制备材料阵列的方法和材料阵列

申请号 CN95196543.3 申请日 1995-10-18 公开(公告)号 CN1082936C 公开(公告)日 2002-04-17
申请人 加利福尼亚大学董事会; 西米克斯技术公司; 发明人 P·G·舒尔茨; X·向; I·戈德瓦瑟尔;
摘要 通过组合合成制备巨磁致 电阻 氧 化钴化合物。组合合成是利用其上有不同材料的阵列的基材完成的,该阵列是将各组分供应至基材的预定区域,然后使各组分同时反应,形成至少两种材料而制得的。可用这种方法制备的其他材料有共价网状固体、离子型固体和分子型固体。例子有无机、有机金属、金属间材料、陶瓷、有机 聚合物 和 复合材料 。一旦制备后,可以筛选具有有用性能,(如磁致电阻)的材料。于是,本 发明 提供了并行地合成和分析具有有用性能的新颖材料的方法。
权利要求

1.一种制备材料阵列的方法,其特征在于它包括:
(a)在基材的第一和第二区域提供第一材料的第一组分和第二材料的第一组 分;
(b)在所述基材的所述第一和第二区域提供所述第一材料的第二组分和所述 第二材料的第二组分;
(c)使所提供的组分同时反应形成至少两种材料,所述的材料选自共价网状 固体、离子型固体、分子型固体、有机材料、有机金属材料、复合材料和非生物 有机聚合物
2.如权利要求1所述的方法,其特征还在于所述的材料是选自金属间材料、 金属合金和陶瓷材料的无机材料。
3.如权利要求1所述的方法,其特征还在于所述第一材料的第一组分和第二 组分同时提供到所述的第一区域。
4.如权利要求1所述的方法,其特征还在于所述第一材料的第一组分和所述 第二材料的第一组分同时分别提供到所述的第一和第二区域。
5.如权利要求1所述的方法,其特征还在于所述的第一材料的第一组分和所 述的第二材料的第一组分相同,但以不同量提供。
6.如权利要求1所述的方法,其特征还在于所述的第一材料的第二组分和所 述的第二材料的第二组分相同,但以不同量提供。
7.如权利要求1所述的方法,其特征还在于以化学计量梯度在所述的第一区 域提供所述第一材料的第一组分。
8.如权利要求1所述的方法,其特征还在于所述的第一材料的第一组分和所 述的第二材料的第一组分相同,但以化学计量梯度在所述基材的第一和第二区域 提供。
9.如权利要求1所述的方法,其特征还在于用移液滴管或喷墨分配器在所述 的基材的第一和第二区域提供所述材料的组分。
10.如权利要求1所述的方法,其特征还在于在所述的基材的第一和第二区 域提供所述材料的组分的喷墨分配器是选自脉冲喷墨分配器、气泡喷射喷墨分配 器和缝隙喷射喷墨分配器。
11.如权利要求1所述的方法,其特征还在于提供所述组分的每一步骤包括 下面的步骤:
(i)鉴别在所述基材上的参考点;
(ii)将含所述组分的分配器从所述的参考点移动固定的距离和方向,使所述 分配器大致位于所述基材的所述第一区域的上方;
(iii)在所述的第一区域提供所述的组分;
(iv)在剩余的每个区域对剩余的每个组分重复步骤(ii)和(iii)。
12.如权利要求1所述的方法,其特征还在于在所述基材的第一区域提供所述 第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组 分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)在所述基材的第一区域提供所述第一材料的第一组分;
(iii)除去所述的掩模。
13.如权利要求1所述的方法,其特征还在于在所述基材的第一区域提供所述 的第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组 分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)在所述基材的第一区域沉积所述第一材料的第一组分的薄膜
(iii)除去所述的掩模。
14.如权利要求1所述的方法,其特征还在于在所述基材的第一区域提供所 述的第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组 分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)将所述第一材料的第一组分喷射在所述基材的第一区域上;
(iii)除去所述的掩模。
15.如权利要求1所述的方法,其特征还在于在所述基材的第一区域提供所 述的第一材料的第一组分的步骤包括:
(i)在所述基材上沉积光敏抗蚀剂;
(ii)使在所述基材上的所述光敏抗蚀剂选择性曝光
(iii)从所述基材选择除去所述的光敏抗蚀剂,露出所述的第一区域;
(iv)在所述基材的第一区域提供所述第一材料的第一组分;
(v)从所述基材除去剩余的光敏抗蚀剂。
16.如权利要求1所述的方法,其特征还在于在所述基材的第一区域提供所 述的第一材料的第一组分的步骤包括:
(i)在所述基材的第一和第二区域提供所述第一材料的第一组分;
(ii)在所述基材上沉积光敏抗蚀剂;
(iii)使在所述基材上的光敏抗蚀剂选择性曝光;
(iv)从所述基材的第二区域选择除去所述的光敏抗蚀剂,露出所述第一材料 的第一组分;
(v)蚀刻掉露出的所述第一材料的第一组分;
(vi)从所述基材除去剩余的光敏抗蚀剂。
17.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于25 厘米2的面积上合成。
18.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于10 厘米2的面积上合成。
19.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于5厘 米2的面积上合成。
20.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于1厘 米2的面积上合成。
21.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于1毫 米2的面积上合成。
22.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于 10,000微米2的面积上合成。
23.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于1,000 微米2的面积上合成。
24.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于100 微米2的面积上合成。
25.如权利要求1所述的方法,其特征还在于所述的每种材料是在小于10 微米2的面积上合成。
26.如权利要求1所述的方法,其特征还在于在所述基材上至少合成10种不 同的材料。
27.如权利要求1所述的方法,其特征还在于在所述基材上至少合成100种 不同的材料。
28.如权利要求1所述的方法,其特征还在于在所述基材上至少合成104种 不同的材料。
29.如权利要求1所述的方法,其特征还在于在所述基材上至少合成106种 不同的材料。
30.如权利要求1所述的方法,其特征还在于至少合成100种不同的材料, 每种不同的材料包含在1毫米2或更小的面积上。
31.如权利要求1所述的方法,其特征在于还包括从所述阵列中筛选具有有用 性能的材料的步骤。
32.如权利要求31所述的方法,其特征还在于所述的有用性能是选自电性 能、热性能、机械性能、形态学性能、光学性能、磁性能和化学性能。
33.如权利要求31所述的方法,其特征还在于所述材料阵列是同时进行筛选 的。
34.如权利要求31所述的方法,其特征还在于所述材料的阵列是依次进行筛 选的。
35.一种阵列,其特征在于它是在一种基材的已知位置上超过10种不同无机 材料的阵列。
36.如权利要求35所述的阵列,其特征还在于它是在一种基材的已知位置上 的超过100种不同无机材料的阵列。
37.如权利要求35所述的阵列,其特征还在于它是在一种基材的已知位置上 的超过103种不同无机材料的阵列。
38.如权利要求35所述的阵列,其特征还在于它是在一种基材的已知位置上 的超过106种不同无机材料的阵列。
39.如权利要求35所述的阵列,其特征还在于所述无机材料是选自金属间材 料、金属合金、陶瓷材料、无机-有机复合材料。
40.一种制造至少两种不同的材料阵列的方法,其特征在于它包括:
(a)在第一基材的第一区域提供第一材料的第一组分和在第二基材的第一区 域提供第一材料的第一组分;
