,以此来表明物体的位置。带有预定封装的抓手或者一个通常的封装抓手执行多种任务,例如抓取、固定、测量、操作、和/或识别物体。为了识别物体,例如大小、重量或质量、介电常数、消耗因素、介电驰豫、电阻率等等,多种性能都会被测量到。这样的测量值可考虑到物体性能的充分逼近,这考虑到了更准确的操作。在一些实施例中,多个传感器可能共用一个共同的导电流体和/或绝缘柔性壁。通过使用许多单元上的单个的绝缘壁,可移动电极的活塞和轴可能被固定,两个传感器之间的污染物会被清除,机器人抓手的性能会被改进。二者择一地,或此外地,接触点被紧密堆积以此来清除污染物,减少传感器壁的面积,这个传感器面积包含传感器,且没有履行电气功能。传感器的壁被最小化,以最小化电子传感器之间的区域。
[0184] 图17是一个抓手封包1700的原理图,它包含制动器1721、1722(例如,电动机、液压制动器等等),与位移传感器1711、1712相联系。在所述实施例中,有两个位移传感器1711、1712和/或位移传感器阵列和两个相应的制动器1721、1722,一到六个位移传感器或者更多,每一个包含一个或多个模块和/或每一个带有相应的电动机,可能被用在其他实施例中。制动器1721、1722可能是电动机,它能通过可测量的位移的小增量移动,使用导螺杆准确定位位移传感器1711、1712。制动器1721、1722和位移传感器1711、1712可能被安装在旋转分度工作台上和/或工作台1740上,它可以调整物体的角度。制动器1731、1731、1733、
1734(例如,电动机)位于工作台1740的边缘,可以调节工作台1740。可从哈丝自动股份有限公司和IntelLiDrives股份有限公司获得此类。
[0185] 为了计算每个传感器的总移动,导螺杆的移动距离可以被增加到位移传感器的移动。位移传感器1711、1712可能包含多种平行和相互串联的传感单元,串联的传感单元被用来计算位移传感器的移动。总位移被用来计算被抓取物体的几何形状。对于小物体,包括微机电系统(MEMS)和微流体装置,位移传感器1711、1712可能包含单层的传感器单元。单层的传感单元共用单个柔性壁,这些柔性壁被细分成多个电极,如图11。来自位移传感器1711、1712的压力传感器的反馈和/或位移计算可以被用来精确控制制动器17211、1722的移动,例如电动机和导螺杆,可以精确到一英寸的百万分之一。校准和测量值的进行方式与方法
900相似。
[0186] 在其他实施例中,位移传感器1711、1712被作为末梢执行器附加在机器人臂(未显示)的末端。机器人臂可以将位移传感器1711、1712移动到一件物体的多个位置上。这允许位移测量围绕整个物体,完全绘制物体的表面地图。或者,直到物质材料被测定,测量才会完成。旋转分度机(未显示)也能或者交替地被用于旋转位移传感器1711、1712和/或物体,以便测量和操纵。位移传感器1711、1712通过机器人壁的移动所移动的距离,可能使用如下的方程来计算:
[0187] S=Θr             (11)此处的S表示位移的距离,Θ表示弧度角,且r表示旋转半径。两个正交轴的总位移可以用下列的方程来计算:
[0188] SX=r cosΘ                    (12a)
[0189] SY=rsinΘ                    (12b)
[0190] 在此,SX表示第一个轴的总位移,SY表示第二个正交轴的总位移。可从库卡机器人公司、日本安川机器人和发那科公司获得机器人臂,且索引机包括Ganro工业公司的TR系列。或者一个径向移动液压接头可能被使用。
[0191] 位移传感器1711、1712还可并入机器人(未显示)的手内(未显示)。传感器可位于机器人手的各侧。单独手臂的双手可用于包围物体,以便进行模式识别、位移测量、电容测量和材料决定。手可进一步包含手指(未显示),手指可插入较小的地方。在一些实施例中,手和/或各手的手指可直接彼此相对,以便测量。在其他实施例中,手和/或手指可处于已知的角度。为完成电容测量等,各手的电路可运行至一个常见的位置,比如一个控制器或基站(未显示)来完成电路。
[0192] 图18为快速释放抓取系统1800的侧视图和旋转接头1840的横断面图。一个固定尺寸抓手可包含一对抓手传感器阵列1810、1820,带有可插入物体1860的最大开口。固定尺寸抓手可从内部或外部抓取物体1860。固定尺寸抓手还可包含物体约束模块1831、1832。在其他实施例中,物体约束模块1831、1832可被额外的抓取传感器阵列1810、1820所取代。
[0193] 旋转接头1840可用于将流体传送至物体1860,和/或控制传感器阵列1810、1820的液压缸。流体可以是水、油、油漆、导电流体、介电流体等。旋转接头1840包含一个带有固定入口1841的护套1844,可从固定源将流体放入到其中。转动出口1843可将流体输出至物体1860,和/或在传感器或抓手1810、1820中采用流体输送。转动出口1843可以在无需干扰流体流动的情况下转动。转换孔1842可旋转并传输流体至转动出口1843,同时还从固定入口
1841处,经循环室,接收流体。在实施例中,旋转接头1840还可以使用镀银球(状)轴承、钢丝刷、导电环、液态金属等,传输包括数据在内的电功率或光学功率。典型的旋转接头1840可以是穆格公司生产的FO197或旋转系统有限公司生产的多通道系统。
[0194] 图19为可能具有旋转接头1840的快速更换转台1900的侧视图。快速更换转台1900可由多个工具1910、1920、1930、1940组成,如钻孔机1910、修边工具1920、焊接机1930、流体接管1940、端铣刀(未显示)、真空抓手(未显示)、传统抓手(未显示)等组成,以便在物体上操作。工具1910、1920、1930、1940可与带有机器人臂的快速释放抓取系统1800交换。一个抓手,如抓手700、800b、1100、1700、1800等,可在机器人臂使用工具1910、1920、1930、1940在物体上进行操作的同时,保护物体。通过技术中的这些技巧,可以理解几个抓手和/或机器人臂可以在同时在单一或多个物体上操作,且这些抓手可用来交换工具。
[0195] 工具1910、1920、1930、1940可位于转台头部1950的上面,同时颈部1960可由一个旋转接头1840组成。在一些实施例中,快速更换转台1900还可由一个或多个抓取传感器阵列组成。在一些实施例中,在快速更换转台1900在物体上进行操作或将工具转移至另一抓手以便在物体上进行操作的同时,快速释放抓取系统1800可充当一个虎钳。如果快速更换转台1900由抓取传感器阵列组成,则快速更换转台可将物体插入并将物体从快速释放抓取系统1800中移开。对于带有抓取传感器阵列的快速更换转台1900来说,快速更换转台1900的旋转接头1840可能需要至少在一个轴上旋转,转移电功率、转移流体、转移数据、打开及关闭抓手等。
[0196] 通过旋转至适当的工具和/或通过使用铰链1911、1921、1931、1941折转相关工具,选择工具1910、1920、1930、1940。可以液压、电力和/或气动地控制工具选择。处理器(未显示)可控制快速更换转台1900的运转,包括定位及使用1910、1920、1930、1940中的哪个工具。由于抓取系统抓取并识别物体或与工具1910、1920、1930、1940进行交换,处理器可确定使用1910、1920、1930、1940中的哪个工具,并开始在物体上操作,这可由另一抓手抓持。抓取系统1800可被换成工具1910、1920、1930、1940,或抓取系统1800可以抓住工具1910、1920、1930、1940。
[0197] 图20为带凸轮导承的凸轮驱动机器人抓手2000的横断面图,该凸轮导承2020用于操纵抓取传感器阵列2030、2040、2060。抓取传感器阵列2030、2040、2060可由紧抓基底2060的两个凸轮控制的钳口2030、2040组成。为操作钳口2030、2040,电动机2013可转动导螺杆2010。两个相反的螺纹螺母2011、2012可根据电动机2013的转动方向,相互相向或相离移动。此外或二者择一地,导螺杆2010在其中心点的每边均有相反的螺纹。螺母2011、2012可附加至导销2021、2022或位于凸轮导承2020内的导球。导销2021、2022也可随着电动机2013操作,相互相向或相离移动。或者,钳口2030、2040可由液压位移传感器操作,比如传感器
600,以便移动凸轮导销2021、2022,且可以也可以不将螺母2011、2012连接到活塞轴的末端。一个或多个连接线2050,比如电线、铰链、金属等,可使用螺栓2031、2032、2041、2042、螺钉、销等,连接导销2021、2022至钳口2030、2040。连接线2050可以是由多个接头组成的复杂铰链。
[0198] 凸轮导承2020的不同节段2023、2024、2025、2026、2027可用来把钳口2030、2040转向不同的方向。例如,当导销2021、2022在节段2027时,钳口2030、2040可与基底2060成90°角。当导销2021、2022通过节段2023时,钳口2030、2040可转动至与基底2060平行。在节段2024中,钳口2030、2040可在继续与基底2060保持平行的同时,进行横向移动。节段2025可旋转移动钳口2030、2040,以返回到相对于基底2060的90°角。最后,节段2026可使钳口
