气缸套和用于制造气缸套的方法

申请号 CN201210011828.8 申请日 2006-07-06 公开(公告)号 CN102517538A 公开(公告)日 2012-06-27
申请人 丰田自动车株式会社; 发明人 高见俊裕; 堀弘平; 塚原猛; 宫本典孝; 平野雅挥; 太田行纪; 山田里志; 柴田幸兵; 山下信行; 三原敏宏; 斋藤仪一郎; 堀米正巳; 佐藤乔;
摘要 一种 气缸 套,具有形成有膜的外周向表面。所述膜用于在 气缸体 与气 缸套 之间形成间隙。或者,所述膜用于降低气缸套对气缸体的附着性。所述气缸套可抑制气缸 温度 的过度降低。
权利要求

1.一种用于制造用在气缸体中的用于镶铸的气缸套的方法,其特征在于,通过电弧喷涂在所述气缸套的外周向表面上形成膜,在所述电弧喷涂中使用直径等于或大于0.8mm的喷涂丝。
2.根据权利要求1所述的方法,其特征在于,所述喷涂丝的直径被设定为从0.8mm至
2.4mm的范围。
3.根据权利要求1或2所述的方法,其特征在于,所述通过电弧喷涂在气缸套的外周向表面上形成膜的步骤包括下列工序[1]和[2]:
[1]将熔融的喷涂丝喷涂在所述外周向表面上以形成喷涂层;
[2]将熔融的喷涂丝喷涂在所述喷涂层上,以形成随后的喷涂层。
4.根据权利要求3所述的方法,其特征在于,重复所述工序[2]直到形成具有期望厚度的膜为止。

说明书全文

气缸套和用于制造气缸套的方法

[0001] 本申请是2006年7月6日在中国专利局提交的申请号为200680032476.7(PCT/JP2006/313923)、名称为“气缸套和用于制造气缸套的方法”的专利申请的分案申请。

技术领域

[0002] 本发明涉及一种发动机的气缸套。

背景技术

[0003] 用于发动机的带有气缸套的气缸体已经被用于实际应用中。作为这种气缸套,已知在日本早期公开的实用新型53-163405号公报中有所公开。
[0004] 近来对于环境的关注产生了对改善发动机的燃料消耗率的需求。另一方面已发现,如果在发动机的工作过程中气缸的温度在某些位置处显著地降低到适当温度以下,则这些位置周围的机油粘度会过度地高。这就增大了摩擦并由此使燃料消耗率变差。由于气缸温度引起的这种燃料消耗率的变差在气缸体的热导率较高的发动机(例如,由合金制成的发动机)中特别显著。

发明内容

[0005] 因此,本发明的一个目的是提供一种可抑制气缸温度过度降低的气缸套和用于制造这种气缸套的方法。
[0006] 为了实现上述目的并根据本发明的第一方面,提供一种用在气缸体中的用于镶铸(嵌铸,包心铸造,insert casting)的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜用于在所述气缸体和所述气缸套之间形成间隙。
[0007] 根据本发明的第二方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜用于减小所述气缸套对所述气缸体的附着性。
[0008] 根据本发明的第三方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由用于压铸脱模剂制成。
[0009] 根据本发明的第四方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由用于离心铸造铸模涂料制成。
[0010] 根据本发明的第五方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由包含石墨作为主要成分的低附着性的制剂制成。
[0011] 根据本发明的第六方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由包含氮化作为主要成分的低附着性的制剂制成。
[0012] 根据本发明的第七方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由金属涂料制成。
[0013] 根据本发明的第八方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由高温树脂制成。
[0014] 根据本发明的第九方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由化学转化处理层制成。
[0015] 根据本发明的第十方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由化物层形成。
[0016] 根据本发明的第十一方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括外周向表面,在所述外周向表面上形成有膜。该膜由喷涂层形成,所述喷涂层由基材料制成。所述喷涂层包括多个层。
[0017] 根据本发明的第十二方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括具有多个突起部的外周向表面。每个所述突起部具有收缩的形状。在所述外周向表面上形成有膜。该膜的导热性低于所述气缸体和所述气缸套中至少一者的导热性。
[0018] 根据本发明的第十三方面,提供一种用在气缸体中的用于镶铸的气缸套。该气缸套包括在所述气缸套的轴向方向上从所述气缸套的中部延伸至所述气缸套的下端的外周向表面。在所述外周向表面上形成有膜。该膜的导热性低于所述气缸体和所述气缸套中至少一者的导热性。
[0019] 根据本发明的第十四方面,提供一种用于制造用在气缸体中的用于镶铸的气缸套的方法。该方法包括加热所述气缸套,由此在所述气缸套的外周向表面上形成膜,所述膜由氧化物层形成。
[0020] 根据本发明的第十五方面,提供一种用于制造用在气缸体中的用于镶铸的气缸套的方法。该方法包括通过电弧喷涂在所述气缸套的外周向表面上形成膜,在所述电弧喷涂中使用直径等于或大于0.8mm的喷涂丝。
[0021] 从下面结合附图作出的、通过示例示出本发明原理的说明中可清楚看到本发明的其它方面和优点。

附图说明

[0022] 通过参照下面对当前优选实施例的说明以及附图可最佳地理解本发明及其目的和优点,在附图中:
[0023] 图1是示出具有根据本发明第一实施例的气缸套的发动机的示意图;
[0024] 图2是示出第一实施例的气缸套的透视图;
[0025] 图3是示出作为第一实施例的气缸套的材料的铸铁的成分比率的一个示例的表;
[0026] 图4和5是示出形成在第一实施例的气缸套上的具有收缩形状的突起部的模型图;
[0027] 图6A是根据第一实施例的气缸套的沿轴向方向截取的剖视图;
[0028] 图6B是示出在根据第一实施例的气缸套中轴向位置与气缸壁温度之间关系的一个示例的图示;
[0029] 图7A是根据第一实施例的气缸套的沿轴向方向截取的剖视图;
[0030] 图7B是示出在根据第一实施例的气缸套中轴向位置与膜厚度之间关系的一个示例的图示;
[0031] 图8是根据第一实施例的气缸套的放大剖视图,其示出图6A中的被圈起部分ZC;
[0032] 图9是根据第一实施例的气缸套的放大剖视图,其示出图1中的被圈起部分ZA;
[0033] 图10是根据第一实施例的气缸套的放大剖视图,其示出图1中的被圈起部分ZB;
[0034] 图11A、11B、11C、11D、11E和11F是示出通过离心铸造生产气缸套的步骤的过程图;
[0035] 图12A、12B和12C是示出在通过离心铸造生产气缸套的过程中用于在铸模涂料层中形成具有收缩形状的凹部的步骤的过程图;
[0036] 图13A和13B是示出使用三维激光测量根据第一实施例的气缸套的参数的工序的一个示例的图示;
[0037] 图14是部分地示出根据第一实施例的气缸套的通过使用三维激光进行测量而获得的等高线的一个示例的图示;
[0038] 图15是示出第一实施例的气缸套的测量高度和等高线之间的关系的图示;
[0039] 图16和17分别是部分地示出根据第一实施例的气缸套的通过使用三维激光进行测量而获得的等高线的另一个示例的图示;
[0040] 图18A、18B和18C是示出用于对根据第一实施例的气缸套在气缸体中的接合强度进行评价的拉伸试验程序的一个示例的图示;
[0041] 图19是根据本发明第二实施例的气缸套的放大剖视图,其示出图6A中的被圈起部分ZC;
[0042] 图20是根据第二实施例的气缸套的放大剖视图,其示出图1中的被圈起部分ZA;
[0043] 图21A和21B是示出通过电弧喷涂在第二实施例的气缸套上形成膜的工序的一个示例的图示;
[0044] 图22是根据本发明第三实施例的气缸套的放大剖视图,其示出图6A中的被圈起部分ZC;
[0045] 图23是根据第三实施例的气缸套的放大剖视图,其示出图1中的被圈起部分ZA;
[0046] 图24是根据本发明第四实施例的气缸套的放大剖视图,其示出图6A中的被圈起部分ZC;
[0047] 图25是根据第四实施例的气缸套的放大剖视图,其示出图1中的被圈起部分ZA;
[0048] 图26是根据本发明第五至第十实施例的气缸套的放大剖视图,其示出图6A中的被圈起部分ZC;以及
[0049] 图27是根据第五至第十实施例的气缸套的放大剖视图,其示出图1中的被圈起部分ZA。