(b)在所述第一基材的第二区域提供第二材料的第一组分和在所述第二基材 的第二区域提供所述第二材料的第一组分;
(c)在所述第一基材的第一区域提供所述第一材料的第二组分和在所述第二 基材的第一区域提供所述第一材料的第二组分;
(d)在所述第一基材的第二区域提供所述第二材料的第二组分和在所述第二 基材的第二区域提供所述第二材料的第二组分;
(e)使在所述第一基材上的所述组分按第一组条件反应,在所述第二基材上的 所述组分按第二组条件反应,形成至少两种不同至少包含两种材料的阵列。
41.如权利要求40所述的方法,其特征还在于所述材料是选自共价网状固 体、离子型固体、分子型固体、无机材料、有机金属材料、复合材料和非生物有 机聚合物。
42.如权利要求41所述的方法,其特征还在于所述的材料是选自金属间材 料、金属合金和陶瓷材料的无机材料。
43.如权利要求40所述的方法,其特征还在于所述的第一组反应条件不同于 第二组反应条件,不同点为进行反应的温度、压、反应时间、或反应气氛。
44.如权利要求40所述的方法,其特征还在于所述第一材料的第一组分和所 述第二材料的第一组分相同,但以不同的量提供。

说明书全文

发明领域

本发明涉及用于在一个基材表面的确定位置上并行地沉积、合成和筛选不同 材料的方法和设备。例如,运用本发明可制备共价网状固体、离子型固体和分子 型固体。更具体地,运用本发明可制备无机材料、金属间材料、合金、陶瓷材料、 有机材料、有机金属材料、非生物有机聚合物复合材料(如无机复合物、有机 复合物或其组合)等。一旦制备后,这些物质可并行地按其有用的性能,如电、 热、机械、形态、光学、磁性、化学和其他的性能进行筛选。

发明背景

具有新颖的化学和物理性能的新物质的出现常会引起新的和有用技术的发 展。目前,在发现和优化如超导体、沸石、磁性物质、燐光体、非线性光学材料、 热电材料及高和低的介电材料方面已做了大量工作。然而,尽管广泛研究了扩展 型固体的化学性质,但几乎没有基本的原则可用于确切预测能合成这样的固态化 合物的组分、结构和反应途径。而且难以事前预测一特定三维结构将具有的物理 性能。例如,1987年合成的超导体YBa2Cu3O7-8。在发现它具有K2NiF4结构(Bednorz, J.G.和K.A.Muller,在Z.Phy.B 64:189(1986))的La2-xSrxCuO4不久,观察到使 用压可提高其转化温度(Chu等人,Phys.Rev.Lett.58:405(1987))。于是 Chu等人试图合成有相同化学计量(配比)的Y-Ba-Cu-O化合物,希望以较小的元 素即钇代替镧能具有相同的效果。尽管在大于93K发现超导性,但未观察到与 K2NiF4具有相同结构的相(Wu等人,Phys.Rev.Lett.58:908(1987))。甚至对 相当简单的金属间化合物,如镍和锆的二元化合物(Ni5Zr、Ni7Zr2、Ni3Zr、Ni2Zr8、 Ni10Zr7、Ni11Zr9、NiZr和NiZr2),仍不能了解为什么仅有这些化学计量(配比)出 现。 出现。
很明显,具有新颖的化学和物理性质的新物质在我们目前理解平下充其量 是在偶然情况下制得的。因此,新物质的发现很大程度上取决于新化合物的合成 和分析。元素周期表中有大约100种元素能用于构成由三、四、五、六或更多元 素组成的组合物,可能存在的新化合物大部分仍未被发现。因此,需要更有效、 更经济和更有规律的途径来合成新颖物质和筛选具有有用性能的新物质。
自然界产生具有新颖功能的分子的方法之一是产生大量的分子(集合),并从 这些集合的分子中系统地筛选具有所需性能的分子。其中的一个例子是体液免疫 体系,在几周时间里从约1012个抗体分子中找出一种专一地结合于外来病原的分 子(Nisonoff等人,The Antibody Molecule(Academic Press,New York.1975))。最 近,这种产生和筛选大量分子集合的方法已应用到寻找药物的过程中。发现新的 药物就好象寻找一把能开不了解其结构的的钥匙。解决问题的一种方法是简单 地制造和试验大量不同的钥匙,希望其中有合适的钥匙。
运用这一逻辑,已开发了一些合成和筛选大量的肽、低(聚)核苷酸和其他小 分子的集合(高达1014个分子)的方法。例如,Geysen等人开发了并行地在几个棒 或针上合成肽的方法(见J.Immun.Meth.102:259-274(1987),在此作为参考)。 Geysen等人的方法涉及使聚合棒终端功能化,然后将终端浸在各种酸溶液 中。除了Geysen等人的方法外,最近还发明了在固体表面合成大量不同肽和其 他聚合物的阵列的技术。Pirrung等人发现了采用如光引导的、可空间寻址的合 成技术来产生肽和其他分子阵列的技术(见美国专利5,143,854和PCT公开WO 90/15070,在此作为参考)。另外,Fodor等人还开发了用于进行光控、空间寻址 合成技术中收集荧光强度数据、各种光敏保护基团、掩模技术和自动化的方法(见 Fodor等的PCT公开WO 92/10092,其中的内容在此作为参考)。
运用这些方法,可形成有成千或上百万的不同单元的阵列(见在1991,12,6申 请的美国专利805,727,其中的内容在此作为参考)。由于这些方法与半导体制造 技术之间的关系,这些方法称为“特大规模的固定的聚合物合成”或“VLSIPS” 技术。这样的技术在筛选各种配位体如肽和低(聚)核苷酸,以决定其与抗体之类 的受体的相对束缚亲合力方面基本上获得成功。
目前,用于制备这样的集合体的固相合成技术涉及逐级即相继地将各结构单 元偶合,以形成所需化合物。在Pirrung等人的方法中,通过使光可除去的基团 结合到基材表面上,使选择的基材部分受光的作用来活化这些部分,再将带有光 可除去基团的氨基酸单体结合在活化部分,重复上述活化和结合步骤,直到合成 所需长度的多肽的方法,在基材上合成多肽阵列。这些涉及依次偶合各结构单元 (如氨基酸)以形成所需化合物的固相合成技术,不能用于制备多种元机和有机化 合物。
由上可知,需要能用于在基材上的确定部位合成和筛选材料(如无机材料)集 合的方法和设备。
发明概述
本发明提供了用于制备和使用在其预定区域有不同材料阵列的基材的方法和 设备。通过在基材的预定部分供应材料的组分,同时使组分反应形成至少两种材 料的方法,制备在其上有不同物质阵列的基材。采用本发明的方法和设备制备的 材料包括,如共价网状固体、离子型固体和分子型固体。更具体的说,制备的材 料有无机材料、金属间材料、合金、陶瓷材料、有机材料、有机金属材料、非生 物有机聚合物、复合材料(如无机复合物、有机复合物或及其组合)等。一旦制备 后,可并行地按其有用的性能,如电、热、机械、形态、光学、磁性、化学和其 他性能对这些物质进行筛选。因此,本发明提供了用于并行地合成和分析具有新 的和有用性能的新颖材料的方法和设备。然后可以大规模地制备已发现的具备可 用性能的物质。
在本发明的一个实施方案中,在基材的第一区域供应第一种材料的第一组 分,在同一基材的第二区域供应第二种材料的第一组分。然后,在基材的第一区 域供应第一种材料的第二组分和在基材的第二区域供应第二种材料的第二组 分。对其他组分可任选地重复这一过程,以在基材的预定即已知区域形成各种组 分的巨大阵列。之后,各组分可以同时反应形成至少两种材料。可以采用任何供 应组分的技术,依次地或同时以任何化学计量包括梯度化学计量,在基材的预定 区域供应组分。
本发明的另一个实施方案中,提供的方法可形成至少两种不同的材料阵列, 以基本相同的浓度在第一和第二基材的反应部位供应基本相同的反应组分,然后 使在第一基材的组分按设定的第一组反应条件,在第二基材的组分按第二组设定 反应条件反应。运用这种方法,可同时研究各种反应参数对多种物质的效果,从 而优化这些反应参数。可改变的反应参数包括,如反应物数量、反应物溶剂、反 应温度、反应时间、进行反应时的压力、进行反应的气氛、反应停止的速度、反 应物沉积的顺序等。
本发明的供应体系,可在每一反应区域供应少量的、精确计量的各种反应组 分。可通过各种供应技术或其与掩模技术结合达到这点。例如,可采用薄膜沉积 技术与物理掩模或光刻技术结合,在基材的选择区域供应各种反应物。可提供无 定形膜、处延薄膜或点阵及超点阵结构的反应物。而且,采用这样的技术,反应 物可以均匀分布或以梯度化学计量供应给每一点。还可任选以液滴或粉末形式从 供料器将各种反应组分供应到反应区域。合适的供料器包括,如微量移液管、喷 墨印刷技术所用的机构和电泳