2030、2040返回到与基底2060平行并接近基底2060,从而使传感器阵列2030、2040、2060内的传感器完全被覆盖。
[0199] 不同节段2023、2024、2025、2026、2027均可允许抓手2000完成不同的功能。例如,在钳口2030、2040在节段2027内成90°角的同时,抓手2000或许可以接近物体并像虎钳一样抓住它。在节段2024中,当钳口2030、2040平行于基底2060时,抓手2000或许可以与另一抓手(未显示)相互作用,抓住对于抓手2000单独来抓显得过大的物体。通过在抓住大物体的同时,使导销2021、2022返回至节段2023,可以转动钳口2030、2040的角度,以提高对物体的抓取力度。在传感器阵列2030、2040、2060内的压力传感器可确保将压力在物体上均匀分散,这将使抓手2000自定中心。在节段2026期间,覆盖传感器,可保护传感器阵列2030、2040、2060免受损害或污染。在一些实施例中,有不止一个凸轮导承2020,比如在钳口2030、
2040下端的凸轮导承(未显示),这可能有解释转动钳口2030、2040的角度。钳口2030、2040可进一步分离成单独的手指(未显示),这可以通过液压、气动、电力等控制。在抓手已确认正被操作的物体之前后之后,手指可独立或一起移动来抓住较小的物体或完成复杂的操作。
[0200] 图21A、21B、22A、22B、23为机器人抓手2100的侧透视图,该机器人抓手2100具有导螺杆2121、2122,用于调节传感器阵列板2130、2140、2160的位置。在一些实施例中,导螺杆2121、2122可为线性液压制动器的活塞。图21A和21B为当侧传感器阵列板2130、2140位于平面位置时,机器人抓手2100的侧透视图。图22A和22B为当侧传感器阵列2130、2140板垂直于底部传感器阵列板2160时,机器人抓手2100的侧透视图。图23为当侧传感器阵列板2130、
2140位于锐角位置时,机器人抓手2100的侧透视图。在所述实施例中,旋钮2111、2112控制导螺杆2121、2122的旋转。在另一个实施例中,发动机、曲柄、皮带轮等等可用于转动导螺杆
2121、2122,和/或液压缸、活塞,且轴可用于代替导螺杆2121、2122使用或另外使用。处理器(未显示)可控制导螺杆2121、2122的运动。处理器可使用抓手缚住物体(未显示),并使用从传感器阵列板2130、2140、2160获得的信息确定如何用另一个抓手和/或工具(未显示)操作物体。
[0201] 导螺杆2121、2122可通过支架2135、2145耦合到侧传感器阵列板2130、2140。导螺杆2121、2122均可以类似方向同时转向,使支架2135、2145和侧传感器阵列板2130、2140侧向地向底部传感器阵列板2160靠近或远离。导螺杆2121、2122可以以相反方向转动,和/或仅一个导螺杆2121、2122使支架2135、2145各自围绕旋转轴2131、2141旋转。支架2135、2145可使侧传感器阵列板2130、2140相对于底部传感器阵列板2160旋转。各个支架2135、2145可包括杆2132、2142,杆2132、2142构造为与一个或多个通道2150相连接。一个或多个通道2150可支撑杆2132、2142,和/或驱使它们移动到期望路径。
[0202] 集成机器人电源
[0203] 移动机器人可由电池供电。在电池容量与总重量和/或机器人总体积之间应有一个权衡。单位机器人体积的能量容量可被称为能量密度,单位机器人质量的能量容量可被称为比能量密度。对于某些机器人来说,适当重量和体积的电池可提供小于一小时的操作时间。为节约重量和体积,电池可并入机器人的结构构件,在提供能量的同时起结构作用。这种结合考虑到提高能量密度和/或比能量密度。对于重量和/或体积一定的机器人,提高的能量密度和/或比能量密度转化为提高操作时间。结构构件可包含外皮、壁、骨架元件等等。集成电源的其他应用可包括向电动车提供动力。例如,电池可被包括在车体外板或车架。
[0204] 图24A和24B为蒙皮壁板2400a、b的横断面图,该蒙皮壁板被配置成为机器人提供动力,如向机器人抓手提供动力、向机器人移动提供动力等等。在一些实施例中,蒙皮壁板2400a、b可包含电池2420,用于存储电流并在需要时提供动力。电池2420可包含正极2421、负极2422和分离器/电解质2423。电池2420可被壁2410包围,壁2410支撑并保护电池2420。
因此,电池2420不需要单独包装,这可节省重量和空间,并为机器人产生高能量密度和/或高比能量密度。
[0205] 电线2431、2432可将电池2420连接到外布元件上。电线2431、2432可连接到充电、放电装置和/或充电、放电端口。电线2431、2432可连接到其他电池,正、负电池触点,输入、输出电源端口或机器人元件。电线2431、2432可连接到用于将电池2420外接到其他电池的速断接点、充电电源、放电电源泄露等等上。电线可成为接触元件的一部分,如本领域技术人员已知的一个。在一些实施例中,壁2410可完全包围电池,电线2431、2432穿过壁2410,作为电池2420的唯一外接。
[0206] 蒙皮壁板2400a、b可被塑造成理想形状。例如,蒙皮壁板2400a、b可按照、包住或覆盖机器人身体部分,如腿、胳膊、躯干、身体等等,来成形。多个蒙皮壁板2400a、b可互相固定,集成整个蒙皮来覆盖机器人。例如,一对蒙皮壁板2400a、b可为两半,构造成包围个体身体部分。蒙皮壁板2400a、b可通过各种方法固定在一起,包括螺丝钉、螺栓、夹子等等。
[0207] 壁2410可为橡胶、硅、聚合物、聚碳酸酯聚合物等等。壁2410可为柔性壁。壁2410可包含不同层的多个层,以履行不同功能。组成壁2410的材料应选择能提供理想弹性或硬度和/或其他理想性能。在一些实施例中,电池2420被刺被或被损坏时,电池2420可能燃烧和/或爆炸。相应地,壁2410可构造成流动、伸长和/或扩大,使任何穿刺进入并密封。密封的穿刺可被壁2410电力绝缘,防止单元之间的短路或其他危险情况。二者择一地,或此外,壁2410可包括具有聚碳酸酯树脂热塑性塑料的外层,如 防止对电池2420的穿刺或损坏。
[0208] 在一些实施例中,电池2420可为可充电锂电池,如锂聚合物电池、锂离子电池和/或薄膜锂电池。电池2420可依照半径和/或理想身体部件的角度成形。电池2420可通过注射成型、沉积等等形成和成形。正极2421、负极2422和/或分离器/电解质2423可为柔性的,和/或包含多层。在一些实施例中,壁2410可在电池2420上成形。或者,电池2420可被插入预成型壁2410。电池2420可包含多个电池单元。电池单元可为现成产品,如由莱顿能源公司、Quallion公司、LG化学能源、约翰逊控制或A123 Systems生产的产品。电池单元可并联和/或串联连接,以达到理想电压和能量容量。进一步,来自多种面板2400a、b的电池2420可通过并联和/或串联连接在一起,以增加电压和/或能量容量。
[0209] 电池2420可包括压力传感器(未显示),该压力传感器构造成检测压力的增加,这可能是气体危险积累的显示。当压力超过预制电平时,充电可中断或停止。压力传感器可为压阻式、PVDF、流体静力、液柱、无液、波尔登、隔膜、波纹管、气压梯度、光电子、法布里-珀罗、应变仪、皮拉尼真空计、电容式压力传感器等等。电池2420也可或者包括安全阀(未显示),该安全阀构造为当释放压力超出时,释放电池2420中积累的气体。电池2420可包括温度传感器,该温度传感器构造为在充电与放电期间监测电池温度。根据检测到的温度,可调节电池充电情况。
[0210] 图25为具有多个集成电池2520、2530的骨架元件2500的横断面图。骨架元件可包含内核2510,多个电池围绕内核2510包裹。内核2510可为细长形和圆柱形,如在一些实施例中的管和/或管状。内核2510可包含重型和/或轻型材料,如钛、钨、锇、碳纤维、铝、镁等等。高强度材料可保持稳定,减少内核2510变形的可能性。
[0211] 内核2510可包含内部中空部分2515,电线、流体等等可通过该内部中空部分。许多机器人的下部构造可并入内核2510,包括电力传输、液力传输、数据传输、监测与控制组件等等。监测与控制组件可包括电池2520、2530的压力和/或温度传感器、多路复用器、流体流量计、控制电池2520、2530充电与放电的开关、电池2520、2530的电压表等等。电线可将电池2520、2530连接到电动机、液压泵、充电接口、处理单元等等,和/或电线可在机器人不同组件间传输数据。流体可由硬塑料管传输,如聚氯乙烯(PVC)管、聚碳酸酯聚合物等等,该硬塑料管被内核2510包围。PVC管可强化内核2510。或者,流体也可不用额外管道传输。在一些实施例中,内核2510也可如前面所述充当带活塞的液压缸、带填充物的杆和排放部分。数据和电力可通过单独的管传输,该管可以在也可以不在内核2510中,也可穿过活塞和轴中心,如果有活塞和轴的话。流体应增压以强化内核2510。
[0212] 核心2510大体上可能受到内部电池2520的限制。内部电池2520可能大体上符合核心2510的形状。多个基板2511可能包围核心以便向内部电池2520以及核心2510提供支持和构造。此外,支承板2512可能把内部电池2020分成多个部分和/或包围单个的蓄电池单元。基板2511和/或支承板2512可能包含牢固和/或轻质材料,例如那些以前被讨论到的东西。