具体实施方式

[0050] (第一实施例)
[0051] 现在参照图1至18C对本发明的第一实施例进行说明。
[0052] <发动机的结构>
[0053] 图1示出具有根据本实施例的气缸套2的由铝合金制成的整个发动机1的结构。
[0054] 发动机1包括气缸体11和气缸盖12。气缸体11包括多个气缸13。每个气缸13包括一个气缸套2。
[0055] 作为各个气缸套2的内周向表面的气缸套内周向表面21形成气缸体11中的相应气缸13的内壁(气缸内壁14)。各个气缸套内周向表面21限定气缸孔15。
[0056] 通过镶铸铸造材料,作为各个气缸套2的外周向表面的气缸套外周向表面22与气缸体11接触
[0057] 作为用作气缸体11的材料的铝合金,例如,可使用在日本工业标准(JIS)ADC10(相关的美国标准,ASTM A380.0)或在JIS ADC12(相关的美国标准,ASTM A383.0)中指定的合金。在本实施例中,采用铝合金ADC 12作为气缸体11的材料。
[0058] <气缸套的结构>
[0059] 图2是示出根据本发明的气缸套2的透视图。
[0060] 气缸套2由铸铁制成。铸铁的成分例如如图3所示地被设定。基本上,可选择表中所列出的成分“基本成分”作为铸铁的成分。按照需要,可加入表中所列出的成分“辅助成分”。
[0061] 气缸套2的气缸套外周向表面22具有突起部3,每个突起部3均具有收缩的形状。
[0062] 突起部3形成在从作为气缸套2的上端的气缸套上端23到作为气缸套2的下端的气缸套下端24的整个气缸套外周向表面22上。气缸套上端23是气缸套2的位于发动机1中的燃烧室处的端部。气缸套下端24是气缸套2的位于与发动机1中的燃烧室相对的部分的端部。
[0063] 在气缸套2中,在气缸套外周向表面22上形成有膜5。更具体地,膜5在从气缸套上端23到气缸套中部25的区域内形成在气缸套外周向表面22上,所述区域是气缸套2的在气缸13的轴向方向上的中部。膜5沿气缸套2的整个圆周方向形成。
[0064] 膜5由陶瓷材料的喷涂层(陶瓷喷涂层51)形成。在本实施例中,使用氧化铝作为形成陶瓷喷涂层51的陶瓷材料。喷涂层51通过喷涂(等离子喷涂或HVOF喷涂)形成。
[0065] <突起部的结构>
[0066] 图4是示出突起部3的模型图。在下文中,箭头A的方向即气缸套2的径向方向被称作突起部3的轴向方向。另外,箭头B的方向即气缸套2的轴向方向被称作突起部3的径向方向。图4示出沿突起部3的径向方向看去时突起部3的形状。
[0067] 突起部3与气缸套2一体地形成。突起部3在近端31与气缸套外周向表面22接合。在突起部3的远端32形成有与突起部3的远端表面对应的光滑而平整的顶表面32A。
[0068] 在突起部3的轴向方向上,在近端31和远端32之间形成有收缩部33。
[0069] 收缩部33形成为使得其沿突起部3的轴向方向的截面积(轴向方向截面积SR)小于在近端31和在远端32的轴向方向截面积SR。
[0070] 突起部3形成为使得轴向方向截面积SR从收缩部33朝近端31和远端32逐渐增大。
[0071] 图5是示出突起部3的模型图,其中标出了气缸套2的收缩空间34。在各个气缸套2中,各个突起部3的收缩部33形成收缩空间34(图5中的阴影区域)。
[0072] 收缩空间34是由包围最大远端部32B的虚拟圆柱形面(在图5中,线D-D对应于该圆柱形面)和收缩表面33A即收缩部33的表面所围成的空间。最大远端部32B代表在远端32处突起部3的直径最长的部分。
[0073] 在具有气缸套2的发动机1中,气缸体11和气缸套2在气缸体11的一部分位于收缩空间34中的状态下--换句话说,在气缸体11与突起部3啮合的状态下--彼此接合。因此,可确保充分的气缸套接合强度,即气缸体11与气缸套2的接合强度。另外,由于增大的气缸套接合强度可抑制气缸孔15的变形,因而摩擦减小。因此,燃料消耗率得以改善。
[0074] <膜的形成>
[0075] 参照图6A、6B、7A、7B和8对膜5在气缸套2上的形成进行说明。在下文中,膜5的厚度被称为膜厚度TP。
[0076] [1]膜的位置
[0077] 参照图6A和6B,对膜5的位置进行说明。图6A是气缸套2沿轴向方向的剖视图。图6B示出在发动机1的正常运转状态下气缸13的温度尤其是气缸壁温度TW沿气缸13的轴向方向的变化的一个示例。在下文中,移除了膜5的气缸套2将被称作基准气缸套。具有基准气缸套的发动机将被称作基准发动机。
[0078] 在该实施例中,基于基准发动机中的气缸壁温度TW来确定膜5的位置。
[0079] 对气缸壁温度TW的变化进行说明。在图6B中,实线代表基准发动机的气缸壁温度TW,而虚线代表本实施例的发动机1的气缸壁温度TW。在下文中,气缸壁温度TW的最高温度被称作最大气缸壁温度TWH,而气缸壁温度TW的最低温度被称作最小气缸壁温度TWL。
[0080] 在基准发动机中,气缸壁温度TW以如下方式改变。
[0081] (a)在从气缸套下端24到气缸套中部25的区域内,由于燃烧气体的小的影响,气缸壁温度TW从气缸套下端24向气缸套中部25逐渐升高。在气缸套下端24附近,气缸壁温度TW为最小气缸壁温度TWL1。在本实施例中,气缸套2的其中气缸壁温度TW以这种方式变化的部分被称作低温气缸套部分27。
[0082] (b)在从气缸套中部25到气缸套上端23的区域内,由于燃烧气体的大的影响,气缸壁温度TW急剧升高。在气缸套上端23附近,气缸壁温度TW为最大气缸壁温度TWH。在本实施例中,气缸套2的其中气缸壁温度TW以这种方式变化的部分被称作高温气缸套部分26。
[0083] 在包括上述基准发动机的内燃机中,在对应于低温气缸套部分27的位置处的气缸壁温度显著地降低到适当温度之下。这显著地增大了该位置附近的机油的粘性。即,燃料消耗率由于活塞摩擦的增大而不可避免地变差。由于下降的气缸壁温度TW而引起的这种燃料消耗率的变差在气缸体的热导率较高的发动机(例如,由铝合金制成的发动机)中特别显著。
[0084] 因此,在根据本实施例的气缸套2中,膜5形成在低温气缸套部分27上,从而气缸体11与低温气缸套部分27之间的导热性减小。这使得低温气缸套部分27的气缸壁温度TW升高。
[0085] 在本实施例的发动机1中,由于气缸体11与低温气缸套部分27以具有隔热性质的膜5位于它们之间的方式彼此接合,这减小了气缸体11与低温气缸套部分27之间的导热性。因此,低温气缸套部分27内的气缸壁温度TW升高。这使得最小气缸壁温度TWL成为高于最小气缸壁温度TWL1的最小气缸壁温度TWL2。随着气缸壁温度TW的升高,机油的粘性降低,这可减小活塞的摩擦。因此,燃料消耗率得以改善。
[0086] 壁温边界28即高温气缸套部分26和低温气缸套部分27之间的边界可基于基准发动机的气缸壁温度TW获得。另一方面,已发现在许多情况下低温气缸套部分27的长度(从气缸套下端24到壁温边界28的长度)为气缸套2总长度(从气缸套上端23到气缸套下端24的长度)的三分之二到四分之三。因此,在确定膜5的位置时,可将从气缸套下端24起的整个气缸套长度的三分之二到四分之三的范围看作是不必精确确定壁温边界28时的低温气缸套部分27。
[0087] [2]膜的厚度
[0088] 参照图7A和7B对膜厚度TP的设定进行说明。图7A是气缸套2的沿轴向方向截取的剖视图。图7B示出在气缸套2中轴向位置和膜厚度TP之间的关系。
[0089] 在气缸套2中,膜厚度TP以如下方式确定。
[0090] (A)膜厚度TP可被设定成从壁温边界28向气缸套下端24逐渐增大。即,膜厚度TP在壁温边界28处被设定为零,而在气缸套下端24处被设定为最大值(最大厚度Tpmax)。