一旦在基材的预定区域供应了可用组分,各组分可以许多不同合成路线反应 形成物质的阵列。可以通过溶胶-凝胶方法、热、红外或微波加热方法、煅烧、烧 结或退火的方法、水热方法、熔流方法、由蒸发溶剂的结晶方法,采用溶液合成 技术。光化学技术、聚合反应技术、模板控制合成技术、外延生长技术使组分反 应。然后从阵列中筛选具有可用性能的物质。
本发明的另一个实施方案,提供了无机材料在一个基材各预定区域的阵列。 这样的阵列可由多于10、102、103、104、105和106的不同无机化合物组成。 在一些实施方案中,单位面积的区域密度大于0.04区域/厘米2,较好的大于0.1 区域/厘米2,更好的大于1区域/厘米2,大于10区域/厘米2,最好大于100区 域/厘米2。在大多数较好的实施方案中,单位面积的区域密度大于1,000区域/ 厘米2,较好的大于10,000区域/厘米2,更好的大于100,000区域/厘米2,最好 大于10,000,000区域/厘米2。
另一方面,本发明提供了具有有用性能的物质,其制备方法为,在一个基材 上形成各种物质的阵列;从阵列中筛选出具有有用性能的物质;再制备更多数量 具有该有用性能的物质。因此,本发明提供了并行地合成和分析具有新的和有用 性能的新颖物质的方法和设备。
用前面的方法,发现了新的一族巨磁阻(GMR)化钴。采用薄膜沉积技术与 掩模技术结合,可形成含不同组成和化学计量的Ln1-xMxCoOz物质的阵列,其中 Ln为,如钇和镧,M为,如铅、、锶和钡,x约为0.1-0.9范围内的值,z约 为2-4范围的值。一旦形成后,可在阵列中筛选具有可用性能的物质。更具体地, 可在阵列中筛选具有巨磁阻(GMR)性能的物质。这样做后,在 La1-x-(Ba、Sr、Ca)x-CoOz样品中发现了大的磁阻(MR),其中x约为0.1-0.9范围内的值,z约为 2-4的值。一旦鉴别出具有有用性能的物质,就可制备更多的这样的物质。
这样做后,可以确定在GMR氧化钴的新家族中的化合物有下面的通式: Ay(1-x)My·xCoOz,其中A是选自镧、钇、铈、镨、钕、钷、钐、铕、钆、铽、 镝、钬、铒、铥、镱、镥的金属;M是选自钙、锶、钡、铅、铊和铋的金属;y 是约为1-2范围的值;x是约为0.1-0.9范围内的值;z是约为2-4范围内的值。 而且,已确定在GMR氧化钴新家族中的化合物一般具有分层的与钙矿有关的 结构。
参考下面的具体部分和有关的附图可进一步理解本发明的特点和优点。
附图简述
图1为用掩模掩盖基材的第一部位的剖面图;
图2A-2I说明了使用二元掩模技术,在单片基材上产生反应物阵列;
图3A-3I说明了采用物理掩模技术,在单片基材上产生反应物阵列;
图4A-4M说明了采用物理掩模技术,在单片基材上产生反应物阵列;
图5为用于提供本发明的反应溶液的普通导滴分散混合器装置;
图6说明了一个有八个RF磁控管溅射枪和旋转盘的反应体系的例子;
图7说明了一个有八个RF磁控管溅射枪和掩模盒的反应体系的例子;
图8说明了有脉冲式激光器和掩模盒的反应体系的例子;
图9说明了采用脉冲式激光器和滑动开关掩模体系的反应体系的例子;
图10A-10D说明了在进行本发明的方法时可采用的各种掩模。图10A为X/Y 开关掩模的例子;图10B说明了五种掩模图形,可用以沿基材对五种不同反应组 分形成不同的列;图10C说明了如何使用X/Y开关掩模,横贯基材上形成一种组 分的厚度梯度;图10D为当掩模横贯基材转移时,可使五种不同组分沉积在基材 的每半个上的掩模。
图11说明了一个在其上有二元掩模和X/Y开关的平片的例子。
图12说明了由电阻加热,控制集合物温度的例子;
图13说明了一个用于检测材料阵列的超导性的扫描RF磁化率检测系统的例 子;
图14为在MgO基材的16个预定区域上所提供反应组分的图;
图15为在1.25×1.25厘米的MgO基材上16种不同的化合物的阵列的照片;
图16A-16B说明了两种导电材料的电阻与温度的关系;
图17说明了用于产生材料集合的二元掩模;左下和右上角的数字表明集合 中每一组元的位置;MO表示没有第二种掩模;
图18为烧结前128组二元集合的照片;每个位置的颜色是从白色光源的反射 光的自然颜色;
图19A-19B为电阻与温度的曲线:(A)BiCuSrCaO;(B)BiCuSrCaCuCaO和 oBiCuCuSrCaCaO;
图20为用于产生YBCO-BSCCO集合的掩模。
图21A-21C为电阻与温度关系的曲线:(A)BiCuSrCaO;(B)YBaCaO;(C) YBa2Cu3Ox;
图22为用于产生氧化钴(CoO)薄膜材料集合的掩模;
图23说明在集合L2和L3中薄膜样品的组成和化学计量图(LnxMyCoO3-δ, 其中Ln=镧和钇,M=钡、锶、钙和铅)。在正文和图中,样品用指数(行号, 号)标示,每一小格中第一个数字指x,第二个数字指y。黑色、实心圆圈表明有 明显MR效应的样品。
图24A和24B说明了在L2(24A)和L3(24B)中的代表性样品作为磁场函数的 MR比;
图25A和25B说明了样品L3(13,2)在0T和10T下的电阻和MR比(H=10T) 与温度的关系(20A)以及样品在不同磁场下的MR与温度的关系(20B)。实心线用 于引起注意。
图26A、26B和26C分别说明钡、锶和钙掺杂的大样品的X衍射图(按立 方钙钛矿结构标识);X衍射图表明新的一类氧化钴材料的结构是略变形的立方 钙钛矿结构;
图27说明在1T磁场下La0.58Sr0.41CoOδ大块样品的磁化强度与温度关系。实 线用于引起注意。图22的插图说明了样品在不同温度下的MR比与磁场的关系。
本发明及其较好的实施方案的详细描述
目录
I.术语
II.综述
III.基材上反应部位的分隔
IV.提供反应组分的方法
  A.采用薄膜沉积技术提供
  B.用分配器提供
V.多目标的薄膜沉积体系
VI.相对于基材移动分配器
VII.使组分阵列反应的合成路线
VIII.筛选材料阵列的方法
IX.其它的实施方案
X.实施例
  A.16种氧化薄膜材料阵列的合成
  B.128种氧化铜薄膜材料阵列的合成
  C.含BiSrCaCuO和YBaCuO超导材料的128种氧化铜薄膜材料阵列的合成
  D.氧化钴薄膜材料阵列的合成
  E.16种不同有机聚合物阵列的合成
  F.不同沸石阵列的合成
  G.采用喷雾沉积技术合成氧化铜化合物阵列
  H.16种不同酸锌燐光体阵列的合成
  I.采用溅射技术与光刻掩模技术结合,来合成氧化铜薄膜材料阵列。
XI.结论
I.术语
本文使用的术语具有下面的意思。
1.基材:具有刚性或半刚性表面的材料。在许多实施方案中,至少有一个基 材表面基本为平的,尽管在一些实施方案中,要求将不同材料的合成区域实际上 分隔开来,如微凹处、凹处、凸起部位、蚀刻槽等。在一些实施方案中,基材本 身就有凹处、凸处和蚀刻槽等,形成了全部或部分合成区域。在其他的实施方案 中,可在基材表面的微凹处或其他部位提供小珠或颗粒,或以这些小珠或颗粒本 身作为基材。
2.预定区域:预定区域是基材上确定区域,该区域是、曾是或打算用于形成 选定的材料,在此亦可称为“已知区域”、“反应区域”、“选定区域”或简称 为“区域”。预定区域可以具有任何普通的形状,如线形、圆形、长方形、椭圆 形、楔形等。另外,预定区域即反应部位可以是涂布了所需反应组分的小珠或颗 粒。在这一实施方案中,可用标记来标明珠或颗粒,例如用蚀刻的二进制条形码 来指出珠或颗粒的历史,即标明是哪些组分沉积在它上面。在一些实施方案中, 预定区域即合成每一种材料的区域小于25厘米2,较好的小于10厘米2,还要 好的小于5厘米2,更好的小于1厘米2,最好的小于1毫米2,最最好的小于0.5 毫米2。在大部分较好的实施方案中,区域的面积约小于10,000微米2,较好的 小于1,000微米2,更好的小于100微米2  最好小于10微米2。
3.辐照:可选择使用的能源包括波长在10-14-104米的能源,包括如电子束照 射、γ射线、X射线、紫外光、可见光、红外线、微波和无线电波。“照射”指 在表面辐照。
4.组分:在此“组分”指能与其他化学物质作用生成特定材料的每一种化学 物质,在此也可称为“反应物”或“反应组分”。也就是说组分或反应物是能与 其他的分子作用产生新的分子即产物的分子;如在反应 HCl+NaOH→NaCl+ H2O 中,HCl和NaOH就是组分或反应物。
5.材料:术语“材料”在此指固态化合物、扩展的固体、扩展的溶液、分子 或原子簇、晶体等。
6.共价网状固体:由通过共价键以大的网状结合在一起的原子组成的固体。 这样的共价网状固体包括但不限于金刚石、氮化硅、石墨、bunkmisterfullerene 和不能以逐步法合成的有机聚合物。