单个的蓄电池单元可能占据多个节段,和/或一个整块电池单元可能在一个单一节段内。例如,在所述实施例中,四个电池单元占据十二个节段来形成内部电池2520。在代替的实施例中,十二个分开的电池可能包含在十二个部分或者不同的期望倍数可能被使用。单个的部分被叠放在一起以包围内核2510。填充材料2513,例如一个热塑性塑料或者诸如此类,在一个部分内可填充电池的线圈之间的间隙,以创造一个平滑的同心外表。在其他一些实施例中,也许没有基板2511和/或支承板2512,且内部电池2520会同心绕着内核2510缠绕。外部电池2530可能会绕着平滑的同心外部表面被包裹,并大体上围绕内部电池2520。外部电池
2530可能被封闭在一个外壳中(未显示)。盒子可能是一个非导电材料,例如塑料、橡胶、等等。在一些实施例中,外壳可能是一种聚碳酸酯聚合物,例如
[0213] 为了实现所需的电压和/或电荷容量,外部电池2530和/或内部电池2520的单元可能被串联和/并联耦合起来。同样地,单元的数量或者电池的大小被调节以实现所需容量。一些电池,例如锂或者锂离子电池,如果单元充电不均衡,可能会有过度充电的危险。因此,电池2520、2530可能用某种方式被放电和重新充电,这样就能补偿电池间的电压。例如,放电和重新充电可能会被电源转换装置控制,这个装置在充电和/或放电的单个电池单元之间。这个电源转换装置也可能考虑到不同电压和/或容量的充电和放电单元。每个单个的电池单元可能受到一个相应的开关的控制。被测定的过度充电的电池单元可能会被终止充电。过度充电可能会被电压测量、气压测量、温度测量等探测到。电压监控可能被用来应用充电电压控制和/或通过开关管理电压。充电与放电的控制电路可能会通过电线与电池
2520、2530连接起来,这条线穿越内核2510的空心截面2515,和/或控制电路可能和电池
2520、2530结合到一起。
[0214] 图26A和26B为不同类型电池绕组的前透视图。同心的电池绕组2600a可能会把自身包裹起来,形成多个层。或者,平行电池绕组2600b可能包含多个大体上平行的堆积层。在其他一些实施例中,绕组可能相互垂直。绕组的方向可被看作颗粒和/或颗粒结构。电池绕组2600a、2600b的颗粒结构可能被选中来加强骨骼元件。在一个实施例中,内部电池2520可能包括平行电池绕组2600b,且外部电池2530可能包括同心电池绕组2600a。外部电池2530的绕组2600a可能大体上垂直于内部电池2520的绕组,以增加强度。可选的电池设计,例如棱柱网格,可能也或反而成为绕组设计的一部分。
[0215] 图27A和27B是内部电池2520的截面2700a、2700b的横断面图。每一个截面2700a、2700b的绕组2710a、2710b可插入嵌入成型的截面,以便最有效率地使用空间。每一个截面
2700a、2700b可以被装配在内核2710的周围,以此来形成内部电池2720。图27C是绕组层
2740的横断面图,它包含一个阳极2714、一个阴极2742和一个电解液2743。阳极和阴极线
2711a、b和2712a、b可能被分别耦合到阳极2714和阴极2742,且可能从截面2700a、2700b中伸出来,以此来提供电池单元的外接。电线2711a、b和2712a、b可以将电池单元相互连接和/或可能连接其他的机器人部件、充电端口和/或放电端口。单个的正负极引线对可能将骨架元件耦合到其他机器人组件上,或者电池2520、2530或截面2700a、2700b可能是多对引线。
电池组件由莱顿能源股份有限责任公司、Quallion有限责任公司、LG化学能源、3M、江森控制及A123系统。
[0216] 绕组2710a、2710b可被紧紧地缠绕在截面2700a、2700b上,以便最有效率地使用截面2700a、2700b的空间和增加骨骨架元件2500的强度。填充材料2513可能增加强度和密度,同时在牢固的缠绕位置维持绕组2710a、2710b。在内核2510周围的截面2700a、2700b的包装在非常紧促的容差范围内能够最大化骨架元件的密度和强度。此外,电线2711a、b和2712a、b可能通过一条精密公差管相连通。这条管道可能由包含钛、石墨、碳纤维、和/或诸如此类的材料组成。由于锂聚合物或锂离子电池,内部和外部电池2520、2530可能能够折曲,从而吸收外部压力和减少内核2510的应力。这样,内核2510的结构稳定性可能被保留,尽管骨架元件2500的外层有显著的折曲或者弯曲。
[0217] 图28为具有加热元件2840的电池2800的前透视图。电池2800可具有超出电池降解性能之外的有限工作温度范围。加热元件2840可用于将电池2800保持在工作范围之内。例如,加热元件2840可以是由电阻丝组成的电阻加热元件。或者,或另外,热电元件可用于冷却和/或加热电池2800。
[0218] 加热元件2840可绕外部电池2820缠绕,但是须在外壳2830内部。或者,或另外,加热元件2840可绕内核2810缠绕。在一些实施例中,基板2511和/或支持板2512可由加热元件2840组成,并可与外壳2830内的外部加热元件相结合,以密封加热的电池环境。加热元件可尽可能地靠近电池,同时还要与电池电气隔离。加热元件可以是圆的,比如螺旋状,或者它也可以是正方形、长方形等。加热元件2840可与由电池和/或带有电池的骨架元件组成的蒙皮壁板一起使用。
[0219] 此外,加热元件2840可与位移传感器单元一起使用。位移传感器单元的精确度会受温度变化的影响。因此,加热元件2840可通过将抓手保持在大体恒定的温度下,增加抓手的工作范围。可通过加热贮液器内导电流体或介电流体,通过与电极接触的加热毯,和/或用嵌在抓手外壳或蒙皮内的加热元件,维持抓手的温度控制。例如,抓手可以包括电阻丝和/或流体贮液器内的元件和/或抓手外壳。或者,抓手可抓住加热元件,和/或加热毯、加热手套,或者带有加热元件的衣服可以应用在移动机器人截面上。抓手触点、抓手外壳、电池、接头和/或流体贮液器内的温度传感器可监控抓手及其元件,以准确感测温度并允许改正待测的温度。或者,或另外,对于带有电解液、导电流体,如KCI电解液或介电流体,可以通过改变电解液的克分子浓度或通过添加防冻剂,调节工作温度范围。
[0220] 关节和骨架元件
[0221] 机器人的骨架可包括多个关节和骨架元件,用于向机器人提供形式和结构。骨架元件可包括一个带有外止口和/或内止口的内核。内核可结合至和/或包括一个端盖,与其他骨架元件相结合,与一个或多个关节相结合,和/或诸如此类的。骨架元件可以提供支持并允许转移流体、电功率、数据等。关节可与骨架元件结合在一起,并允许移动一个或多个自由度。关节可允许骨架元件彼此相对旋转,像人体骨架绕关节旋转一样。例如,可以将关节构造成以类似手指、肘部、腰、膝盖、手腕、肩部等移动的形式,移动骨架元件。也可包括其他关节,以便允许机器人完成任何所需的动作。关节可包括端盖,以便允许其与骨架元件相连接。
[0222] 在一个实施例中,机器人接头可由通过旋转连接器组装结合在一起的三部分组成。旋转连接器可耦合并转移流体动力、电功率和/或数据。图29A和29B为旋转液压接头2900的前透视图和顶透视图。旋转液压接头2900可包括从筒形联轴节2940径向延伸出的一个中轴2930和两个外轴2910、2920,其把中轴2930结合到两个外轴2910、2920。筒形联轴节
2940可以允许中轴2930相对于两个外轴2910、2920旋转。旋转接头可由高强度材料构成,比如聚碳酸酯高分子、钛、钢、铝等。
[0223] 穿过筒形联轴节2940中心的销2945可以是中轴2930所绕旋转的轴。销2945可以是旋转接头,比如旋转接头1840,用于在外轴2910、2920和中轴2930之间,转移流体、液压动力、电功率、数据等。或者,销2945可以是一个不转移任何流体、液压动力、电功率或数据的简单杆。销2945可包括便于旋转的轴承。
[0224] 中轴2930可结合到第一个骨架元件(未显示),且外轴2910、2920可结合到第二个骨架元件(未显示),并允许骨架元件彼此相对旋转。高强度接头2900可耦合至骨架元件的高强度内核上。或者,中轴和/或外轴2910、2920、2930可耦合至一个或多个额外的接头上,以便创建具有多个自由度的组合接头。中轴2930可包括一个外止口,用于紧密配合骨架元件的内止口,且外轴2910、2920可耦合至带有一个用于紧密配合骨架元件外止口的内止口的端盖。或者,中轴和/或外轴2910、2920、2930反而可用于紧密配合骨架元件的外止口和或内止口。
[0225] 可液压驱动筒形联轴节2940,以使中轴旋转并可以测量旋转程度。筒形联轴节2940可包括两个圆环状的腔2950、2960。在其他实施例中,筒形联轴节2940可包括一个腔或三个、四个或更多腔。接头可充当两个液压腔2950、2960。一个腔2960可扩展接头,另一个腔
2950可收缩接头。每个腔的大约一半2950a、2960a可在外轴2910、2920之内,且每个腔配对的一半2950b、2960b可在中轴2930之内。在每个腔2950、2960内的活塞2952、2962可永久附加至中轴2930上。中轴2930可以是活塞2952、2962及轴的一部分。中轴2930可以是活塞轴及活塞2952、2962的扩展部分。端盖2954、2964可永久性附加至外轴2910、2920上。同样见图
29C-F,各个腔2950、2960均可包括活塞2952、2962、气囊端盖2954、2964和气囊2956、2966。