[0091] (B)膜厚度TP被设定为等于或小于0.5mm。在本实施例中,膜5形成为使得在低温气缸套部分27的多个位置处的膜厚度TP的平均值小于或等于0.5mm。但是,膜5也可形成为使得在整个低温气缸套部分27内的膜厚度TP小于或等于0.5mm。
[0092] [3]突起部周围的膜的形成
[0093] 图8是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5在气缸套外周向表面22上形成为使得收缩空间34不被充满。即,膜5形成为使得当进行气缸套2的镶铸时,铸造材料充填收缩空间34。如果收缩空间34被膜5充满,则铸造材料将无法充填收缩空间34。这样,在低温气缸套部分27上将无法获得突起部3的锚固效果。
[0094] <气缸体和气缸套的接合状态>
[0095] 参照图9和10对气缸体11和气缸套2的接合状态进行说明。图9和10是沿气缸13的轴线截取的示出气缸体11的剖视图。
[0096] [1]低温气缸套部分的接合状态
[0097] 图9是图1中的被圈起部分ZA的剖视图,并示出气缸体11和低温气缸套部分27之间的接合状态。
[0098] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,且膜5位于它们之间。
[0099] 由于膜5由热导率低于气缸体11的热导率的氧化铝形成,因而气缸体11和膜5以导热性低的状态彼此机械地接合。
[0100] 在发动机1中,由于气缸体11和低温气缸套部分27以这种状态彼此接合,因而可获得以下优点。
[0101] (A)由于膜5降低了气缸体11和低温气缸套部分27之间的导热性,因而低温气缸套部分27内的气缸壁温度TW升高。
[0102] (B)由于突起部3确保了气缸体11和低温气缸套部分27之间的接合强度,因而气缸体11和低温气缸套部分27的剥离得以抑制。
[0103] [2]高温气缸套部分的接合状态
[0104] 图10是图1中的被圈起部分ZB的剖视图,并示出气缸体11和高温气缸套部分26之间的接合状态。
[0105] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到高温气缸套部分26上。因此,通过突起部3的锚固效果确保了气缸体11与高温气缸套部分26之间的充分的接合强度。此外,也确保了气缸体11与高温气缸套部分26之间的充分的导热性。
[0106] <突起部的形成>
[0107] 参照表1对气缸套2上的突起部3的形成进行说明。
[0108] 作为与突起部3相关的参数,定义第一面积比率SA、第二面积比率SB、标准截面积SD、标准突起部密度NP和标准突起部高度HP。
[0109] 现在对用于与突起部3相关的上述参数的基本值--测量高度H、第一基准平面PA和第二基准平面PB进行说明。
[0110] (a)测量高度H表示沿突起部3的轴向方向的距突起部3近端的距离。在突起部3的近端处,测量高度H为零。在突起部3的顶表面32A处,测量高度H具有最大值。
[0111] (b)第一基准平面PA表示位于测量高度为0.4mm的位置的沿突起部3的径向方向的平面。
[0112] (c)第二基准平面PB表示位于测量高度为0.2mm的位置的沿突起部3的径向方向的平面。
[0113] 现在对与突起部3相关的参数进行说明。
[0114] [A]第一面积比率SA表示在第一基准平面PA的单位面积内突起部3的径向方向截面积SR的比率。更具体地,第一面积比率SA表示通过累加由高度为0.4mm的等高线所包围的各个区域的面积而获得的面积与气缸套外周向表面22的整个等高线图的面积之比。
[0115] [B]第二面积比率SB表示在第二基准平面PB的单位面积内突起部3的径向方向截面积SR的比率。更具体地,第二面积比率SB表示通过累加由高度为0.2mm的等高线所包围的各个区域的面积而获得的面积与气缸套外周向表面22的整个等高线图的面积之比。
[0116] [C]标准截面积SD表示作为第一基准平面PA内的一个突起部3的面积的径向方向截面积SR。即,标准截面积SD表示在气缸套外周向表面22的等高线图中由高度为0.4mm的等高线所包围的各个区域的面积。
[0117] [D]标准突起部密度NP表示在气缸套外周向表面22内每单位面积上的突起部3的数量。
[0118] [E]标准突起部高度HP表示各个突起部3的高度H。
[0119] 表1
[0120]参数类型 选择范围
[A] 第一面积比率SA 10%至50%
[B] 第二面积比率SB 20%至55%
[C] 标准截面积SD 0.2至3.0mm2
[D] 标准突起部密度NP 5至60个/cm2
[E] 标准突起部高度HP 0.5至1.0mm
[0121] 在本实施例中,参数[A]至[E]被设定在表1的选择范围内,从而突起部3的气缸套接合强度以及突起部3之间的铸造材料的充填系数/充填因子(filling factor)的增大效果增加。此外,突起部3在气缸套2上形成为在本实施例中的第一基准平面PA上彼此独立。换句话说,每个突起部3的由包含代表从其近端算起为0.4mm的高度的等高线的平面截取所获得的截面独立于其它突起部3的由同一平面截取所获得的截面。这进一步增大了充填系数。
[0122] <用于生产气缸套的方法>
[0123] 参照图11和12以及表2对用于生产气缸套2的方法进行说明。
[0124] 在本实施例中,气缸套2通过离心铸造来生产。为了使上面列出的与突起部3相关的参数处在表1的选择范围内,将与离心铸造相关的以下参数[A]至[F]设定在表2的选择范围内。
[0125] [A]悬浊液61中耐火材料61A的混合比率。
[0126] [B]悬浊液61中粘结剂61B的混合比率。
[0127] [C]悬浊液61中61C的混合比率。
[0128] [D]耐火材料61A的平均粒度。
[0129] [E]添加到悬浊液61中的表面活性剂62的混合比率。
[0130] [F]铸模涂料63的层(铸模涂料层64)的厚度。
[0131] 表2
[0132]
[0133]参数类型 选择范围
[A] 耐火材料的混合比率 以质量计8%至30%
[B] 粘结剂的混合比率 以质量计2%至10%
[C] 水的混合比率 以质量计60%至90%
[D] 耐火材料的平均粒度 0.02至0.1mm
[E] 表面活性剂的混合比率 以质量计大于0.005%且小于0.1%
[F] 铸膜涂料层的厚度 0.5至1.0mm
[0134] 气缸套2的生产根据图11A至11F所示的工序进行。
[0135] [步骤A]如图11A所示,将耐火材料61A、粘结剂61B和水61C混合以制备悬浊液61。在该步骤中,耐火材料61A、粘结剂61B和水61C的混合比率以及耐火材料61A的平均粒度被设定以处于表2的选择范围内。
[0136] [步骤B]如图11B所示,将预定量的表面活性剂62加入到悬浊液61中以获得铸模涂料63。在该步骤中,加入到悬浊液61中的表面活性剂62的比率被设定以处于表2所示的选择范围内。
[0137] [步骤C]如图11C所示,在将旋转的铸模65的内周向表面加热到预定温度后,通过喷涂将铸模涂料63涂布到铸模65的内周向表面(铸模内周向表面65A)上。此时,铸模涂料63涂布成使得在整个铸模内周向表面65A上形成厚度基本均一的铸模涂料63的层(铸模涂料层64)。在该步骤中,铸模涂料层64的厚度被设定以处于表2所示的选择范围内。
[0138] 在铸模65的铸模涂料层64中,在[步骤C]之后形成具有收缩形状的孔。参照图12A至12C对具有收缩形状的孔的形成进行说明。
[0139] [1]如图12A所示,在铸模65的铸模内周向表面65A上形成具有多个气泡64A的铸模涂料层64。