7.离子型固体:可以看作是由相反电荷的电力吸引结合在一起的阳离子和阴 离子构成的固体。这样的离子型固体包括但不限于CaF2、CdCl2、ZnCl2、 NaCl2、AgF、AgCl、AgBr和尖晶石(如ZnAl2O4、MgAl2O4、FrCr2O4等)。
8.分子型固体:由原子或分子组成,通过分子间力结合在一起的固体。这样 的固体包括但不限于扩展的固体、固体氖、有机化合物、合成的或有机金属(如四 硫富瓦烯-四氰基醌二甲烷(TTF-TCNQ)),液体晶体(结晶硅氧烷)和蛋白质晶体。
9.无机材料:不含作为主要单元的材料。碳的氧化物和硫化物和金属碳化 物可认为是无机材料。用本发明的方法合成的无机化合物的例子包括但不限于:
(a)金属间化合物(或中间体组成):金属间化合物组成了一类独特的金属材 料,在低于临界温度下形成长程有序的晶体结构。当两种金属的原子以一定的比 例结合形成不同于这两种金属的任何一种的结构的晶体时,就形成这类材料(如 NiAl、CrBe2、CuZn等)。
(b)金属合金:具有金属性能的物质,由至少一种为金属的两种或多种化学元 素组成的混合物。
(c)磁性合金:具有磁性的合金,如硅铁和铁-镍合金,其中可含有少量的其 他元素(如铜、、铬、钼、等),还有铁-钴合金。
(d)陶瓷:一般陶瓷是金属氧化物、金属化物、金属碳化物、金属氮化物或 及其混合物。陶瓷是无机的非金属、非分子型固体,包括非晶形和晶形材料。采 用本发明的方法可形成和筛选具有特定性能的陶瓷材料。这类材料包括,如氧化 铝、氧化锆、碳化硅、氮化铝、氮化硅、YBa2Cu3O7-8的超导体、La2-xSrxCuO4的超导体、Bi2CaSr2Cu2O8+x的超导体、Ba1-xKxBiO3的超导体、ReBaCu超导体、 铁氧体(BaFe12O19)、沸石A(Na12[(SiO2)12(ALO2)]27H2O)、软磁和永磁铁、高介电 常数物质(BaTiO3)、压电材料(如钛酸锆酸铅(PZT)、NaNbO3和NaTaO3)、电光学 材料(如铌酸锂(LiNbO3))、巨磁阻材料(GMR)等。“巨磁阻”材料在此指处于磁 场中其电阻的变化大于不处于磁场中时电阻的5%的材料。也就是说,电阻变化 百分数的绝对值大于5%,
由下式计算电阻的变化。
10.有机材料:除了那些碳不起关键作用的化合物外(如碳酸盐),一般包括碳 和氢,有或没有氧、氮或其他元素的化合物。由本发明的方法合成的有机材料的 例子包括但不限于:(a)非生物有机聚合物:包含由许多重复单元组成的巨大分子 的非金属物质。这样的材料可以是天然的也可以是合成的、交联的或非交联的、 可以是均聚物、共聚物或较高级数聚合物(如三元聚合物等)。“非生物”表示, 不包括α-氨基酸和核苷酸。“非生物的有机聚合物”特别不包括由各结构单元通 过线性的、逐步偶合形的聚合物。由本发明的方法制备的聚合物的例子包括但不 限于:聚氨基甲酸酯、聚酯、聚碳酸酯、聚乙烯亚胺、聚乙酸酯、聚苯乙烯、聚 酰胺、聚苯胺、多炔、聚吡咯等。
11.有机金属材料:为R-M型化合物,其中碳原子直接与金属原子结合(如四 乙基铅(Pb(C2H5)4)、苯基钠(C6H5Na)、二甲基锌(Zn(CH3)2)等。
12.复合材料:不同形态和组成的两种材料在宏观尺度的组合。复合材料的 各组分保持其自身的特征,即尽管它们作用一致,但相互不完全溶解或融合。这 样的复合材料可以是无机、有机材料或其组合。在这一定义中的材料有掺杂材 料、分散金属催化剂和其他非均相固体。
II.综述
本发明提供了制备和使用在其预定区域上有材料阵列的基材的方法和设备。 在此描述的本发明主要为无机材料阵列,但也可以方便地应用于其他材料的制 备。根据本发明的方法制备的材料包括共价网状固体、离子型固体和分子型固体 等。更具体地,本发明的方法制备的材料包括但不限于无机材料、金属间材料、 金属合金、陶瓷材料、有机材料、有机金属材料、非生物有机聚合物、复合材料 (如无机复合物、有机复合物或其组合)、或其他对本领域的技术人员根据本说明 是显而易见的材料。
产生的有各种材料阵列的基材有广泛的用途。例如,可用这种基材筛选有可 用性能的材料。因此,最好在单片基材上合成材料的阵列。通过在单片基材上合 成材料阵列,可更容易地从阵列中筛选有用性能的材料。筛选的性能包括,如电、 热、机械、形态、光学、磁性、化学性能等。更具体地,包括,如导电率、超导 性、电阻、热导率、各向异性、硬度、结晶度、光学透明性、磁阻、磁导率、 倍频、光电发射、矫顽力介电强度、或其他对本领域的技术人员根据本说明是 显而易见的有用性能。很重要的一点是通过合成和筛选各种材料组成的阵列能鉴 别出具有新的物理性能的新的组合物。随后可以大规模地制备被发现具有可用性 能的任何材料。对本领域的技术人员来说很明显的是,用本发明的方法鉴别出有 用的材料,就可以采用各种不同的方法大规模地制备出具有基本相同结构和性能 的这种材料。
一般,通过在基材的预定区域相继地提供材料的不同组分,并同时使各组分 反应形成至少两种材料,来制备材料阵列。在一个实施方案中,在基材的选定的 第一区域提供第一材料的第一组分,在同一基材的选定的第二区域提供第二材料 的第一组分。之后,在基材的第一区域提供第一材料的第二组分和在基材的第二 区域提供第二材料的第二组分。可以均一的或梯度模式提供每一组分,以在一个 预定区域内产生单一的化学计量或多种的化学计量。而且,反应物可以非晶形 膜、外延膜、或点阵或超点阵结构的形式提供。对其他组分可重复这一过程,以 在基材的预定即已知部位形成巨大的组分阵列。之后,各组分同时反应形成至少 两种材料。按下面所述,可采用任何不同的供料技术在基材的预定区域相继地或 同时提供各种组分。
本发明的方法中,提供到基材的预定区域的组分可采用许多不同的合成路线 进行反应。例如,组分可通过溶胶-凝胶法、热、红外或微波加热法、煅烧、烧结 或退火法、水热法、熔流法、通过溶剂蒸发的结晶法,采用如溶液基合成技术、 光化学技术、聚合反应技术、模板控制合成技术、外延生长技术进行反应。其他 可用于所需组分同时反应的技术对本领域的技术人员是显而易见的。
由于反应是并行地进行,所以减少了反应步骤。而且,可以分别控制不同反 应区域的反应条件。可以改变基材上不同反应区域的反应物数量、反应溶剂、反 应温度、反应时间、反应停止的速度、反应物沉积的顺序等。因此,例如第一材 料的第一组分与第二材料的第一组分可以相同或不同。如果第一材料的第一组分 与第二材料的第一组分相同,可以相同或不同的量在基材的第一和第二区域提供 这一组分。对第一材料的第二组分和第二材料的第二组分也如此。与第一和第二 材料的第一组分的情况相同,第一材料的第二组分和第二材料的第二组分也可以 相同或不同,如果相同,则可以相同或不同的量在基材的第一和第二区域提供这 一组分。而且,在基材的预定区域内,可以均一或梯度方式提供组分。另外,如 果以相同的浓度在基材的第一和第二区域提供相同的组分,则可使各个反应区域 的反应条件(如反应温度、反应时间)互不相同。
在本发明的一个实施方案中,提供了形成至少两种不同材料的阵列的方法, 其中以基本相同的浓度在第一和第二基材的的各反应区域提供基本相同的反应 组分,之后在宽的组合物阵列中,使在第一组基材的组分按第一组反应条件,在 第二组基材的组分按第二组反应条件反应。采用这种方法,可研究和优化各个反 应参数的效果。可改变的反应参数包括,如反应物数量、反应溶剂、反应温度、 反应时间、进行反应时的压力、进行反应时的气氛、反应停止的速度、反应物沉 积的顺序等。其他可改变的反应参数对本领域的技术人员是显而易见的。
必须防止在各个反应区域的反应组分迁移到邻近的反应区域。最简单的方法 是,在基材的反应区域之间留有足够的空间,使各种反应组分在反应区域之间不 互扩散。而且,也可通过在各个反应区域之间提供合适的障碍来确保这点。一种 方法是由机械装置或物理结构来限定基材上的反应区域。例如,用壁或其他物理 障碍来防止在各自反应区域的反应组分迁移到邻近的反应区域。进行合成后可以 除去这种壁或物理障碍。本领域的技术人员会了解有时在筛选材料阵列前除去壁 或物理障碍较为有利。
另一种方法是,在各个反应区域的周围涂布疏水性材料。这样的材料可以防 止水溶液(和其他某些极性溶液)迁移到基材的邻近区域。当然,当使用非水或非 极性溶剂时,需要不同的表面涂料。而且通过选择合适的材料(如基材、疏水性涂 料、反应物溶剂等),可以控制液滴与基材表面的接触角。由于要求反应区域的周 围不被反应区域内的溶液润湿,所以需要大的接触角。