活塞2952、2962,如图29E所示,两者均可附加至和/或整合至中轴2930上,以使中轴2930在活塞2952、2962在腔2950、2960之内移动时进行旋转。气囊端盖2954、2964,如图29C和图29D所示,可相对于外轴2910、2920静止不动。各个气囊2956、2966均可永久性附加在其各自活塞2952、2962的一端,并永久性附加在其各自气囊端盖2954、2964的另一端。气囊2956、2966可通过机械手段、化学手段等,附加至和/或密封至活塞2952、2962和气囊端盖2954、2964上。
[0226] 在所述实施例中,收缩的腔2950可用于当收缩气囊2956充满流体时,使中轴2930朝向外轴2910、2920收缩,且扩展腔2960可用于当扩展气囊2966充满流体时,使中轴2930远离外轴2910、2920扩展。在不同情况下,当气囊2956、2966充满时,可允许放空并压缩相对的气囊2956、2966(未显示)。当压缩完成时,压缩的气囊2956、2966可内折并环绕活塞2952、2962。在其他实施例中,一个腔既可进行扩展,也可进行收缩。当使用两个或以上的液压缸时,较小的接头可以有较少的流体渗漏。在气囊2956、2966扩展或收缩期间,腔2950、2960可确保气囊2956、2966保持形状不变。气囊2956、2966可被装入随气囊移动的套筒内,以防止相反的旋转摩擦(未显示)。填充口和/或排泄口(未显示)可允许将流体添加进或从气囊
2956、2966排泄出。可通过接头2900外部的软管和/或管道(未显示)和/或通过中轴和/或外轴2910、2920、2930内的腔和/或通道(未显示),携带流体。因此,接头和任何附加的骨架元件的移动均可经由液压驱动控制。
[0227] 每个腔2950、2960均可形成液压测量单元。每个活塞和轴2952、2962均可包括可移动电极2953、2963,且每个气囊端盖2954、2964均可包括固定电极2955、2965。移动电极2953、2963可沿腔定义的路径移动。气囊2956、2966可充满导电流体或介电流体。气囊2956、
2966可减少流体的泄露,并电力地使流体与腔2950、2960的壁隔离,这允许壁包括高强度、轻质金属。可以测出可移动电极2953、2963与固定电极2955、2965之间的电阻和/或电容变动,以便以上述所述方式,确定电极2953、2955、2963、2965之间的距离。
[0228] 由于活塞和活塞轴2952、2962可相对于气囊端盖2954、2964旋转,距离可转换为中轴2930相对于外轴2910、2920的角度,和/或结合至中轴2930的骨架元件相对于结合至外轴2910、2920的骨架元件的角度,且顶点在筒形联轴节2940上(例如,一个角位移)。角度可用弧度、梯度、分度等表示。位移测量单元可用于使用任何所需要的测量单元,成直线地、线性地和/或沿着任何曲线或形状来测量位移。图29F描述了径向制动器的正视图、顶视图和底视图。为清楚起见,气囊2956、2966以全扩展状态显示。在实际使用过程中,一个气囊2956、
2966可完全闭合,同时另一个完全打开。例如,在本实施例中,气囊2966可完全打开,且气囊
2956可完全闭合。在完全打开的状态下,传感器电极2953、2955、2963、2965相隔可能最远,且在完全闭合的状态下,传感器电极2953、2955、2963、2965相隔可能最近。在收缩腔2950内电极2953、2955之间的位移可随着中轴和外轴2910、2920、2930之间角度的减少而增加,然而,扩展腔2960内电极2963、2965之间位移可随着中轴和外轴2910、2920、2930之间角度的减少而减少。处理器(未显示)可由电性测量值,计算中轴和外轴2910、2920、2930之间的角度,且可解释各个腔2950、2960内不同的位移角度关系。处理器还可调和由各个腔内测量值计算得出的角度,比如通过计算均值等。
[0229] 类似于方法900中步骤902至906的校正过程可用于校正角度测量值;来自最大扩展、最小扩展、最大收缩和/或最小收缩状态的电性测量值可与存储的最大和最小接头角度和/或测得的最大和最小接头角度相比较,以校准来自旋转液压接头的电性测量值。一个或多个接头的计得角度可允许处理器准确测定一个或多个抓手、一个或多个骨架元件、机器人四肢、手、脚和/或使用三角法正被抓住的物体的方位和/或位置。计得角度可允许测定正被抓取物体的几何图形,和/或可加强控制机器人的移动。
[0230] 图29C和29D为活塞2952的前透视图,以及可用于旋转液压接头的端盖2954的前透视图。活塞2952和端盖2954均可包括用于耦合至气囊2956的气囊接口2952b、2954b。多个端口2952a、2954a可用于将流体添加至和/或从气囊2956中排出,以电力耦合至位移传感器电极2952e、2954e,和/或转移功率和/或数据。在一个实施例中,仅活塞2952或仅端盖2954可有端口2952a、2954a。活塞2952可包括一个活塞头2952c和一个活塞杆/轴2952d。电极2952e、2954e可位于活塞杆气囊接口2952b和/或端盖气囊接口2954b之内。导线可从电极
2952e、2954e延伸至活塞2952和端盖2954之内。导线可插入模塑至端盖2954、2964和/或活塞杆2952、2962内。由此,流体可无法沿导线泄露。气囊2956、2966、活塞2952、2962和端盖
2954、2964可完全密封流体,无需使用0型环,并可在正常情况下,消除泄漏的可能性。
[0231] 图29C-29F为中轴和外轴2910、2920、2930的横断面图,以及其中装配的旋转液压接头2900。中轴2930和各个外轴2910、2920可如图29C-29E所示单独制成。外轴2910、2920均可包括半个腔2950a、2960a,且中轴可包括各个另一半腔2950b、2960b。各轴2910、2920、2930内的半腔2950a、b、2960a、b可以有相同的半径。外轴2910、2920可包含气囊端盖2954、
2964,且中轴可包含活塞2952、2962。气囊2956、2966可被插入,且中轴和外轴2910、2920、
2930可耦合至一起,以形成如图29F所示的旋转液压接头2900。销2945可将中轴和外轴
2910、2920、2930附加在一起。
[0232] 图30A和30B为额外旋转液压接头实施例3000a-d的横断面图。更多接头和更多流体动力学方面的背景知识在Bud Trinkel所著的流体动力电子书版本1和流体动力电子书版本2中公开,在此全部引用。第一旋转液压接头实施例3000a可包括单叶片3035a、第二旋转液压接头实施例3000b可包括双叶片3035b。顺时针和逆时针端口3011a、b,3012a、b可使注入的流体顺时针和逆时针旋转叶片3035a、b。叶片3035a可连接到中心销3045a、b上,可使中心销3045a、b伴随叶片3035a、b旋转。旋转中心销3045a、b可使一个或多个轴(未显示)连接到中心销3045a、b上,并相对于连接到外壳3010a、b的一个或多个轴(未显示)旋转。
[0233] 一个或多个可移动电极3031a、b,3032a、b,3033b,3034b可附接到叶片3035a、b上,一个或多个固定电极3021a、b,3022a、b,3023b,3024b可附接到室分割器3025a、b上。电极3021a、b,3022a、b,3023b,3024b,3031a、b,3032a、b,3033b,3034b可被用来测定连接到中心销3045a、b的轴相对于连接到外壳3010a、b的轴的角度。
[0234] 第三旋转液压接头实施例3000c可包括齿条3042c和连接到中心销3045c的小齿轮3044c。第四旋转液压接头实施例3000d可包括不回转活塞3042d和螺旋轴3045d。入口
3011c、d,3012c、d容许注入的流体引起齿条3042c和/或不回转活塞3042d横向运动。小齿轮
3044c和螺旋轴3045d分别将齿条3042c和不回转活塞3042d的横向运动转化为回转运动。中心销3045c和/或螺旋轴3045d可使连接到中心销3045c和/或螺旋轴3045d的一个或多个轴(未显示)相对于连接到外壳3010c、d的一个或多个轴(未显示)旋转。固定和移动电极
3021c、d,3022c、d,3023c、d,3024c、d,3031c、d,3032c、d,3033d,3034d可用于测定连接到中心销3045c和/或螺旋轴3045d的轴相对于连接到外壳3010c、d的轴的角度。
[0235] 图31为被线性液压缸3130旋转的机械接头3100的示意图。机械接头3100可被构造为使第二传感器3120相对于第一传感器3110旋转。第一和第二传感器3110、3120可被连接到枢轴3140上。第二传感器3120可通过一对固定接头3121、3122连接到枢轴3140上。第一传感器3110可包括固定接头3111,该固定接头3111连接到枢轴3140的旋转轴3145上。第一传感器3110也可连接到液压缸3130上,第一传感器3110通过连杆3131连接到枢轴3140上。液压缸3130可向连杆3131施加力,并使连杆3131相对于第一传感器3110纵向移动。枢轴3140将连杆3131的纵向移动转化为旋转。枢轴3140可旋转固定接头3121、3122,从而使第二传感器3120围绕旋转轴3145旋转。因此,第二传感器3120可相对于第一传感器3110旋转。液压缸3130可包括位移测量单元(未显示),该位移测量单元可被校正为允许处理器(未显示)根据电性质的测量值测定第二传感器3120相对于第一传感器3110的角度。