[0140] [2]如图12B所示,表面活性剂62对气泡64A起作用以在铸模涂料层64的内周向表面内形成凹部64B。
[0141] [3]如图12C所示,凹部64B的底部到达铸模内周向表面65A,从而在铸模涂料层64内形成具有收缩形状的孔64C。
[0142] [步骤D]如图11D所示,在将铸模涂料层64干燥后,将熔融的铸铁66浇入正在旋转的铸模65中。熔融铸铁66流入铸模涂料层64内的具有收缩形状的孔64C中。这样,在铸造气缸套2上形成具有收缩形状的突起部3。
[0143] [步骤E]如图11E所示,在熔融铸铁66硬化且形成气缸套2之后,将气缸套2与铸模涂料层64一起从铸模65中取出。
[0144] [步骤F]如图11F所示,使用喷抛装置(blasting device)67从气缸套2的外周向表面上移除铸模涂料层64(铸模涂料63)。
[0145] <用于测量与突起部相关的参数的方法>
[0146] 参照图13A和13B对使用三维激光测量与突起部3相关的参数的方法进行说明。标准突起部高度HP用另一种方法测量。
[0147] 可按如下方式测量与突起部3相关的各个参数。
[0148] [1]从气缸套2制得用于测量突起部3的参数的试件71。
[0149] [2]在非接触式三维激光测量装置81中,将试件71设置在试验台83上,使得突起部3的轴向方向基本上与激光82的照射方向平行(图13A)。
[0150] [3]使激光82从三维激光测量装置81照射到试件71上(图13B)。
[0151] [4]将三维激光测量装置81的测量结果输入到图像处理装置84中。
[0152] [5]通过用图像处理装置84进行的图像处理显示出气缸套外周向表面22的等高线图85(图14)。基于等高线图85计算与突起部3相关的参数。
[0153] <气缸套外周向表面的等高线>
[0154] 参照图14和15对等高线图85进行说明。图14是等高线图85的一个示例的一部分。图15示出测量高度H与等高线HL之间的关系。图14的等高线图85根据具有与图15的突起部3不同的突起部3的气缸套外周向表面22绘制而成。
[0155] 在等高线图85中,等高线HL在测量高度H的每个预定值下示出。
[0156] 例如,在等高线图85中在等高线HL从0mm的测量高度到1.0mm的测量高度以0.2mm的间隔示出的情况下,示出测量高度为0mm的等高线HL0、测量高度为0.2mm的等高线HL2、测量高度为0.4mm的等高线HL4、测量高度为0.6mm的等高线HL6、测量高度为0.8mm的等高线HL8和测量高度为1.0mm的等高线HL10。
[0157] 等高线HL4包含在第一基准平面PA中。等高线HL2包含在第二基准平面PB中。尽管图14示出的是以0.2mm的间隔示出等高线HL的图示,但也可按照需要改变等高线HL之间的距离。
[0158] 参照图16和17对等高线图85中的第一区域RA和第二区域RB进行说明。图16是第一等高线图85A的一部分,其中等高线图85中的测量高度为0.4mm的等高线HL4以实线示出,而等高线图85中的其它等高线HL以虚线示出。图17是第二等高线图85B的一部分,其中等高线图85中的测量高度为0.2mm的等高线HL2以实线示出,而等高线图85中的其它等高线HL以虚线示出。
[0159] 在本实施例中,在等高线图85中由等高线HL4所包围的各个区域被定义成第一区域RA。即,第一等高线图85A中的阴影区域对应于第一区域RA。在等高线图85中由等高线HL2所包围的各个区域被定义成第二区域RB。即,第二等高线图85B中的阴影区域对应于第二区域RB。
[0160] <用于计算与突起部相关的参数的方法>
[0161] 对于根据本实施例的气缸套2,基于等高线图85以如下方式计算与突起部3相关的参数。
[0162] [A]第一面积比率SA
[0163] 第一面积比率SA被计算为第一区域RA的总面积与整个等高线图85的面积之比。即,第一面积比率SA使用下面的公式计算。
[0164] SA=SRA/ST×100[%]
[0165] 在上面的公式中,符号ST代表整个等高线图85的面积。符号SRA代表等高线图85中的第一区域RA的总面积。例如,当使用示出第一等高线图85A的一部分的图16作为模型时,由方框所包围的矩形区域的面积对应于面积ST,而阴影区域的面积对应于面积SRA。在计算第一面积比率SA时,假定等高线图85仅包括气缸套外周向表面22。
[0166] [B]第二面积比率SB
[0167] 第二面积比率SB被计算为第二区域RB的总面积与整个等高线图85的面积之比。即,第二面积比率SB使用下面的公式计算。
[0168] SB=SRB/ST×100[%]
[0169] 在上面的公式中,符号ST代表整个等高线图85的面积。符号SRB代表等高线图85中的第二区域RB的总面积。例如,当使用示出第二等高线图85B的一部分的图17作为模型时,由方框所包围的矩形区域的面积对应于面积ST,而阴影区域的面积对应于面积SRB。在计算第二面积比率SB时,假定等高线图85仅包括气缸套外周向表面22。
[0170] [C]标准截面积SD
[0171] 标准截面积SD可被计算为等高线图85中各个第一区域RA的面积。例如,当使用示出第一等高线图85A的一部分的图16作为模型时,阴影区域的面积对应于标准截面积SD。
[0172] [D]标准突起部密度NP
[0173] 标准突起部密度NP可被计算为在等高线图85中每单位面积(在该实施例中为2
1cm)上的突起部3的数量。
[0174] [E]标准突起部高度HP
[0175] 标准突起部高度HP代表各个突起部3的高度。各个突起部3的高度可以是在数个位置处的突起部3的高度的平均值。突起部3的高度可通过测量装置如深度千分表进行测量。
[0176] 可基于等高线图85中的第一区域RA检验突起部3在第一基准平面PA上是否独立地设置。即,当各个第一区域RA不与其它第一区域RA发生干涉时,可确认突起部3在第一基准平面PA上独立地设置。换句话说,可确认每个突起部3的由包含代表从其近端算起为0.4mm的高度的等高线的平面截取所获得的截面独立于其它突起部3的由同一平面截取所获得的截面。
[0177] <用于评价接合强度的方法>
[0178] 参照图18A至18C对气缸体11与气缸套2之间的接合强度评价的一个示例进行说明。
[0179] 对低温气缸套部分27的接合强度的评价可根据以下步骤[1]至[5]的工序进行。
[0180] [1]通过压铸来生产均具有气缸套2的单缸型气缸体72(图18A)。
[0181] [2]从单缸型气缸体72制得用于强度评价的试件74。强度评价试件74均由气缸套2的低温气缸套部分27的一部分(气缸套件74A和膜5)和气缸73的铝制部分(铝制件74B)形成。
[0182] [3]将拉伸试验设备的臂86接合到包括气缸套件74A和铝制件74B的强度评价试件74上(图18B)。
[0183] [4]在用夹钳87将臂86中的一个保持住后,通过另一个臂86向强度评价试件74施加拉伸载荷,使得气缸套件74A和铝制件74B沿箭头C的方向即气缸的径向方向剥离(图18C)。
[0184] [5]通过拉伸试验获得使气缸套件74A和铝制件74B剥离的每单位面积上的载荷量作为气缸套接合强度。对高温气缸套部分26的接合强度的评价也可根据以上步骤[1]至[5]的工序进行。
[0185] 根据本实施例的发动机1的气缸体11与气缸套2之间的接合强度根据上述评价方法进行测量。可确认发动机1的接合强度要充分地高于基准发动机的接合强度。
[0186] <第一实施例的优点>
[0187] 根据本实施例的气缸套2可提供以下优点。