本发明的供料系统,可在每一反应区域提供少量的、精确计量的各种反应组 分。可采用各种供料技术或其与各种掩模技术结合来完成。例如,采用表面沉积 技术与物理掩模或光刻技术结合,可在基材的选择区域提供各种反应组分。更具 体地,可采用溅射系统、喷射技术、激光消融技术、电子束或热蒸发、离子移植 或掺杂技术、化学蒸汽沉积(CVD)和其他用于集成电路和外延生长材料的技术, 在基材的选择区域沉积高度均匀的各种反应组分层。也可通过改变掩模、目标和 /或基材的相对几何形状,在基材的每一预定区域或在所有预定区域内沉积梯度模 式的反应组分。这样的表面沉积技术一般与掩模技术结合,以确保仅在所需的反 应区域提供反应组分。
除了前面所述的,还可以液滴或粉末的形式由分配器将各种反应组分沉积在 所需的反应区域。例如,普通的微量移液管可适用于从毛细管分配5毫微升或更 小体积的液滴。当使用掩模时,这样的液滴适合于直径300微米或更小的反应区 域。分配器也可以是普通的喷墨印刷机中所用的类型。这样的喷墨分配系统包 括,如脉冲压力型分配系统、气泡喷射型分配系统和缝隙喷射型分配系统。这些 喷墨分配系统能够提供体积小至5微微升的液滴。而且,可以手动或采用机器人 技术自动控制这样的分配系统。
可用各种普通的系统使本发明的分配器对准合适的反应区域。广泛用于微电 子器件制造和测试领域的这样的系统可以5,000液滴/秒的速度在各反应区域提供 反应组分。这样的系统的平移精度(X-Y)比1微米好得多。可由本领域已知的方 式,校正这样的分配器支架相对于基材的位置。例如,利用基材表面上一个或两 个参考点,用“推测定位”法就可以确定基材上的每一反应区域。采用电容、电 阻或光的传感器可精确地鉴别在任何这样的系统中的参考标记。也可使用采用了 照相机的“观察”系统。
本发明的另一个实施方案,通过类似于在磁性和光储存介质领域使用的系 统,使分配器对准所需的反应区域。例如,可由盘形基材上的径迹和扇区部位来 鉴别想要沉积反应组分的反应区域。在旋转盘形基材的同时将分配器移动到合适 的径迹上。当合适的反应区域位于分配器下面时,就滴加反应溶液。
在一些实施方案中,由基材上的微凹处进一步确定反应区域。当传感头或其 他传感装置必须接触或沿基材表面滑动时,这点更为有利。微凹处也可作为将分 配器引向所需反应区域的鉴别标志。
III.分隔基材上的反应区域
在较好的实施方案中,用本发明的方法在一个基材的表面制备各种材料的阵 列。可使用各种基材。基材可以是有机、无机、生物、非生物或其组合,可以是 颗粒、线、沉淀物、凝胶、片、管、球、容器、毛细管、垫片、薄片、膜、板、 载片等。基材可以是任何形状,如盘、正方形、球、圆等。基材最好是平的,但 也可以有各种表面结构。例如,基材上可含有能进行各种材料的合成的凸起和压 陷。基材和其表面最好形成能在其上进行所述反应的硬质支撑体。基材可以是各 种材料,如聚合物、塑料、派热克斯玻璃、石英树脂、硅、二氧化硅或二氧化 硅基材料、碳、金属、无机玻璃、无机晶体、膜等。其他的基材对本领域的技术 人员是显而易见的。基材的表面可由与基材相同的材料组成,或由不同的材料组 成即在基材上涂布不同的材料。而且,基材表面可含有吸附剂(如纤维素),在其 上提供所需组分。最合适的基材和基材表面取决于合成的材料的类型,其选择对 本领域的技术人员是显而易见的。
在一些实施方案中,基材上合成每一材料的预定区域的面积小于约25厘米2, 较好的小于10厘米2,更好的小于1厘米2,还好的小于1毫米2,最好的小于 0.5毫米2。在大部分较好的实施方案中,区域的面积小于10,000微米2,较好的 小于1,000微米2,更好的小于100微米2,最好的小于10微米2。
在较好的实施方案中,单片基材上有至少10种不同的材料,较好的至少有 100种不同的材料合成于其上。在最好的实施方案中,一个基材上有多于103、 104、105、106或更多的材料合成于其上。在一些实施方案中,重复提供过程以 提供少至两种组分,尽管这种方法可方便地形成有3、4、5、6、7、8或更 多组分的材料。单位面积上的区域密度应大于0.04区域/厘米2,较好的大于0.1 区域/厘米2,更好的大于1区域/厘米2,还好的大于10区域/厘米2,最好的大 于100区域/厘米2。在大部分较好的实施方案中,单位面积的区域密度为1,000 区域/厘米2,较好的为10,000区域/厘米2,更好的为100,000区域/厘米2,最好 的为10,000,000区域/厘米2。
其他实施方案中,基材可以是各种小球或颗粒(以后称“小球”)。所用小球 的数量取决于想要合成的材料的数量,可从2个到无数个小球。在这一实施方案 中,每个小球均匀涂布了所需反应组分,然后进行反应。例如用分别装有特定反 应组分溶液的许多容器可以很方便地做到这点。根据用于产生材料阵列的组分数 量将小球平均划分为相应的组。每组小球投入一个容器,在每个小球表面形成溶 液中一个组分的涂层。将小球集中到一组,加热小球,在每一个小球表面产生干 的组分层。重复几次这一过程,直到在每一个小球表面产生不同反应组分的阵 列。一旦所需组分沉积到小球上,就让小球反应形成材料的阵列。所有的小球可 在相同或不同的反应条件下进行反应。可采用质谱法测定组分在各小球上沉积的 情况。也可在每一个小球上带有能标明组分沉积情况和化学计量的标记。标记可 以是,如蚀刻在小球表面的二元标记,以便能用分光镜技术看到标记。与其上有 材料阵列的单片基材的情况相同,可从各小球或颗粒中筛选出具有可用性能的材 料。
更具体地,如果使用许多小球作为基材,产生基于铋、铜、钙和锶的材料阵 列,例如可使用分别含有Bi(NO3)3、Cu(NO3)3、Ca(NO3)3和Sr(NO3)3的四个容 器。将一部分小球加到含有Bi(NO3)3溶液的容器中;一部分加到Cu(NO3)3溶液 中;一部分加到含Ca(NO3)3溶液的容器中;最后一部分加到含Sr(NO3)3溶液的容 器中。一旦小球涂布了容器中的反应组分后,从容器中取出小球、干燥、蚀刻、 收集到一组,之后再划分小球并加入到含有上面的反应组分的容器中。对其他附 加的反应组分可任选重复这一过程,直到在小球上形成巨大的组分阵列。可对这 技术进行各种修改,以产生巨大的小球阵列,而小球上的组分构成巨大的阵列, 这点对本领域的技术人员是显而易见的。例如,一些小球仅涂布两种组分,其他 可涂布两种以上的组分。另外,一些小球可多次涂布同一组分,而其他小球仅涂 布一次该组分。
如上面所述,基材最好是平的,但可以是各种形状。不管基材表面的形状如 何,必要的是要防止各个反应区域的反应组分迁移到邻近的反应区域。最简单的 方法是使基材上各个反应区域之间留有足够的空间,使各种组分在反应区域之间 不会互扩散。而且,可通过在各个反应区域之间提供合适的障碍来确保这点。一 种方法是由机械装置或物理结构来限定基材上的反应区域。例如,用壁或其他物 理障碍来防止在各反应区域的反应组分迁移到邻近的反应区域。还可使用微凹处 或其他凹处来防止在各个反应区域的反应组分迁移到邻近的反应区域。
如果本发明使用的基材含有微凹或其他凹处,微凹处必须很小,以便能紧密 集积在基材上。微凹处的直径应小于1毫米,较好的小于0.5毫米,更好的小于 10,000微米,还要好的小于100微米,最好的小于25微米。
可通过各种技术,包括激光、压制或蚀刻技术形成具有这些特点的微凹。例 如,通过一般用于制备高密度光盘的有刻痕的“主盘”来压制基材,可提供合适 的微凹的基材表面。另外,可采用使用光刻的各向同性或各向异性的蚀刻技术。 在这一技术中,需采用掩模来限定基材的反应区域。通过掩模照射基材后,在选 择区域除去光敏抗蚀剂,就确定了基材上反应区域的排列。采用标准等离子体湿蚀刻技术在基材上刻出微凹处。如果基材是玻璃或硅材料,合适的湿蚀刻材料 包括氟化氢或其他普通的用于半导体器件制造的湿蚀刻剂。也可以使用半导体器 件制造中使用的合适的等离子体蚀刻剂。这样的等离子体蚀刻剂包括含卤素气体 和惰性气体和混合物。尽管在有些条件下产生的深度可达到50微米,一般,等 离子体蚀刻产生的微凹其深度小于10微米。
制备合适的微凹表面的另一种方法是使用光化学可蚀刻的玻璃或聚合物片。 例如,可购自Corning玻璃公司的被称作“FOTOFORM”的光化学可蚀刻玻璃。 通过掩模照射后,该玻璃会溶解在水溶液中。之后,简单地用合适的溶液清洗曝 光后的玻璃,就可形成微凹表面。用这种材料,可制成深度与直径比为10∶1 或更大的规整的微凹,深度可达到0.1英寸。在250微米厚的玻璃层上可制出直 径为25微米的微凹。而且,带微凹的表面可含有吸附剂(如纤维素),在其上提供 所需的组分。