[0236] 图32为由多个机械接头3230耦合多个传感器3210,以形成机器人手指3200的示意图。机器人手指3200可被构造为举止像人类手指一样和/或比人类手指拥有更多或更少接头(关节)3230。机械接头3230允许多个传感器3210环绕物体(未显示)的多个部位并抓取物体。处理器(未显示)可使用来自多个传感器3210的位移测量值和各个机械接头3230角度的信息,以测定物体的几何结构。多根手指3200可被用于更彻底测定几何结构,如通过连物体。例如,一根手指3200可在Y、Z轴上形成第一个U形,同时另一根手指可在X、Z轴上形成第二个U形,第二个U形在Z轴上相对于第一个U形倒转。
[0237] 图33A 33C为机器人手指3300的不同配置的侧透视图,该机器人手指由多个接头3330耦合多个传感器3310而形成。传感器3310可为一连串线性位移测量模块,如传感器模块700。在一个实施例中,机器人手指的传感器阵列3310可为一英寸模块,如传感器700。多个接头3330可包括旋转液压接头、由线性液压缸操作的机械接头等等。使用机器人手指
3300,接头3330可被旋转形成理想形状。在图33A中,所有接头3330均为0°,形成平面。作为校准的一部分和/或物体(未显示)被抓取之前,机器人手指3300可被放置在平面位置。在图
33B中,一个传感器3310每侧均有接头3330,接头旋转成90°,以形成U形。每个手指接头3330的最大旋转为90°或比90°更大或更小。所述构造可被用于作为校准的一部分,和/或用于抓取物体(未显示)的对侧,和/或确定对侧的几何结构。在其他构造中,一个或多个0°的接头可分开两个90°的接头,为U形形成一个更宽的底座。图33C为传感器3310两侧的两个45°的接头3330。较小角度可使手指3300抓取较大的物体(未显示)。附加接头3330也可旋转到45°或更大角度,完全包围、围绕物体。手指3300可抓取物体,径向机器人接头3330可通过角度测量传感器,如传感器2900,测定物体的大致尺寸。线性位移传感器模块700可提供更高分辨率的抓取物体的表面。
[0238] 图34为具有多根手指3420a-f的机器人手3400的前透视图。在所述实施例中,可有六根手指。或者,手指3300举止可像两个手指集合。各个手指3420a-f可包括一个或多个线性传感器阵列3410。线性传感器阵列3410可包括与接触式传感器串联的线性液压制动器。线性液压制动器可包括一个或多个带活塞的线性位移测量单元,以及不带活塞的接触式传感器一个或多个线性位移测量单元。各个手指3420a-f也可,或者,包括一个或多个旋转液压制动器3430,其构造为测量旋转位移。旋转液压制动器3430可将外部手指段轴3431连接到内部手指段轴3432上。在所述实施例中,各个手指3420a-f由四个旋转液压制动器3430组成,并且各个部分包含外部手指段轴3431和内部手指段轴3432。在一些实施例中,每根手指
3420a-f可使用大于或小于四个旋转液压制动器3430。手指3420a-f可连接到手掌3440。每根手指3420a-f可通过相应的旋转液压接头3442连接到手掌3440上,旋转液压接头3442可横向旋转相应手指3420a-f。手掌3440也可包括多个线性传感器阵列3441。
[0239] 线性传感器阵列3410、3441和/或旋转液压制动器3430、3442可包括内部囊状物,用来容纳导电液压流体并防止泄露。囊状物无需O形环即可完全密封线性传感器阵列3410、3441和旋转液压制动器3430、3442,并在正常操作条件下消除泄漏。线性传感器阵列3410、
3441中的液压流体可具有正压。当接触压力施加到线性传感器阵列3410、3441上时,流体被迫挤出传感器阵列,囊状物在相应内部活塞周围卷起。来自接触压力的力量就像弹簧移除流体、卷起囊状物,并使线性传感器阵列3410、3441依照物体施加接触压力。此合规性使得可以根据线性传感器阵列3410、3441的位移测量值确定地理模型。
[0240] 流入、流出线性传感器阵列3410、3441和/或旋转液压制动器3430、3442的流体流量可由多个控制阀(未显示)控制。在一些实施例中,各个线性传感器阵列3410、3441可具有一个或两个控制阀,和/或每个旋转液压制动器3430、3442具有两个控制阀。一个控制阀可控制扩展,另一个控制阀可控制收缩。或者,两个控制阀可控制所有旋转液压制动器3430、3442和/或线性传感器阵列3410、3441,或者每根手指3420a-f具有两个控制阀。在一个实施例中,相对手指(例如,手指3420a和3420b)可像食指和大拇指一样操作,每组关节可有共用控制阀。例如,两根手指的第一关节可由两个控制阀控制,第二、第三和第四对关节均有一对共同控制阀。或者,或另外,两对手指3420a-f可由两个控制阀控制,一对举止像食指和大拇指,并由另外两个、四个或八个控制阀控制。
[0241] 一对手指3420a-f可抓取小型物体和/或工具,如镊子。两对手指3420a-f可闭合,剩余几对手指可保持直立操作物体。根据期望抓取类型,可使用一个或多个抓取算法控制手指3420a-f。当使用一对手指3420a-f时,抓取算法可提供精确控制。单独抓取算法或抓取算法实例可控制各对手指3420a-f。
[0242] 在物体被抓取之前,线性传感器阵列3410、3441可充满流体。当物体被抓取时,控制阀可使流体从线性传感器阵列3410、3441中排出,每个线性传感器阵列3410、3441仅需要一个或两个控制阀,和/或多个线性传感器阵列3410、3441仅需一个或两个控制阀(例如,一个或两个控制阀可控制所有排放)。可使用压力调节,确保排放理想流体量。在排液阀转换之间,引起囊状物卷起的对接触壁的压力,和被抓取物体的压力应平衡。囊状物的壁厚也影响囊状物的旋转和/或施加的压力。
[0243] 旋转液压制动器3430、3442和线性传感器阵列3410、3441,包括线性液压制动器和接触式传感器,可用于创建正被抓取的物体的地理模型。来自旋转液压制动器3430、3442和根据三角法测得的测量值可用于创建物体的总体模型。线性传感阵列3410、3441可用于测定物体的详细情况,并创建具有更高分辨率精细模型。在线性传感器阵列3410、3441之间可能有缝隙,因此可以使用几种方法塑造有缝隙的物体模型。可内插或外推模型,以填充缝隙。机器人手部3400可环绕物体移动和/或做索引,以填充任何缝隙。因为缝隙的位置可以通过处理器获知、测得和/或存储,所以可以将移动构造成确保创建一个物体各部分的精细模型。或者,或另外,两个机器人手部3400可用于抓取物体并围住物体的六侧或更多或更少侧。填充缝隙的方法取决于特定应用以及内插或外插是否充分或是否需要完全根据测试值创建的模型。
[0244] 图35为可联接至内核3510的端盖3520的前透视图。内核3510可以是骨架元件和/或接头的外止口。端盖3520和内核3510可有螺纹3515、3525,通过界面连接,可移动地将端盖3520连接至内核3510上。端盖3520可包括一个流体端口3521、一个电功率端口3522和一个转移流体、电功率的数据端口3523以及其他机器人元件各自的数据。电功率端口的外部附件可用于充电、放电和/或串联和/或并联骨架系统的电池2520、2530。端口可位于端盖3520的两边和/或末端。端口3521、3522、3523可以自动封口,以使得骨架元件2500可以快速从机器人上断开,而不产生火花或流体损失引发的电池维护、修理和替换。端盖端口3521、
3522、3523接口的相应端口也可自动封口。
[0245] 或者,或另外,内核3510可与接头相连接,比如旋转液压接头2900、旋转液压接头3000a d、机械接头3100、机器人手指3300等,以允许移动或确定骨架元件2500的方向。接头可包括快速释放连接,以便可移动地与骨架的快速释放系统相结合。接头可以是棱柱型、球形、螺丝钉、销和孔、旋转接头等。接头可以是具有预先确定自由度数量的复合接头。例如,接头可以是带有3个自由度的臀部;带有1个自由度的膝盖;带有2个自由度的踝节部;一条带有7个自由度的手臂,包括肩、肘、腕;带有多个自由度的背部等诸如此类的。接头可通过电动机、液压手段、气动手段等方式驱动。电功率、数据和流体可以穿过接头,以减少电线、软管和电缆,和/或旋转接头可用于转移电功率。内核3510和接头可通过线程和螺丝、快速释放凸缘等连接。例如,内核3510可以在任一端或两端有凸缘,以便连接内核3510至接头。
快速释放连接可允许快速替换用完的电池2520、2530。因此,机器人内的壁板可以打开来移动或交换骨架元件,和/或除去蒙皮,以替换内部骨架电池结构。骨架和蒙皮两者均可以带有集成电池,如此替换蒙皮电池就可以创建通向内部骨架电池结构的入口,以便进行替换。
机器人接头可向波士顿动力公司、发那科、库卡和莫托曼机器人公司购买。
[0246] 图36为带外止口3610和内止口3620的骨架元件3600的前透视图。外止口3610可用于紧密配合内止口3620,这可以允许多个骨架元件彼此相互连接。外止口和/或内止口3610、3620还可用于紧密配合接头的母形和/或公形插口,比如旋转液压接头2900、机械接头3100等。骨架元件3600可包括环绕内核3640的集成电池3630。集成电池3630可以呈圆筒形地散绕内核3640,比如使用带有或未带有额外支持电池绕组2600b的绕组2600a。内止口