[0188] (1)在本实施例的气缸套2中,膜5形成在低温气缸套部分27的气缸套外周向表面22上。这增大了发动机1的低温气缸套部分27内的气缸壁温度TW,并由此减小了机油的粘性。因此,燃料消耗率得以改善。
[0189] (2)在本实施例的气缸套2中,突起部3形成在气缸套外周向表面22上。这使得气缸体11与气缸套2能以气缸体11与突起部3相互啮合的方式彼此接合。确保了气缸体11与气缸套2之间的充分的接合强度。接合强度的增大可防止气缸孔15发生变形。
[0190] (3)在本实施例的气缸套2中,膜5形成为使得其厚度TP小于或等于0.5mm。这可防止气缸体11和低温气缸套部分27之间的接合强度降低。如果膜厚度TP大于0.5mm,则会降低突起部3的锚固效果,从而导致气缸体11和低温气缸套部分27之间的接合强度显著下降。
[0191] (4)在本实施例的气缸套2中,突起部3形成为使得标准突起部密度NP在5/cm22
至60/cm 的范围内。这进一步增大了气缸套接合强度。此外,可增大铸造材料向突起部3之间的空间充填的充填系数。
[0192] 如果标准突起部密度NP在选择范围之外,则会引起以下问题。如果标准突起部密2
度NP小于5/cm,则突起部3的数量不足。这会降低气缸套接合强度。如果标准突起部密
2
度NP大于60/cm,则突起部3之间的狭窄空间会减小铸造材料向突起部3之间的空间充填的充填系数。
[0193] (5)在本实施例的气缸套2中,突起部3形成为使得标准突起部高度HP在0.5mm至1.0mm的范围内。这可增大气缸套接合强度和气缸套2的外径的精度
[0194] 如果标准突起部高度HP在选择范围之外,则会引起以下问题。如果标准突起部高度HP小于0.5mm,则突起部3的高度不足。这会降低气缸套接合强度。如果标准突起部高度HP大于1.0mm,则突起部3将容易折断。这也会降低气缸套接合强度。此外,由于突起部3的高度不均一,因而外径的精度降低。
[0195] (6)在本实施例的气缸套2中,突起部3形成为使得第一面积比率SA在10%至50%的范围内。这可确保充分的气缸套接合强度。此外,可增大铸造材料向突起部3之间的空间充填的充填系数。
[0196] 如果第一面积比率SA在选择范围之外,则会引起以下问题。如果第一面积比率SA小于10%,则与第一面积比率SA大于或等于10%的情况相比,气缸套接合强度会显著降低。如果第一面积比率SA大于50%,则第二面积比率SB将超过上限值(55%)。这样,铸造材料在突起部3之间的空间内的充填系数将显著减小。
[0197] (7)在本实施例的气缸套2中,突起部3形成为使得第二面积比率SB在20%至55%的范围内。这可增大铸造材料向突起部3之间的空间充填的充填系数。此外,可确保充分的气缸套接合强度。
[0198] 如果第二面积比率SB在选择范围之外,则会引起以下问题。如果第二面积比率SB小于20%,则第一面积比率SA将降到下限值(10%)以下。这样,气缸套接合强度将显著降低。如果第二面积比率SB大于55%,则与第二面积比率SB小于或等于55%的情况相比,铸造材料在突起部3之间的空间内的充填系数将显著减小。
[0199] (8)在本实施例的气缸套2中,突起部3形成为使得标准截面积SD在0.2mm2至2
3.0mm 的范围内。这样,在气缸套2的生产过程中可防止突起部3损坏。此外,可增大铸造材料向突起部3之间的空间充填的充填系数。
[0200] 如果标准截面积SD在选择范围之外,则会引起以下问题。如果标准截面积SD小2
于0.2mm,则突起部3的强度不足,并且在气缸套2的生产过程中突起部3容易损坏。如果
2
标准截面积SD大于3.0mm,则突起部3之间的狭窄空间会减小铸造材料向突起部3之间的空间充填的充填系数。
[0201] (9)在本实施例的气缸套2中,突起部3(第一区域RA)形成为在第一基准平面PA上彼此独立。换句话说,每个突起部3的由包含代表从其近端算起为0.4mm的高度的等高线的平面截取所获得的截面独立于其它突起部3的由同一平面截取所获得的截面。这可增大铸造材料向突起部3之间的空间充填的充填系数。如果突起部3(第一区域RA)在第一基准平面PA上彼此不独立,则突起部3之间的狭窄空间会减小铸造材料向突起部3之间的空间充填的充填系数。
[0202] (10)在发动机中,气缸壁温度TW的升高会使气缸孔热膨胀。由于气缸壁温度TW在沿气缸的轴向方向的各位置间变化,因而由于热膨胀所导致的气缸孔变形的量沿轴向方向变化。气缸孔变形量的这种变化会增大活塞的摩擦,这又会使燃料消耗率变差。
[0203] 在本实施例的气缸套2中,在高温气缸套部分26的气缸套外周向表面22上未形成膜5,而在低温气缸套部分27的气缸套外周向表面22上形成了膜5。
[0204] 因此,发动机1的低温气缸套部分27的气缸壁温度TW(图6B中的虚线)超出基准发动机的低温气缸套部分27的气缸壁温度TW(图6B中的实线)。另一方面,发动机1的高温气缸套部分26的气缸壁温度TW(图6B中的虚线)基本上与基准发动机的高温气缸套部分26的气缸壁温度TW(图6B中的实线)相同。
[0205] 因此,气缸壁温差ΔTW即发动机1中最小气缸壁温度TWL和最大气缸壁温度TWH之间的差异减小。这样,各个气缸孔15的变形沿气缸13的轴向方向的变化减小。因此,各个气缸孔15的变形量得以均衡。这可减小活塞的摩擦并由此改善燃料消耗率。
[0206] (11)在本实施例的气缸套2中,膜厚度TP被设定成从壁温边界28向气缸套下端24逐渐增大。因此,气缸体11与气缸套2之间的导热性随着向气缸套下端24靠近而降低。
这减小了气缸壁温度TW沿低温气缸套部分27的轴向方向的变化。
[0207] <第一实施例的变型>
[0208] 上述第一实施例可如下所示地进行修改
[0209] 在第一实施例中,膜5形成为使得膜厚度TP从壁温边界28向气缸套下端24逐渐增大。但是,膜厚度TP在低温气缸套部分27内也可恒定不变。简言之,对膜厚度TP的设置可按照需要在不会使气缸壁温度TW与整个低温气缸套部分27内的适当温度产生大差别的范围内改变。
[0210] (第二实施例)
[0211] 现在参照图19至21对本发明的第二实施例进行说明。
[0212] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第二实施例。除下述构型之外,根据第二实施例的气缸套2与第一实施例中的相同。
[0213] <膜的形成>
[0214] 图19是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在低温气缸套部分27的气缸套外周向表面22上。膜5由铁基材料的喷涂层(铁喷涂层52)形成。铁喷涂层52通过层叠多个薄喷涂层52A而形成。铁喷涂层52(薄喷涂层52A)包含多层氧化物和孔隙。
[0215] <气缸体和低温气缸套部分的接合状态>
[0216] 图20是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0217] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0218] 由于膜5由包含多层氧化物和孔隙的喷涂层形成,所以气缸体11与膜5以导热性低的状态彼此机械地接合。
[0219] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0220] <制造膜的方法>
[0221] 参照图21A和21B对形成膜5的方法进行说明。在本实施例中,膜5通过电弧喷涂形成。膜5可通过以下工序形成。