即使采用了微凹表面,仍很重要的是要确保在反应区域边界外的基材不被润 湿。最简单的方法是使基材上各个反应区域之间留有足够的空间,使各种组分在 反应区域之间不会互扩散。另外,可采用其他技术,以控制影响润湿的物理相互 作用,从而确保各个反应区域的溶液不润湿周围的表面和污染其他反应区域。液 滴是否会润湿固体表面受三种张力的控制:液体-空气界面的表面张力,固体-液 体界面的面际张力和固体-空气界面的表面张力。如果液体-空气和液体-固体的张 力之和大于固体-空气张力,液滴就会形成一个珠(这一现象称作“形成透镜”)。 另一方面,如果液体-空气和液体-固体的张力之和小于固体-空气张力,液滴就不 会限定在固定位置,而在表面铺展。即使表面张力不会使液滴在表面铺展,但接 触或润湿角(即液滴边缘与固体基材之间的角度)可能会足够小,使液滴覆盖相当 大的面积(可能延伸到给定的反应区域外)。而且,小的润湿角度会形成由液珠铺 展开来的薄的“前体膜”(约10-20埃)。大的润湿角度提供“更高”的液珠,液 珠在基材上占据较小的表面积,并且不形成前体膜。具体地说,如果润湿角度大 于90°,就不会形成前体膜。
控制化学组成并控制基材表面局部表面自由能的方法包括本领域所了解的各 种技术。可采用化学蒸汽沉积技术和其他集成电路制造中使用的技术,在基材选 择的区域沉积高度均匀的层。如果使用含水反应溶液,在反应区域内的表面可以 是亲水性的,而反应区域周围的表面可以是疏水性的。因此,改变基材各个部位 的表面化学,就能控制表面自由能即反应溶液液滴的接触角。以这种方式,可限 定在基材表面的反应区域阵列。
而且,如前所述,通过在基材的反应区域之间留有足够的空间,使各种组分 不会在反应区域之间互扩散,就能防止在各个反应区域的反应组分迁移到邻近的 反应区域。
IV.提供反应组分的方法
本发明的供料系统中,可在每一个反应区域提供少量和精确计量的每一种反 应组分。可采用各种供料技术或与各种物理掩模或光刻技术结合来完成。适用于 本发明的方法的供料技术一般被分为使用薄膜沉积技术的方法和使用分配器的 方法。
本发明方法中提供所述组分的步骤包括:
(i)鉴别在所述基材上的参考点;
(ii)将含所述组分的分配器从所述的参考点移动固定的距离和方向,使所述 分配器大致位于所述基材的所述第一区域的上方;
(iii)在所述的第一区域提供所述的组分;
(iv)在剩余的每个区域对剩余的每个组分重复步骤(ii)和(iii)。
在所述基材的第一区域提供所述第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组 分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)在所述基材的第一区域提供所述第一材料的第一组分;
(iii)除去所述的掩模。
在所述基材的第一区域提供所述的第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组 分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)在所述基材的第一区域沉积所述第一材料的第一组分的薄膜;
(iii)除去所述的掩模。
在所述基材的第一区域提供所述的第一材料的第一组分的步骤包括:
(i)在邻近所述基材处放置一个掩模,所述掩模只允许所述第一材料的第一组 分提供到所述基材的第一区域,而不会提供到所述基材的第二区域;
(ii)将所述第一材料的第一组分喷射在所述基材的第一区域上;
(iii)除去所述的掩模。
在所述基材的第一区域提供所述的第一材料的第一组分的步骤包括:
(i)在所述基材上沉积光敏抗蚀剂;
(ii)使在所述基材上的所述光敏抗蚀剂选择性曝光
(iii)从所述基材选择除去所述的光敏抗蚀剂,露出所述的第一区域;
(iv)在所述基材的第一区域提供所述第一材料的第一组分;
(v)从所述基材除去剩余的光敏抗蚀剂。
或者,在所述基材的第一区域提供所述的第一材料的第一组分的步骤包括:
(i)在所述基材的第一和第二区域提供所述第一材料的第一组分;
(ii)在所述基材上沉积光敏抗蚀剂;
(iii)使在所述基材上的光敏抗蚀剂选择性曝光;
(iv)从所述基材的第二区域选择除去所述的光敏抗蚀剂,露出所述第一材料 的第一组分;
(v)蚀刻掉露出的所述第一材料的第一组分;
(vi)从所述基材除去剩余的光敏抗蚀剂。
A.采用薄膜沉积技术的供料方法
薄膜沉积技术与物理掩模或光刻技术结合可用于在基材的预定区域沉积各种 反应物的薄膜。这样的薄膜沉积技术一般分成下面四类:蒸发法,辉光放电法, 气相化学法和液相化学技术。这些类中包括,如溅射技术、喷射技术、激光消融 技术、电子束或热蒸发技术、离子移植或掺杂技术、化学蒸汽沉积技术和其他在 集成电路制造中使用的技术。所有这些技术都可用于在基材的选择的区域沉积高 度均匀的各种反应物层即薄膜。而且,通过调整掩模、供料源和/或基材的相对 形状,采用这样的薄膜沉积技术可在基材的每个反应区域或所有的反应区域,形 成均匀的梯度。可用于本发明的方法中的各种薄膜沉积技术的综述可见于《薄膜 沉积方法和技术手册》,Noyes Publication(1988),在此引用作为参考。
采用蒸发法与物理掩模技术结合,可在基材上沉积各种反应物的薄膜。在热 蒸发和真空蒸发法中,一般依次有下面的步骤:(1)使目标物沸腾升华产生蒸 汽;(2)将蒸汽从源转移到基材;(3)蒸汽在基材表面凝结为固体膜。蒸发法中使 用的蒸发剂即目标物有特定范围的化学反应活性和蒸汽压,因此可使用很宽范围 的各种蒸发源来蒸发目标物。这样的源包括电阻加热的丝、电子束;由传导、辐 射或rf-感应加热坩埚电弧、爆炸线和激光。本发明较好的实施方案中,以 激光、丝、电子束或离子束作为源的蒸发法进行薄膜沉积。在更好的实施的方案 中,由激光作为源进行蒸发薄膜沉积。在这样的激光消融技术中,将能引起蒸发 具有足够功率的准分子激光器或YAG激光器的光通过观察窗口引导到保持在真空 下的靶材料。靶材料蒸发,将蒸汽从源移到基材,蒸汽在基材表面凝结为固体的 薄膜。采用上面的蒸发法,通过不同的物理掩模,进行后续的沉积可在基材上形 成供并行合成的反应物阵旬。
分子束外延(MBE)是用于生长外延膜的蒸发法。这种方法中,从分开的诺森隙 透源小池(在有冷却护罩的炉子中的深的坩埚)缓慢蒸发出薄膜的原子或分子组 成,至保持在适合于化学反应、外延和过量反应物再蒸发的温度下的基材上,从 而在单晶基材上形成膜。诺森隙透源小池可产生指向加热的基材(一般是硅或砷 化镓)的直径相当小的原子或分子束。在源池和基材之间插入快速开关。通过控 制这 些开关,可长出超点阵物,超点阵物具有精确控制的均匀性、晶格匹配、组成、 掺杂剂浓度、厚度和直至原子层水平的界面。
除了蒸发法外,采用辉光放电法与物理掩模技术结合,也可以在基材上沉积 各种反应物薄膜。最基本和最著名的这种方法是溅射法即由轰击离子将动量传递 给表面原子,从电极表面放出表面原子。溅射或溅射沉积是这些方法的领域的技 术人员使用的术语,包括许多方法,这些方法均可用于本发明的方法中。这样的 方法之一是RF/DC辉光放电等离子溅射法。这一方法中,通过加在阳极阴极之 间的高RF或DC电压,产生激励离子的等离子体。等离子体的激励离子轰击靶, 放出原子沉积在基材上。离子束溅射是溅射方法的另一个例子,它可用于在基材 上沉积各种反应物薄膜。离子束溅射与前面的方法相似,不同之处是由离子源而 不是等离子体提供离子。对本领域的技术人员显而易见的是,其他溅射技术(如二 极管溅射、反应溅射等)和其他辉光放电法都可用于本发明的方法,用以在基材上 沉积薄膜。通过不同物理掩模,采用溅射或其他辉光放电技术进行后续依次的沉 积可在基材上形成供并行合成的反应物阵列。
除了蒸发法和溅射技术外,可采用化学蒸汽沉积(CVD)技术与物理掩模技术 结合,在基材上沉积各种反应物的薄膜。CVD通过用热、等离子体、紫外线或 其他能源、或能源的结合,分解气态化学品,形成稳定的固体。基于通过电磁辐 射(通常为短波紫外线)来活化气体或蒸汽中的反应物的光加强CVD,和基于通过 等离子体活化气体或蒸汽中反应物的等离子体辅助CVD是两种特别有用的化学 蒸汽沉积技术。通过不同物理掩模,采用CVD技术进行后续的沉积,可在基材 上形成供并行合成的反应物阵列。