3620和输出部分3660可在两端附上和/或绑定电池3630,以防止相对于内核3640的电池
3630发生纵向位移。电池可电力连接至至少一个输出部分3660和内止口3620上。例如,内止口3620可包括一个或多个简单和/或复杂的开关,比如开关电源,用于使电池3630接通或断开充放电电路,以最优化电池和电源使用。
[0247] 内止口3620和输出部分3660均可包括液压流体端口3621、3661、电功率端口3622、3662、数据端口3623、3663等诸如此类的。可将流体、电功率和/或数据从内止口3620转移至输出部分3660,和/或从输出部分3660转移至内止口3620。流体端口3621、3661可被分成两部分。一部分可以转移流体至和/或把流体从一个或多个抓手、接头和/或骨架元件内的一个或多个扩展室(例如,扩展室692和/或扩展腔2960)转移,且另一部分可转移流体至和/或把流体从一个或多个抓手、接头和/或骨架元件内的一个或多个收缩室(例如,收缩室694和/或收缩腔2950)转移。或者,内止口3620和输出部分3660均可有两个流体端口(未显示);
一个流体端口可以用于扩展,而另一个可用于收缩。在一个实施例中,内止口3620可直接或间接从泵中接收流体(例如,流体端口3623可以位于带有泵的流体窜槽内),且输出部分
3660可直接或间接转移流体至其他元件。
[0248] 或者,或另外,流体、电功率和/或数据可通过内核3640转移。内核3640可转移流体、电功率和/或数据至接头、其他骨架元件和/或其他机器人系统。多个非连接流体室3641、3642可通过内核3640的中心纵向输送流体。第一室3641可转移流体至和/或把流体从一个或多个扩展室转移,且第二室3642可转移流体至和/或把流体从一个或多个收缩室转移。各个室3641、3642可包括一个绝缘套管(未显示),用于使导电流体与内核3640隔离。绝缘套管可将内核3640内的腔分成两个室3641、3642。在一个实施例中,第一和第二室3641、
3642可将流体传送至与骨架元件3600直接连接的接头(未显示)上,且输出部分流体端口
3661可传送流体至接头以及更远的骨架元件上(未显示)。在其他实施例中,第一和第二室
3641、3642可直接传送流体至连接的和更远的接头和骨架元件上。
[0249] 内核3640可包括一个或多个沿内核3640外部纵向扩展的高导电表面元件3643、3644。高导电表面元件3643、3644可由金、银、铜、铝等组成。一个或多个表面元件3643可转移电功率,且一个会多个表面元件3644可转移数据。或者,或另外,表面元件3643、3644可以是一片分成多条传输线的薄膜。由表面元件3643传输的电功率可用于充电和/或放电骨架元件3600或其他骨架元件(未显示)内的电池3630,和/或通过机器人(未显示)供装置和元件以动力。输电线路的尺寸基于预期的电流要求。数据线的数量要符合对带有控制器和/或PLC的接头、手部、脚部等之间通信的要求。一些接头可能不需要或传输电功率或数据,因此在一些实施例中,绝热器(未显示)可覆盖在外止口3610上的表面元件3643、3644。核心气缸
3645可向内核3640提供形式和强度。核心气缸3645可由高强度、轻质材料制成,比如钛、铝、碳化纤维等。绝缘器3646、3647可使核心气缸与流体室3641、3642和/或表面元件3643、3644隔绝,以免导致不良短路。流体室3641、3642和表面元件3643、3644可连接至内止口3620和/或输出部分3660的端口3621、3622、3623、3661、3662、3663。
[0250] 图37为三自由度的复合球形接头3700的示意图。复合球形接头3700可包括三个组成接头3710、3720、3730,每个均有一个单一自由度。在其他实施例中可以包括更多或更少的组成接头3710、3720、3730。各个组成接头3710、3720、3730均可用于在不同正交平面旋转。例如,在所阐述的实施例中,第一组成接头3710可在XZ平面旋转,第二组成接头3720可在YZ平面旋转,及第三组成接头3730可在XY平面旋转。每个组成接头3710、3720、3730均可包括一个半圆腔,活塞3722可通过其旋转。每个组成接头3710、3720、3730均可包括旋转液压接头2900。组成接头3710、3720、3730可通过第二和第三活塞轴3724、3734连接在一起。第三接头3730可旋转第一和第二接头3710、3720,且第二接头3720可旋转第一接头3710。因此,结合至第一活塞轴3714的第一骨架元件3761可通过组成接头3710、3720、3730,在一个或多个三正交平面内旋转。各个组成接头3710、3720、3730均可包括一个测量单元,比如旋转液压接头2900内的测量单元,以测定组成接头3710、3720、3730的旋转角度。处理器(未显示)可使用三角法,计算第一骨架元件3761的位置。
[0251] 在一个实施例中,组成接头3710、3720、3730可包括半圆腔,且活塞轴3714、3724、3734也是具有类似半径的半圆形,以使活塞3722可以穿过半圆腔。各个组成接头3710、
3720、3730均允许有90°、135°、180°、225°、240°、270°、360°等的最大旋转度。活塞3722可能有或没有一套或多套球(状)轴承(未显示),以方便沿半圆腔移动。而且,一圈球(状)轴承(未显示)可与轴3714、3724、3734相接触,这里的轴3714、3724、3734退出半圆腔。球(状)轴承可减轻在活塞3722移动的压力,和/或增加会施加至活塞3722上的重量。单一半圆腔可既可用于收缩,也可用于扩展。组成接头3710、3720、3730可包括通过两个波纹管气囊结合至各个活塞3722的两个端盖(未显示)。活塞轴3714、3724、3734穿过的波纹管气囊可围绕活塞轴3714、3724、3734,以防止泄露。在其他实施例中,组成接头3710、3720、3730可包括旋转液压接头2900、机械接头3100等。
[0252] 控制模块3740可用于调节组成接头3710、3720、3730的位置。控制模块3740可包括六个控制阀(未显示)。泵(未显示)可向流体施加正压力,且控制阀可指导流体至一个或多个所需的位置,以便移动组成接头3710、3720、3730。各个接头的一个控制阀均可控制扩展室的填充和排液,且各个接头的一个控制阀均可控制收缩室的填充和排泄。在其他实施例中,各个接头的每个小室均有两个控制阀来控制流体流入及流出小室。控制阀可通过软管(未显示)或经由第一控制模块连接器3741,和组成接头3710、3720、3730相连接。在其他实施例中,控制阀可位于其控制的接头内。处理器和/或PLC可向控制模块3740发送信号,表明打开哪些阀门和关闭哪些阀门。控制模块3740还可包括一个多路复用器,用于将信号和/或来自各个接头的电性测量值多路复用在一起。
[0253] 阳性和阴性外壳元件3751、3752可覆盖组成接头3710、3720、3730,并可只留下控制模块3740和暴露在外部链接下的第一骨架元件3761。阳性外壳元件3751可连接至控制模块3740上,且阴性外壳组件3752可连接至第一组成接头3710上。第二控制模块连接器3742和第一活塞轴3714可从外壳显露出来,以将组合球形接头3700结合至骨架元件3761、3762上。第二控制模块连接器3742可以是第二骨架元件3762的阳性末端,且凸缘(未显示)可以将第二控制模块连接器3742连接至控制模块3740上。骨架元件3761、3762可能也可能不包括集成电池和/或可能是手指头或手指接头。流体、电功率和/或数据可从骨架元件3761、3762传送至组合球形接头3700,反之亦然。
[0254] 图38包括紧密复合接头3800的顶透视图、前透视图和侧透视图。紧密复合接头3800可包括三个组成接头3810、3820、3830,每个均有一个单一自由度。在其他实施例中可以包括更多或更少的组成接头3810、3820、3830,如两个组成接头3810、3820。组成接头
3810、3820、3830可具有与复合球形接头3700中组成接头3710、3720、3730类似的构造,和/或包括旋转液压接头2900、机械接头3100等等。各个组成接头3810、3820、3830均可用于在不同正交平面旋转。组成接头3810、3820、3830可比复合球形接头3700中组成接头3710、
3720、3730更紧密,以减少紧密复合接头3800的体积。例如,各个组成接头3810、3820、3830可被放置为至少一部分靠近一个或多个相邻组成接头3810、3820、3830的中心。活塞轴
3815、3825、3835可将组成接头3810、3820、3830连接在一起。活塞轴3815、3825、3835可被连接到相邻的组成接头3810、3820、3830,靠近它们的中心。
[0255] 图39为包括具有多种自由度的多个复合接头3910a-c和多个骨架元件3920a-c的手臂3900的示意图。接头3910a-c和骨架元件3920a-c包括可彼此相连的外螺纹接头和内螺纹接头。凸缘、配件等等也可或代替用来连接接头3910a-c和骨架元件3920a-c。手臂3900可为机器人较大骨架系统的一部分。例如,脊柱接头3915可连接头(未显示)、另一个手臂(未显示)、连接到腰(未显示)和/或腿(未显示)等等的附加脊柱关节(未显示)、手臂3900的近端。手臂3900可包括或连接到手部3925或位于远端其他抓手,如手部3400。手臂3900可被构造为具有与人类手臂相似的功能。相应地,肩关节3910a具有三个自由度,肘关节3910b具有一个自由度,腕关节3910c具有两个自由度。本领域技术人员了解根据手臂3900的期望应用,关节3910a-c可具有更多或更少自由度。