[0222] [1]通过电弧喷涂设备91将熔融(金属)丝92喷涂在气缸套外周向表面22上以形成薄喷涂层52A(图21A)。
[0223] [2]在形成一个薄喷涂层52A后,在该第一薄喷涂层52A上形成另一个薄喷涂层52A(图21B)。
[0224] [3]重复工序[2]直到形成具有期望厚度的膜5为止。
[0225] 根据上述制造方法,丝92被熔化并变成表面被氧化的颗粒。这样,铁喷涂层52(薄喷涂层52A)包含多层氧化物。这进一步增大了膜5的隔热特性。
[0226] 在本实施例中,在电弧喷涂中所使用的丝92的直径被设定为等于或大于0.8mm。因此,丝92的粒度较大的粉末被喷涂在低温气缸套部分27上,且所形成的铁喷涂层52包括许多孔隙。即,形成了具有高隔热特性的膜5。
[0227] 如果丝92的直径小于0.8mm,则丝92的粒度较小的粉末被喷涂在低温气缸套部分27上。因此,与丝92的直径等于或大于0.8mm的情况相比,铁喷涂层52中的孔隙数量显著降低。
[0228] <第二实施例的优点>
[0229] 除了第一实施例中的优点(1)至(11)外,第二实施例的气缸套2还可提供以下优点。
[0230] (12)在本实施例的气缸套2中,铁喷涂层52由多个薄喷涂层52A形成。因此,在铁喷涂层52中形成有多层氧化物。这样,气缸体11与低温气缸套部分27之间的导热性进一步降低。
[0231] <第二实施例的变型>
[0232] 上述第二实施例可如下所示地进行修改。
[0233] 在第二实施例中,在形成膜5时,丝92的直径被设定为0.8mm。但是,也可按如下方式设定丝92的直径的选择范围。即,丝92的直径的选择范围可被设定为从0.8mm至2.4mm的范围。如果丝92的直径被设定得大于2.4mm,则丝92的颗粒会很大。因此可预测铁喷涂层52的强度将显著降低。
[0234] (第三实施例)
[0235] 现在参照图22和23对本发明的第三实施例进行说明。
[0236] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第三实施例。除下述构型之外,根据第三实施例的气缸套2与第一实施例中的相同。
[0237] <膜的形成>
[0238] 图22是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在气缸套2中低温气缸套部分27的气缸套外周向表面22上。膜5由形成在气缸套2表面上的第一喷涂层53A和形成在第一喷涂层53A的表面上的第二喷涂层53B形成。
[0239] 第一喷涂层53A由陶瓷材料(氧化铝或氧化锆)形成。作为第一喷涂层53A的材料,可使用可降低气缸体11与低温气缸套部分27之间的导热性的材料。
[0240] 第二喷涂层53B由铝合金(Al-Si合金或Al-Cu合金)形成。作为第二喷涂层53B的材料,可使用具有与气缸体11的高接合特性的材料。
[0241] <气缸套和低温气缸套部分的接合状态>
[0242] 图23是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0243] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0244] 由于膜5由热导率比气缸体11的热导率小的陶瓷材料形成,所以气缸体11与膜5以导热性低的状态彼此机械地接合。
[0245] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0246] 由于膜5包括具有与气缸体11的高接合特性的第二喷涂层53B,因而与膜5仅由第一喷涂层53A形成的情况相比,可增大膜5与气缸体11之间的接合强度。
[0247] <形成膜的方法>
[0248] 在本实施例中,膜5通过等离子喷涂形成。膜5可通过以下工序形成。
[0249] [1]使用等离子喷涂设备在低温气缸套部分27上形成第一喷涂层53A。
[0250] [2]在形成第一喷涂层53A后,使用等离子喷涂设备形成第二喷涂层53B。
[0251] <第三实施例的优点>
[0252] 除了第一实施例中的优点(1)至(11)外,第三实施例的气缸套2还可提供以下优点。
[0253] (13)在本实施例的气缸套2中,膜5由第一喷涂层53A和第二喷涂层53B形成。这样,在通过第一喷涂层53A来确保膜5的隔热特性时,第二喷涂层53B可提高气缸体11与膜5之间的接合特性。
[0254] (第四实施例)
[0255] 现在参照图24和25对本发明的第四实施例进行说明。
[0256] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第四实施例。除下述构型之外,根据第四实施例的气缸套2与第一实施例中的相同。
[0257] <膜的形成>
[0258] 图24是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在气缸套2中低温气缸套部分27的气缸套外周向表面22上。膜5由氧化物层54形成。
[0259] <气缸体和低温气缸套部分的接合状态>
[0260] 图25是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0261] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0262] 由于膜5由氧化物形成,因而气缸体11与膜5以导热性低的状态彼此机械地接合。
[0263] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0264] <制造膜的方法>
[0265] 在本实施例中,膜5通过高频加热形成。膜5可通过以下工序形成。
[0266] [1]通过高频加热设备加热低温气缸套部分27。
[0267] [2]持续加热,直到在气缸套外周向表面22上形成预定厚度的氧化物层54为止。
[0268] 根据这种方法,对低温气缸套部分27的加热会熔化各个突起部3的远端32。结果,在远端32处的氧化物层54要厚于在其它部分的氧化物层54。因此,提高了突起部3的远端32周围的隔热特性。另外,膜5形成为在各个突起部3的收缩部33处具有充分的厚度。因此,进一步提高了收缩部33周围的隔热特性。
[0269] <第四实施例的优点>
[0270] 除了第一实施例中的优点(1)至(11)外,第四实施例的气缸套2还可提供以下优点。
[0271] (14)在本实施例的气缸套2中,通过加热气缸套2而形成膜5。这提高了收缩部33周围的隔热特性。此外由于不需要形成膜5所需的附加材料,因而可降低用于材料控制的劳和成本。
[0272] (第五实施例)
[0273] 现在参照图26和27对本发明的第五实施例进行说明。
[0274] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第五实施例。除下述构型之外,根据第五实施例的气缸套2与第一实施例中的相同。
[0275] <膜的形成>
[0276] 图26是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在气缸套2中低温气缸套部分27的气缸套外周向表面22上。膜5由脱模剂层55形成,该脱模剂层是用于压铸的脱模剂层。
[0277] 在形成脱模剂层55时,例如可使用以下脱模剂。
[0278] [1]通过混合蛭石、Hitasol和水玻璃而获得的脱模剂。
[0279] [2]通过混合主要成分为的液态材料和水玻璃而获得的脱模剂。
[0280] <气缸体和低温气缸套部分的接合状态>