除了蒸发技术、溅射技术和CVD外,可采用许多不同的机械技术与物理掩 模技术结合,在基材上沉积各种反应物的薄膜。这样的机械技术包括,如喷涂旋涂(spinning)、蘸涂、漏滴、淋涂、辊涂、压力幕涂、刷涂等。其中,喷涂和旋 涂特别有用。可用于沉积薄膜的喷涂机包括声波喷嘴喷涂机、空气雾化喷嘴喷 涂机和雾化喷嘴喷涂机。超声波喷涂机中,盘形陶瓷压电换能器电能转化为机 械能。该换能器接受来自电源的高频信号形式的电输人,电源作用是振荡器/放大 器的组合。空气雾化喷涂机中,喷嘴将空气和液流混合,以产生完全雾化的喷涂 液。雾化喷涂机中,喷嘴运用加压液体的能量来雾化液体,从而产生喷涂液。通 过不同物理掩模,采用机械技术,进行后续的沉积可在基材上形成用于并行合成 的反应物阵列。
除了上面的技术外,可采用半导体工业熟知的光刻技术。这些技术的综述可 见于,如Sze,VLSI Technology,McGraw-Hill(1983)和Mead等人的Introduction to VLSI Systems,Addison-Wesley(1980),在此引用作为参考。可采用本领域的技术 人员了解的许多不同的光刻技术。例如,在一个实施方案中,将光敏抗蚀剂沉积 在基材表面;选择性地使光敏抗蚀剂曝光即光解;除去光解的或曝光的光敏抗蚀 剂;将反应物沉积在基材露出的区域;再除去留下的未光解的光敏抗蚀剂。另外, 当使用负性光敏抗蚀剂时,将光敏抗蚀剂沉积在基材表面;使光敏抗蚀剂选择地 曝光即光解;除去未光解的光敏抗蚀剂;将反应物沉积在基材上露出的区域;再 除去留下的光敏抗蚀剂。在另一个实施方案中,采用如旋转(spin-on)或旋转涂布 (spin-coating)技术在基材上沉积反应物;在反应物的上层沉积光敏抗蚀剂;使光 敏抗蚀剂选择性曝光即光解;从曝光的区域除去光敏抗蚀剂;蚀刻露出的区域, 以从那些区域除去反应物;除去留下的未光解的光敏抗蚀剂。与上面的实施方案 相同,可用负性光敏抗蚀剂取代正的光敏抗蚀剂。可重复这样的光刻技术,以在 基材上形成用于并行合成的反应物阵列。
本领域的技术人员应能很容易地理解,以上的沉积技术仅是为了说明而不是 限制反应物以薄膜形式在基材上沉积的方法。也可以使用本领域的技术人员了解 和采用的其他沉积技术。
图1和图2说明了可与前面提到的薄膜沉积技术相结合的物理掩模技术。更 具体地说,图1说明了本发明的一个实施方案,其中给出了基材2的剖面图。掩 模8可以是任何材料,包括如聚合物、塑料、树脂、硅、金属、无机玻璃等。其 他合适的掩模材料对本领域的技术人员是显而易见的。如图1所示,掩模靠近、 成象在基材表面或直接与基材表面接触。掩模上的“敞开”部分对应于基材上将 提供反应物的区域。掩模上的敞开部分可为各种不同的大小和形状。一般,敞开 部分是圆形、长方形、正方形。然而,也可以是长条形从基材一端到另一端提供 长条形的组分。这种“长条形”排列在有些情况下有利于材料的筛选和检测,如 发现和优化热电材料的情况。下面说明在一定时间曝光二分之一掩模的普通的二 元掩模技术。但除普通二元掩模技术外的其他掩模技术也可用于本发明的方法, 这点对本领域的技术人员来说是显而易见的。
如图2A所示,基材2有区域22、24、26、28、30、32、34、36、 38、40、42、44、46、48、50和52。如图2B所示,掩盖住区域38、40、 42、44、46、48、50和52,采用喷涂或溅射技术以薄膜形式向喷出的区域 提供组分A,产生的结构如图2C所示。之后,如图2D所示,改变掩模的位置, 掩盖住区域26、28、34、、36、42、44、50和52,再以薄膜形式向露出 的区域提供组分B,产生的结构如图2E所示。
也可以不重新放置第一掩模,而采用第二掩模,实际上,常需要多级掩模来 产生所需的反应物阵列。如果采用多级掩盖步骤,需采用普通的对准技术进行掩 模的对准,用对准记号(未给出)将后继的掩模精确地盖在以前步骤形成的图形 上,或采用更复杂的技术。而且,希望在露出的区域之间提供分隔,以计算对准 的公差并确保反应部位间的分隔,以防止交叉污染。另外,本领域的技术人员应 理解在所需反应区域用于提供各种反应物的供料技术可以按反应物不同而不 同,但最常用的是对各种反应物采用相同的沉积技术。
在基材上提供了组分B后,可采用不同于提供组分A和B的掩模,如图2F 所示,掩盖区域30、32、34、36、46、48、50和52。以薄膜形式向露出 的区域提供组分C,产生的结构如图2G所示。之后,如图2H所示,掩盖区域 24、28、32、36、40、44、48和52,再以薄膜形式向露出的区域提供组 分D,产生的结构如图2I所示。一旦在基材的合适的预定区域提供了所需的组 分,可采用不同的合成路线使组分同时反应形成至少包括两种材料的阵列。
如上面所提到的,在本发明中可采用除普通二元掩模技术外的掩模技术和前 面提到的薄膜沉积技术。例如,图3说明了可用于产生材料阵列的掩模技术,每 种材料包含三种不同组分,是由四种不同组分的基本组形成的。在非二元技术 中,对每种组分使用不同的掩模。如图3A所示,基材2有区域54、56、58和 60。如图3B所示,掩盖区域56,例如采用喷涂或溅涂技术以薄膜形式向露出的 区域提供组分A,产生的结构如图3C所示。之后如图3D所示,使用第二掩模 来掩盖区域54,再以薄膜形式向露出的区域提供组分B,产生的结构如图3E所 示。然后,如图3F所示,用第三掩模来掩盖区域58,再以薄膜形式向露出的区 域提供组分C,产生的结构如图3G。最后,如图3H所示,用第四掩模来掩盖 区域60,并以薄膜形式向露出的区域提供组分D,产生分结构如图3I所示。一 旦在基材的合适的预定区域提供了所需的组分,可采用不同的合成路线使组分同 时反应形成包含四种不同材料的阵列。
图4说明了用于产生材料阵列的另一种掩模技术,每种材料包含三种不同组 分,是由六种不同组分的基本组形成的。如图4A所示,基材2有区域62、64、 66、68、70、72、74、76、 78、80、82、84、86、88、90、92、 94、96、98和100。如图4B所示,掩盖区域64、68、72、76、80、84、 88、92、96和100,采用喷涂或溅涂技术以薄膜形式向露出的区域提供组分A, 产生的结构如图4C所示。之后,如图4D所示,使用第二掩模来掩盖区域62、 66、72、74、80、82、88、90、96和98,再在以薄膜形式向露出的区域 提供组分B,产生的结构如图4E所示。然后,然后如图4F所示,用第三掩模来 掩盖区域64、66、70、74、78、82、86、92、96、和100,再以薄膜形 式向露出的区域提供组分C,产生的结构如图4G所示。然后如图4H所示,以 第四掩模来掩盖区域64、66、70、76、78、84、88、90、94和98,再 以薄膜形式向露出的区域提供组分D,产生的结构如图4I所示。然后如图4J所 示,以第五掩模来掩盖区域62、68、70、74、80、84、86、90、94和 100,再以薄膜形式向露出的区域提供组分E,产生的结构如图4K所示。最后, 如图4L所示,以第六掩模来掩盖区域62、68、72、76、78、82、86、92、 94和98,再以薄膜形式向露出的区域提供组分F,产生的结构如图4M所示。 一旦在基材的合适的预定区域提供了所需的组分,可采用不同的合成路线使组分 同时反应形成包含二十种不同材料的阵列。
在使前述的组分反应前,可以化学计量的梯度在基材的预定区域提供附加的 反应组分,这点对本领域的技术人员来说是显而易见的。例如,一旦在基材的合 适的预定区域提供了六种组分,可横跨整个基材或部分基材上以梯度的形式提供 第七种组分。例如,可通过合适掩模从左到右沉积约100埃-1000埃厚度的梯度 层的第七种组分。之后,可采用不同的合成路线使组分同时反应形成不同材料的 阵列。
另外,对本领域的技术人员来说很明显的是,可采用其它的掩模技术来产生 材料的阵列,每种材料包含三种或更多的组分,是由四种或更多种材料的基本组 形成的。实际上,本发明提供了一种可用以产生组合的掩模图形的普遍方法,这 些图形可用于进行涉及不同组的反应组分的实验,而各组中的成员的相互关系使 它们之间最好不发生相互作用。在这种方法中,使用一个向量来代表每一个组分 子群。例如,由一个向量Am=[A1,A2,A3,....Am]=[La,Y,Ce,....Lu]代表如镧系 元素的组分子群,其中m为1-p,p是子群中的元的总数。应注意,组分可以任 何顺序排列。而且,如果子群中的一个特别组分以不同的化学计量量存在,则向 量代表了每一个不同的化学计量量(如A1.2相应于不同于A1.1的化学计量量)。