[0256] 手臂3900可被构造为向手臂3900的元件和/或手臂3900外的元件传输流体、电源、数据等等。流体、电源和数据可被关节3910a-c和骨架元件3920a-c运送。传输线,如电线3932a-c、3933a-c,软管3931a-c等等,可在骨架元件3920a-c之间传输流体、电源和/或数据,而不是/或除了关节3910a-c传输之外。一些实施例可能除了关节3910a-c和骨架元件
3920a-c之外不包括传输线,而是通过关节3910a-c和/或骨架元件3920a-c传输流体、电源和/或数据。
[0257] 骨架元件3920a-c可包括一个或多个控制模块3921a-c、3922a-c。每个骨架元件3920a-c可包括多个电池(未显示),它们的充电由各个骨架元件3920a-c里的第一控制模块
3921a-c调节和/或控制。第一控制模块3921a-c可包括和/或被通信连接到温度、压力和/或电压传感器,这些传感器分别监测电池的温度、压力和/或电压。第一控制模块3921a-c也可包括控制机制和/或电路系统,构造成调节电池的充电与放电。通过转换充电电流,第一控制模块3921a-c可监测并控制电池的充电曲线。一个可仿效的充电曲线由罗斯等人,披露在美国专利号5,633,576,在此全部引用。根据测量的温度、压力、充电电压、放电电压等等,第一控制模块3921a-c可监测并控制各个电池的电压。
[0258] 各个骨架元件3920a-c中的第二控制模块3922a-c可向关节3910a-c和/或手部3925传输流体、电源和/或数据。在一些实施例中,仅流体和数据可被输出到关节3910a-c中。关节3910a-c可包括关节控制模块,如关节外壳内的控制模块3740。关节控制模块可包括多个阀,以前述方式用一个或更多自由度控制关节3910a-c的扩展和收缩。多个关节连接
3911a-c、3912a-c可在关节3910a-c与骨架元件3920a-c和/或手部3925之间运输流体、电源和/或数据。在一些实施例中,第二关节连接3912a-c仅提供机械连接,而不传输流体、电源和/或数据。各个关节3910a-c的第一关节连接可由骨架元件3920a-c的插头和关节3910a-c的插座组成,它们接合在一起可以在骨架元件3920a-c和关节3910a-c之间传输流体、电源和/或数据。
[0259] 图40是为提供灵活性和平衡性而提供的机器人脚部4000的示意图。机器人脚部4000可通过球形踝关节4030连接到机器人骨架元件4060上。机械连接4031可将球形踝关节
4030耦合到脚部4000上。脚部4000可包括多个传感器4010、4012、4020,这些传感器可用来测定平衡。支架元件4040、稳定器4025和外壳4044可向脚部4000提供结构和稳定性。支架元件4040可由硬质材料组成,如热塑性塑料或金属。
[0260] 球形踝关节4030可构造成具有两个、三个,或者更多或更少的自由度。球形踝关节4030可包括一个或多个旋转液压接头(未显示),构造成控制脚部4000的运动和/或测量脚部4000相对于机器人骨架元件4060的角度。根据传感器4010、4012、4020的反馈,踝关节
4030角度的测量值,其他关节(未显示)角度的测量值,和/或运动速度的测量值和/或测定,处理器(未显示)可控制球形踝关节4030的运动来保持平衡。在一个实施例中,运用与人脚在走路/跑步中脚后跟到脚趾类似的滚动效果,脚部4000可行走。脚部4000可为对称的,并能向前滚动和向后滚动,或者向三或四个可能的方向滚动,和/或脚部4000可不对称,仅能向一个方向滚动。
[0261] 脚部4000可包含多个与脚部4000底部有联系的液压线性位移传感器4010、4012。在一些实施例中,线性位移传感器4010、4012可包括带活塞的液压缸,不包括不带活塞的液压缸,因为脚部4000需要较少垂直分辨率和对强作用力的较高弹性。线性位移传感器可由能够抵抗较高压力的元件构成,该压力由支撑机器人重量造成。在一个实施例中,各个线性位移传感器4010、4012可具有一平方英寸的接触表面积,可有一个12×4线性位移传感器
4010、4012阵列。在其他实施例中,可能更少的线性位移传感器4010、4012比较适合。
[0262] 线性位移传感器4010、4012可被构造成测量地面等高线和/或测量各个传感器4010、4012的压力。等高线和/或压力测量值可被发送给处理器,用来测定重量转移、重量分布等等,用以保持平衡。地理等高线图可由线性位移传感器4010、4012的位移测量值计算得出。线性位移传感器4010、4012可被构造成检测脚部4000下滚动、转移和/或移动的物体(例如,当脚部4000站在弹球上时)。压力传感器可被用来测定每个线性位移传感器4010、4012上的压力,和/或压力可从各个活塞的位移测定。绝对压力和/或相对压力可计算得出。机器人可负载量量。在液压管路压力一定的情况下,线性位移传感器4010、4012的位移与负载相关,并且负载的重量或质量可通过线性位移传感器4010、4012中的传感器位移而测定。已知机器人重量和线性转移线性位移传感器4010、4012中的活塞所需的压力,即可测定负载。在一些实施例中,机器人的总重量,包括任何负载,可被用于测定压力。位移-压力计算结果可被任何负载变化校准,和/或负载变化可被线性位移传感器4010、4012检测。成角的线性位移传感器4012可包括成角末端执行器,并在脚部4000在旋转过程中离开或碰触地面时,检测地面等高线、压力和/或剪切力。
[0263] 线性位移传感器4010、4012可拉平或改变脚部4000的角度,和/或通过调节各个线性位移传感器4010、4012中的流体压力使脚部4000适应地面。在一个实施例中,压力可被平衡。响应步行过程中改变的接触面积,可控制线性位移传感器4010、4012中的压力,如当脚部4000在步行过程中转动时。脚部4000可包括一个或多个压力控制阀(未显示),构造成可调节各个线性位移传感器4010、4012的压力。压力控制阀可调节相对于机器人总重量和/或任何负载的压力。压力控制阀可根据已知负载调节压力。
[0264] 脚部4000可包含一个或多个剪切传感器4020。剪切传感器可位于一个或多个线性位移传感器4010、4012之间。剪切传感器4020可通过稳定器4025连接到支架元件4040上。剪切传感器4020可用于检测脚部4000和地面之间的摩擦系数。可根据压力、总重量、角度和/或脚部4000的剪切力,计算摩擦系数。处理器可使用测定的摩擦系数提高灵活性和/或在不同摩擦系数表面的平衡。例如,可能存储多个步行算法,根据测定的摩擦系数可选择一个或多个合适的步行算法。或者,根据测定的摩擦系数,可改变一个或多个步行算法的参数。步行算法可控制线性位移传感器4010、4012和/或球形踝关节4030的运动。在多个干或湿表面的测量值,如、沙、尘土、混凝土等,可用于校准。剪切传感器4020可构造成测量当脚部4000首次触碰地面直至脚部4000离开地面时的切变,即使脚部4000正在转动。典型的剪切传感器可包括压阻式传感器、PVDF传感器等。剪切传感器4020可包括用于在机器人脚布旋转时垂直于地面的悬臂。
[0265] 外壳4044可以是由热塑性塑料、弹性体,如橡胶等,构成的弹性模片。外壳4044被配置成特定和/或大多数材料具有较大的摩擦系数,和/或外壳4044可包括用于增加牵引力的纹理和/或粗糙度。在一些实施例中,脚部4000和/或外壳4044可包括多个压力传感器,而非或除了线性位移传感器4010、4012。压力传感器可用于测定重量和/或压力分布模式。大量压力传感器可以能够测定压力分布的标量差异。压力传感器、剪切传感器4020和/或线性位移传感器4010、4012可插入模塑至外壳4044中。
[0266] 图41为使用机器人脚4000行走的方法4100流程图。各种各样机器人脚4000的构造均可与用于行走的方法4100一起使用。在一个实施例中,机器人脚部4000的扁平部分可包括一系列8×4的线性位移传感器4010,且机器人脚4000的脚跟和脚趾部分每个均可包括一系列2×4的线性位移传感器4012。线性位移传感器4010、4012可用于充当液压制动器,且每个均有1平方英寸的表面面积。剪切传感器4020可根据需要位于线性位移传感器4010、4012之间。液压泵可输出30磅/平方英寸的压力。根据应用,在一些实施例中,可使用更高的压力。由机器人脚4000支撑的机器人可以是150磅,且最大负载为80磅。液压流体可由伺服控制阀分配和/或控制。脚跟、脚趾和扁平部分均可配有一个单一独立的伺服控制阀,用来控制共有的相对部分。可使用各自的算法来控制踝关节4030。各自的脚踝算法可使脚踝4030可以使脚部形成角度,以符合所需表面,和/或最高倾角可编程至处理器中。脚踝4030可配置成能够施加更高的力至脚部的线性转移传感器4010、4012的特定部分。当重量从一只脚转移至另一只时,可在转移表面比如石块上检测脚踝转移,且能够相对于表面稳定性调节重量分布。