[0281] 图27是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0282] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0283] 由于膜5由具有与气缸体11的低附着性的脱模剂形成,因而气缸体11和膜5彼此接合而在其间具有间隙5H。在制造气缸体11时,铸造材料在数个部位尚未产生铸造材料与脱模剂层55之间的充分的附着性的状态下凝固。因此,在气缸体11与脱模剂层55之间会形成间隙5H。
[0284] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0285] <第五实施例的优点>
[0286] 除了第一实施例中的优点(1)至(11)外,第五实施例的气缸套2还可提供以下优点。
[0287] (15)在本实施例的气缸套2中,膜5通过使用压铸用脱模剂而形成。因此,在形成膜5时,可使用用于制造气缸体11的压铸用脱模剂或用于所述脱模剂的材料。这样,制造步骤的数量和成本减少。
[0288] (第六实施例)
[0289] 现在参照图26和27对本发明的第六实施例进行说明。
[0290] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第六实施例。除下述构型之外,根据第六实施例的气缸套2与第一实施例中的相同。
[0291] <膜的形成>
[0292] 图26是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在低温气缸套部分27的气缸套外周向表面22上。膜5由铸模涂料层56形成,该铸模涂料层是用于离心铸造模具的铸模涂料层。
[0293] 在形成铸模涂料层56时,例如可使用以下铸模涂料。
[0294] [1]包含硅藻土作为主要成分的铸模涂料。
[0295] [2]包含石墨作为主要成分的铸模涂料。
[0296] <气缸体和低温气缸套部分的接合状态>
[0297] 图27是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0298] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0299] 由于膜5由具有与气缸体11的低附着性的铸模涂料形成,因而气缸体11和膜5彼此接合而在其间具有间隙5H。在制造气缸体11时,铸造材料在数个部位尚未产生铸造材料与铸模涂料层56之间的充分的附着性的状态下凝固。因此,在气缸体11与铸模涂料层56之间会形成间隙5H。
[0300] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0301] <第六实施例的优点>
[0302] 除了第一实施例中的优点(1)至(11)外,第六实施例的气缸套2还可提供以下优点。
[0303] (16)在本实施例的气缸套2中,膜5通过使用离心铸造用铸模涂料而形成。因此,在形成膜5时,可使用用于制造气缸体11的离心铸造用铸模涂料或用于所述铸模涂料的材料。这样,制造步骤的数量和成本减少。
[0304] (第七实施例)
[0305] 现在参照图26和27对本发明的第七实施例进行说明。
[0306] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第七实施例。除下述构型之外,根据第七实施例的气缸套2与第一实施例中的相同。
[0307] <膜的形成>
[0308] 图26是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在气缸套2中低温气缸套部分27的气缸套外周向表面22上。膜5由低附着性制剂层57形成。低附着性制剂是指使用具有与气缸体11的低附着性的材料所制备的液体材料。
[0309] 在形成低附着性制剂层57时,例如可使用以下低附着性制剂。
[0310] [1]通过混合石墨、水玻璃和水而获得的低附着性制剂。
[0311] [2]通过混合氮化硼和水玻璃而获得的低附着性制剂。
[0312] <气缸体和低温气缸套部分的接合状态>
[0313] 图27是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0314] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0315] 由于膜5由具有与气缸体11的低附着性的低附着性制剂形成,因而气缸体11和膜5彼此接合而在其间具有间隙5H。在制造气缸体11时,铸造材料在数个部位尚未产生铸造材料与低附着性制剂层57之间的充分的附着性的状态下凝固。因此,在气缸体11与低附着性制剂层57之间会形成间隙5H。
[0316] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0317] <制造膜的方法>
[0318] 在本实施例中,膜5通过涂覆并干燥低附着性制剂而形成。膜5可通过以下工序形成。
[0319] [1]将气缸套2置于被加热到预定温度的炉中达预定时间段长,以便使其预热。
[0320] [2]将气缸套2浸入到容器内的液态低附着性制剂中,从而在气缸套外周向表面22上涂覆低附着性制剂。
[0321] [3]在步骤[2]后,将气缸套2置于在步骤[1]中使用的炉中,从而对低附着性制剂进行干燥。
[0322] [4]重复步骤[1]至[3],直到通过干燥而形成的低附着性制剂层57具有预定厚度。
[0323] <第七实施例的优点>
[0324] 根据第七实施例的气缸套可提供与第一实施例中的优点(1)至(11)类似的优点。
[0325] <第七实施例的变型>
[0326] 上述第七实施例可如下所示地进行修改。
[0327] 作为低附着性制剂,可使用以下制剂。
[0328] (a)通过混合石墨与有机溶剂而获得的低附着性制剂。
[0329] (b)通过混合石墨与水而获得的低附着性制剂。
[0330] (c)具有氮化硼和无机粘结剂作为主要成分的低附着性制剂,或具有氮化硼和有机粘结剂作为主要成分的低附着性制剂。
[0331] (第八实施例)
[0332] 现在参照图26和27对本发明的第八实施例进行说明。
[0333] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第八实施例。除下述构型之外,根据第八实施例的气缸套2与第一实施例中的相同。
[0334] <膜的形成>
[0335] 图26是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在气缸套2中低温气缸套部分27的气缸套外周向表面22上。膜5由金属涂料层58形成。
[0336] <气缸体和低温气缸套部分的接合状态>
[0337] 图27是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0338] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0339] 由于膜5由具有与气缸体11的低附着性的金属涂料形成,因而气缸体11和膜5彼此接合而在其间具有间隙5H。在制造气缸体11时,铸造材料在数个部位尚未产生铸造材料与金属涂料层58之间的充分的附着性的状态下凝固。因此,在气缸体11与金属涂料层58之间会形成间隙5H。
[0340] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0341] <第八实施例的优点>
[0342] 根据第八实施例的气缸套2可提供与第一实施例中的优点(1)至(11)类似的优点。
[0343] (第九实施例)
[0344] 现在参照图26和27对本发明的第九实施例进行说明。
[0345] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第九实施例。除下述构型之外,根据第九实施例的气缸套2与第一实施例中的相同。
[0346] <膜的形成>
[0347] 图26是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在气缸套2中低温气缸套部分27的气缸套外周向表面22上。膜5由高温树脂层59形成。
[0348] <气缸体和低温气缸套部分的接合状态>
[0349] 图27是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0350] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0351] 由于膜5由具有与气缸体11的低附着性的高温树脂形成,因而气缸体11和膜5彼此接合而在其间具有间隙5H。在制造气缸体11时,铸造材料在数个部位尚未产生铸造材料与高温树脂层59之间的充分的附着性的状态下凝固。因此,在气缸体11与高温树脂层59之间会形成间隙5H。
[0352] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0353] <第九实施例的优点>
[0354] 根据第九实施例的气缸套2可提供与第一实施例中的优点(1)至(11)类似的优点。
[0355] (第十实施例)
[0356] 现在参照图26和27对本发明的第十实施例进行说明。
[0357] 通过以如下方式改变膜5在根据第一实施例的气缸套2上的形成而构造出第十实施例。除下述构型之外,根据第十实施例的气缸套2与第一实施例中的相同。
[0358] <膜的形成>
[0359] 图26是示出图6A中的被圈起部分ZC的放大视图。在气缸套2中,膜5形成在气缸套2中低温气缸套部分27的气缸套外周向表面22上。膜5由化学转化处理层50形成,化学转化处理层50是通过化学转化处理而形成的层。
[0360] 作为化学转化处理层50,可形成以下的层。
[0361] [1]磷酸盐的化学转化处理层。
[0362] [2]四氧化三铁的化学转化处理层。
[0363] <气缸体和低温气缸套部分的接合状态>
[0364] 图27是图1中的被圈起部分ZA的剖视图,且示出气缸体11与低温气缸套部分27之间的接合状态。
[0365] 在发动机1中,气缸体11以气缸体11与突起部3啮合的状态接合到低温气缸套部分27上。气缸体11和低温气缸套部分27彼此接合,而膜5位于它们之间。
[0366] 由于膜5由具有与气缸体11的低附着性的化学转化处理层形成,因而气缸体11和膜5彼此接合而在其间具有多个间隙5H。在制造气缸体11时,铸造材料在数个部位尚未产生铸造材料与化学转化处理层50之间的充分的附着性的状态下凝固。因此,在气缸体11与化学转化处理层50之间会形成间隙5H。
[0367] 在发动机1中,由于气缸体11与低温气缸套部分27以这种状态彼此接合,因而可获得第一实施例的“[1]低温气缸套部分的接合状态”中的优点(A)和(B)。
[0368] 此外,由于膜5通过化学转化处理而形成,所以膜5在突起部3的收缩部33处具有充分的厚度。这使得易于在气缸体11的收缩部33周围形成间隙5H。因此,提高了收缩部33周围的隔热特性。
[0369] <第十实施例的优点>
[0370] 除了第一实施例中的优点(1)至(11)外,第十实施例的气缸套2还可提供以下优点。
[0371] (17)在本实施例的气缸套2中,膜5通过化学转化处理而形成。这提高了收缩部33周围的隔热特性。
[0372] (其它实施例)
[0373] 上述实施例可修改如下。
[0374] 在上述实施例中,第一面积比率SA和第二面积比率SB的选择范围可设定在表1所示的选择范围内。但是,所述选择范围可如下所示地改变。
[0375] 第一面积比率SA:10%至30%
[0376] 第二面积比率SB:20%至45%
[0377] 这种设置可增大气缸套接合强度和铸造材料充填突起部3之间的空间的充填系数。
[0378] 在上述实施例中,标准突起部高度HP的选择范围可设定为从0.5mm至1.0mm的范围。但是,可如下所示地改变所述选择范围。即,标准突起部高度HP的选择范围可设定为从0.5mm至1.5mm的范围。
[0379] 在上述实施例中,在高温气缸套部分26的气缸套外周向表面22上未形成膜5,而在低温气缸套部分27的气缸套外周向表面22上形成了膜5。这种构型可修改如下。即,膜5可形成在低温气缸套部分27和高温气缸套部分26两者的气缸套外周向表面22上。这种构型能可靠地防止某些位置处的气缸壁温度TW过低。
[0380] 在上述实施例中,膜5沿气缸套2的整个外周形成。但是,膜5的位置可如下所示地改变。即,在气缸13被布置的方向上,可从气缸套外周向表面22的面向相邻气缸孔15的部段上省去膜5。换句话说,膜5可形成在气缸套外周向表面2的除了在气缸13的布置方向上面向相邻气缸套2的气缸套外周向表面2的部段之外的部段内。这种构型可提供以下优点(i)和(ii)。
[0381] (i)来自每对相邻气缸13的热量可能被限制在相应气缸孔15之间的部段内。这样,该部段内的气缸壁温度TW可能高于除了气缸孔15之间的部段之外的部段内的气缸壁温度。因此,上述的形成膜5的变型可防止在气缸13的周向方向上面向相邻气缸孔15的部段内的气缸壁温度TW过度升高。
[0382] (ii)在各个气缸13中,由于气缸壁温度TW沿周向方向变化,因而气缸孔15的变形量沿周向方向变化。气缸孔15变形量的这种变化会增大活塞的摩擦,这又会使燃料消耗率变差。当采用形成膜5的上述构型时,在气缸13的周向方向上除了面向相邻气缸孔15的部段之外的部段内导热性降低。另一方面,面向相邻气缸孔15的部段的导热性与通常的发动机相同。这就减小了除了面向相邻气缸孔15的部段之外的部段内的气缸壁温度TW与面向相邻气缸孔15的部段内的气缸壁温度TW之间的差异。因此,各个气缸孔15的变形沿周向方向的变化减小(变形量得以均衡)。这可减小活塞的摩擦并由此改善燃料消耗率。
[0383] 用于形成膜5的方法不限于上述实施例中所示的方法(喷涂、涂覆、树脂涂覆和化学转化处理)。可按照需要应用任意其它方法。
[0384] 根据上述实施例的形成膜5的构型可如下所示地进行修改。即,只要满足下述条件(A)和(B)中的至少一个,则膜5可由任意材料形成。
[0385] (A)膜5的导热性小于气缸套2的导热性。
[0386] (B)膜5的导热性小于气缸体11的导热性。
[0387] 在上述实施例中,膜5在与突起部3相关的参数处于表1的选择范围内的情况下形成在气缸套2上。但是,膜5也可形成在任意气缸套上,只要该气缸套上形成有突起部3即可。
[0388] 在上述实施例中,膜5形成在形成有突起部3的气缸套2上。但是,膜5也可形成在形成有不具有收缩部的突起部的气缸套上。
[0389] 在上述实施例中,膜5形成在形成有突起部3的气缸套2上。但是,膜5也可形成在未形成有突起部的气缸套上。
[0390] 在上述实施例中,本实施例的气缸套被应用于由铝合金制成的发动机。但是,本发明的气缸套也可应用于例如由镁合金制成的发动机。简言之,本发明的气缸套可应用于具有气缸套的任意发动机。即使这样,如果本发明以与上述实施例类似的方式实施,则可获得与上述实施例类似的优点。
QQ群二维码
意见反馈