[0267] 方法4100可开始于机器人和负载的初次校准4102。校准可包括映射最大和最小扩展位置的电性测量值至位移,测定机器人和/或负载等的重量。当开始行走时,可将机器人脚部4000从地面升起,且将所有线性位移传感器4010、4012扩展4104至最大扩展位置并装满流体。机器人脚4000可首先返回至地面脚跟。当脚跟触摸地面时,来自触点的力可将流体从脚跟中的线性位移传感器4012中推出。处理器可检测出线性位移传感器4012正在收缩和激活伺服阀,以增加4106压合,并将流体添加至脚跟内的线性位移传感器4012中。从由脚跟内的线性位移传感器4012测量的测量值中,处理器可计算4108地面的坡角。
[0268] 基于线性位移传感器4012,在半满水平上,处理器伺服控制阀可能维持4110线性位移传感器4012。线性位移传感器4012内部的液体水平可能是平均的,平均水平维持在半满状态。处理器可以计算4112机器人脚4000的角度。基于计算,通过驱动线性位移传感器4012,机器人脚可能和4114对准。处理器可以计算4116的压力分布和/或每个线性位移传感器4012的负载。每个线性位移传感器4012的负载可以由线性位移传感器4012的角度、液压机液体压力计算得出,由线性位移传感器4012测得的位移、总机器人重等测得。剪切力(例如,剪切传感器4020内部的悬臂偏差)可以被4118测量。基于剪切力、估计负载、坡面坡度、重量分布、足角、和/或诸如此类,脚之间重量转移的最大速度可以被4120计算。从总重量、速度、压力分布、剪切力、和/或诸如此类中,摩擦系数可以被估计4122。
[0269] 当脚的扁平截面接触到地面的时候,处理器可以计算4124机器人脚4000的角度。处理器可以测量机器人脚4000中的线性位移传感器4010中4126活塞的位移。如果线性位移传感器4010在接触的时没有移动,这说明那些位移传感器4010没有接触地面和/或承重。流体可能被泵4128送入线性位移传感器4010,以对准机器人脚4000。处理器可以填充4130线性位移传感器4010到半满。处理器可能试图使所有的线性位移传感器4010半满。如果使所有的线性位移传感器4010半满没有可能,处理器可能清算半满状态的线性位移传感器4010的平均流体高度。填充4130线性位移传感器4010可能包含线性位移传感器4010中增加的压力,直到线性位移传感器4010由最大值分布到最小值。在一些实施例中,只有在线性位移传感器4010与地面接触时,压力才会增大。
[0270] 从线性位移传感器4010的线性位移测量值中,处理器可以计算4132地面的地形。压力分布轮廓可以被用来对准4134线性位移传感器4010之间的负载,和最小化机器人脚
4000的角度。处理器可以计算4136机器人脚4000的角度,当把脚从脚后跟旋转到脚尖的时候,有必要把脚抬离地面。当踝关节4030旋转,腿抬起,将脚后跟和机器人脚4000的扁平截面移开地面时,角度可以被计算4136。机器人脚4000可能被保持在一个角度,这个角度可以将分配到脚趾部分的压力最大化。由剪切力、估计的摩擦系数、压力分配、总重量、地面坡度、和/或诸如此类,脚4000、膝盖、和/或臀部的最大速度被计算4138。为了符合臀部的最大速度和/或地面的坡度,身体可能被倾斜4140。
[0271] 基于线性位移传感器4012的位移测量值,当脚趾旋转、提升、和推离地面的时候,脚趾的线性位移传感器4012可能被填充到4142半满的平均值。处理器可能试图尽可能使平均流体高度半满和同样多的线性位移传感器4012半满。剪切力和/或压力分布可能被测量4144。基于被探测到的剪切力和/或重量测量,速度可能被控制4146。最大可能速度可能直接和探测到的剪切力成比例,更快的可能速度就会有更高的剪切速度。在分布和/或负载的改变方面,重量可能被监测4148。
[0272] 当所有的重量在一只脚上的时候,由线性位移传感器4010、4012的压力分布、伺服控制阀中输出的压力、和/或线性位移传感器4010、4012活塞的累积偏差,机器人和负载的总重量可以被计算。如果没有检测到改变,总重量的计算值可能由前一步转入,和/或由线性位移传感器4010、1012测量的每一步,重量可能被检测到,和/或抬升物体时,抬脚所需要的液压阀压力。当脚后跟接触到地面、扁平截面接触到地面、和/或脚趾离开地面时,重量值和摩擦系数可能会被估计。最初的估计数量和/或数量可能取决于没有负载机器人的重量。没有负载的机器人的重量可能会被输入和/或被机器人储藏。最大速度、加速度、和/或减速度可能由机器人的动量(质量乘以速度)、脚和地表之间估计的摩擦系数、和/或诸如此类计算得出。最大加速度和/或减速度可能就是速度的最大变化,它不会使机器人脚4000滑动。
如果牵引力丢失和/或滑动被检测到,滑动发生时、基于被实施的力大小,摩擦系数可能被检测到。在脚踝4030、膝盖、和/或臀部诸如此类中的剪切传感器4020、线性位移传感器
4010、4012、位移传感器可以被检测以便检测滑动。处理器可能紧密监控滑动,这个滑动是一个变量,当计算摩擦系数时会被使用。
[0273] 在地面接触之前,保持线性位移传感器4010、4012在一个相对低的应用压力和当它与地面接触时增加压力是有益的。当不同条件下的各类变化被探测到,例如感知重量的的变化,来自于线性位移传感器4010、4012、剪切传感器4020、和/或伺服控制阀的持续反馈可能允许处理器对线性位移传感器的压力做出瞬间的调整。作为伺服控制阀压力调节的一个功能,线性位移传感器4010、4012的重量可能会被校准。
[0274] 图42为一种机器人完整骨架系统4200的示意图。骨架系统4200可能包括多数的复合关节(例如,关节4210a-c、4220a-c、4230a-c),它们被骨架部分(例如,4240a、4240b)连接在一起,这些骨架部分包括一个或者多个骨架元件,每一个包括或者不包括电池。多数的关节按照近似人类关节的方式设置和运动。例如,一个肩关节4210a可能有三个自由度、一个肘关节4210b可能有一个自由度、一个腕关节4210c可能有两个自由度、一个颈关节4220a可能有两个自由度、一个脊柱关节4220b可能有一个或者两个自由度、一个腕关节4220c可能有两个自由度、一个髋关节4230a可能有三个自由度、一个膝关节4230b可能有一个自由度,且一个踝4230c关节可能包括两个自由度。在一些实施例中,可能包括更多或更少的自由度。通过机械的连接(例如,机械连接4251、4261),手部4250和脚部4260可能被包含到骨架4200。
[0275] 骨架系统4200可能包括头部4270。通过一个两个自由度的关节(未显示)头部4270可能被连接到骨架系统4200。头部4270可能包括视觉系统、声音系统、多种感觉系统等等。感觉系统可能包括陀螺仪、立体照相机、声波传感器、激光雷达、光亮传感器等等。骨架系统
4200可能包括一个中央液压泵送系统(未显示)和贮液器(未显示)。一个泵可能被配置成输送流体到所有的关节4210a-c、4220a-c、4230a-c;一个泵可能被每一个臂4210、4230使用;
和/或骨架系统4200可能包括多于或少于一个泵或每个臂一个泵。在一些实施例中,液压泵送系统和贮液器位于机器人的躯干和/或身体。因为每个关节单个地有一个中央液压泵,关节运动可能被液压阀控制。泵可以给液压阀提供正压力。
[0276] 每个复合关节4210a-c、4220a-c、4230a-c可能包括一个或者多个流量计,和/或复合关节4210a-c、4220a-c、4230a-c内的每个组成关节可能包含或者被连接到一个或者多个流量计。每个泵和/或贮液器(未显示)可能也包括流量计。通过检测穿越每个关节4210a-c、4220a-c、4230a-c流体的总流量,可能检测到泄漏。流进每个关节4210a-c、4220a-c、4230a-c的流体可以和流出每个关节4210a-c、4220a-c、4230a-c的流体相比较,和/或从泵中和/或储存器中流出的总流量可以和流经关节4210a-c、4220a-c、4230a-c的总流量作比较。如果可以肯定液压系统在泄漏,液压系统和/或液压系统的成分可能失效。抓手和/或骨架成分
4240a、4240b可能也包括流量计,以探测泄漏。
[0277] 一个或者多个处理器(未显示)可能把信号输送到每个关节4210a-c、4220a-c、4230a-c的控制阀以控制每个关节4210a-c、4220a-c、4230a-c、手部4250和脚部4260的运动。在一些实施例中,不同的处理器可能执行不同的功能,例如一个处理器执行一个游走算法和另一个执行一个抓取算法、和/或一个或多个处理器可能包括多个核心,这些配置的多核心用来执行不同的功能和/或处理不同的线。一个或多个处理器可能接受来自于关节测量单元的测量值以测定臂4210、4230、手部4250、和/或脚部4260和/或鉴定在手部4250和/或抓手中的物体。基于功能,一个或者多个处理器可能位于头部4270、躯干、身体、诸如此类和/或可能被分配到机器人4200全身。骨架系统可能包含一个能量入口,这个能量入口用来接收电能和电池充电和给硬件和/或软件放电。入口、硬件、和/或软件可能位于头部4270、躯干、身体、诸如此类。
[0278] 有技术的那些人可以理解:在所揭示的潜在原则前提下,上述的实施例的细节可能有很多改变。例如,除非被披露的明显地陈述其他的方面,一个实施例所披露的元件和/或配置可能适用于另一个实施例中。因此,现在所揭示的范围只能取决于下列要求。
QQ群二维码
意见反馈