一旦由一个向量代表组分的每一个子群时,可形成向量的并矢。例如,如果 有两个组分的子群,如子群A和子群B,代表组分子群A的向量可写成Am=[A1, A2,A3,....Am],代表组分子群B的向量可写成Bn=[B1,B2,B3,....Bn]。这种两个 向量的并矢可写成AmBn。这一并矢等于由下式说明的二级张量。 A 1 B 1 A 1 B 2 . . . A 1 B n A 2 B 1 A 2 B 2 . . . A 2 B n A m B 1 A m B 2 . . . A m B n
向量Am和Bn的并矢产生子群A中组分与子群B中组分之间的所有组合。如 果以向量的形式写出上面的并矢即AmBn=[A1B1,A1B2,....A1Bn,A2B1, A2B2,....A2Bn,AmB1,AmB2,....AmBn],并且,在这一向量与代表子群C的向量Ck =[C1,C2,....Ck]之间可形成另一个并矢,形成下面的含有子群A、子群B和子群 C之间的每一个三重组合的矩阵。
因此,由给出的子群Am,Bn,Ck,Dj,....,采用下面的方式可产生阵列格式的由 每一组的一个组分构成的所有组合。
A.阵列中,每一个子群可沿阵列的行或列沉积。因此,必须选择相应于行的 子群和相应于列的子群。子群的选择不会改变阵列中点的数量,但会影响阵列的 形状。例如,在不改变阵列中点的总数的条件下,可得到4×4的阵列和1×16 的阵列。一般,图形的选择取决于集合所能取的结构。
B.该方法的其余部分是按上面说明的对子群A、B和C所做的那样,在行 集和列集内形成并矢。应当注意,在形成下一个并矢之前,每个阵列形成的并矢 应先转换为矢量形式。阵列内会有一点,在该处行集和列集中都只有一个向量。 这两个向量可分别称为行向量和列向量。当行向量与列向量之间构成并矢时,所 得的阵列就是组合的集合的最终格式。
C.在任一矢量或阵列内各组分的次序对结果并无影响,但会改变产生相同结 果所需的掩模图形。如果在上述应用子群A、B和C的例子中,最终的组合阵 列的排列如前,那么只需要沿行或列的条形掩模就可产生组合的集合。
在非数学的术语中,选择子群要求子群中的所有元素横贯集合的行或列,并 列沉积。例如,对四个元素的组,可沿行或列将阵列四等分,每一种组分沉积在 一个四分之一中。如果行或列例如已经三等分,每个三分之一将再四等分,所有 的四个组分将平均沉积在较大的每个三分之一的等分区中。
对本领域的技术人员来说很明显的是以上的方法可用于,对给出的一组预定 的组分,产生供任何试验用的组合掩模图形。
B.用分配器供料
除了上述的供料技术外,可采用分配器在一个基材上以液滴或粉末的形式产 生各种反应组分的组合。如上所述,可采用市售的微量移液管装置,从毛细管分 配5毫微升或更小体积的液滴。当采用非润湿掩模时,这样的液滴适合于直径为 300微米或更小的反应区域。在一些实施方案中,如下面所述的,在沉积反应溶 液前,微量移液管精确地定位于反应区域的上方。
在另一个较好的上述方案中,本发明采用了一套溶液沉积装置,它类似于普 通的在喷墨印刷工业中使用的装置。这样的喷墨分配器包括脉冲压力型、气泡喷 射型和缝隙喷射型。在脉冲压力型喷墨分配器中,根据压电器件所施加的压力变 化,从喷嘴喷射出印刷墨水。在气泡喷射型喷墨分配器中,由嵌在喷嘴中的电阻 装置产生的热来产生气泡,利用气泡的膨胀的力喷射印刷墨水。在缝隙喷射型喷 墨分配器中,在缝隙状的小孔中装入印刷墨水,在小孔内,有记录电极对准象素, 在记录电极与置于记录纸后面的反电极之间加上DC电压脉冲。在这一系统内, 在记录电极顶端周围的印刷墨水是带电荷的,墨水靠静电力喷射到记录纸上,在 纸上记录一点。
通过简单地用含反应物的溶液或含反应物的粉末代替墨水,对这样的喷墨印 刷机做很小的改动就可应用。例如,在此作为参考的Wong等人的欧洲专利260 965,描述了使用脉冲压力型喷墨打印机将抗体施加于固体基质。在这一方法中, 迫使含有抗体的溶液通过一个小孔喷嘴,喷嘴是振动的,其振动方式会将溶液分 散成不连续的液滴。随后让液滴通过电场使其带电,并偏转至基质材料上。
为说明的目的,普通的脉冲压力式的墨水滴印刷机包括在压力下装墨水的储 存器。墨水储存器装有一个连接到喷嘴的管子。用机电换能器使喷嘴以合适的高 频振动。喷嘴的实际结构有许多种,包括由外部换能器振动的拉伸玻璃管、由外 部换能器(如压电晶体)振动的金属管、或由磁致伸缩方式振动的磁致伸缩金属 管。墨水以液流方式从喷嘴喷出,液流很快分成不连续的液滴。靠近喷嘴处可有 一个电极使液滴带电。
图5所示为可用于本发明的脉冲压力型墨水分配器的示意图(如在美国专利 3,281,860和4,121,222中所述,在此作为参考)。这一装置包括含有在压力下的溶 液的容器210。管212一端连接到储存器210,另一端连接到金属喷嘴242。喷 嘴置于压电晶体240的孔中。金属管与压电晶体的端部相吻合。将管和压电晶体 焊接在一起,形成永久的防水连接。晶体和管的吻合端用一个垫片244覆盖,244 称作为小孔垫片。这种垫片上有一个穿透的开口246,溶液在压力下由此射出。 在金属管242外部和压电晶体外部之间连接着振荡源218。结构采用气密密封以 保护组分不受电化学和大气侵蚀。
压电晶体基本上在振荡源的频率下振动,使管和喷嘴振动以使溶液流分成液 滴246。在喷嘴与充电的圆柱体之间连接了与振荡源同步的信号源224。因此, 每个基本上质量相同的液滴接受了电荷,其大小取决于源224和充电圆柱体226 上所加信号的大小。
通过带电圆柱体后的带电液滴通过在230和232两个板之间建立的电场,该 两板连接到电场电势源234。由于电场和每个液滴的电荷作用,根据液滴所带的 电荷,液滴会偏离两板之间的中心线。因此,当液滴落到可以是移动的书写介质 236上时,就在书写介质上产生代表信号中的信息的沉积图形。
尽管已详细地描述了脉冲压力型喷墨印刷机,对本领域的技术人员很清楚的 是只要做很小的修改,就可以采用气泡喷射型和缝隙喷射型喷墨印刷机,在基材 的预定区域提供反应组分。而且,尽管在较好的实施方案中,上面的讨论指的是 一个喷嘴,但可以使用有多个喷嘴的喷墨印刷机,在基材的一个预定区域或多个 预定区域提供多种反应组分。另外,在喷墨印刷机领域的改进也可用于本发明的 方法中。
在另外的实施方案中,用电泳泵将反应溶液从储存器提供到基材。在这样的 装置中,由很细的毛细管将反应物储存器与分配器的喷嘴连接起来。在毛细管的 两端,设有电极以提供电势差。如本领域所了解的,化学物质在电泳介质的电势 梯度中的运动速度受到各种物理性质的控制,包括电荷密度、以及迁移的化学物 质的大小和形状、以及迁移介质本身的物理和化学性质。在合适的电势梯度、毛 细管尺寸和迁移介质的流变学的条件下,在毛细管内将建立流体动力学流动。因 此,可由泵将含所需反应物的大量流体从储存器送到基材。通过适当调节电泳泵 喷嘴相对于基材的位置,可将反应溶液精确地提供到基材的预定反应区域。
采用上面所述的分配系统,可相继地或同时将各反应物提供到基材的预定区 域。在目前较好的实施方案中,在基材的一个预定区域或多个预定区域同时提供 反应物。例如,用有两个喷嘴的喷墨分配器可同时在基材的一个预定区域提供两 种不同的反应物。也可用同样的分散混合器,在基材的两个不同预定区域同时提 供一种反应物。在这种情况下,可以提供相同的反应物或提供两种不同的反应 物。如果在基材两个预定区域提供相同的反应物,可以相同或不同的量提供。同 样,例如采用有八个喷嘴的喷墨分配器,可在基材的一个预定区域同时提供八种 不同的反应物,或者在基材的八个不同预定区域同时提供八种反应物(相同或不 同)。
VI.多靶薄膜沉积体系
进行前述的薄膜沉积技术的反应体系,可有许多种,而在很大程度上取决于 所采用的薄膜沉积技术。本发明提供了许多可用于进行本发明的方法的多靶薄膜 沉积体系。在此所揭示的这一体系的许多实施方案和变动对本领域的技术人员来 说是显而易见的。
A.有回转盘的溅射系统
图6说明了用于本发明的方法的有八个RF磁控管溅射枪的系统的例子。这 一系统包括八个RF磁控管溅射枪110,每一个中含有所需的一种反应组分。八 个RF磁控管溅射枪置于盘112上方约2-5英寸处,盘112上有八个掩盖的图形 114和八个薄膜厚度监测器116。在这一体系中,八个RF磁控管溅射枪和盘是固 定的。基材118连接在基材控制器120上,120可以作直线和旋转运动,使基材 与特定的所需掩模吻合,当溅射开始时,使基材与掩模接触。依次让各组分通过 各自的掩模沉积,在基材上产生八种组分的各种组合。整个系统是在真空下使用 的。
也可能让其上含有八个掩模的盘112作旋转运动,提供使八个反应组分中的 任一组分与任意一个掩模114匹配所需的灵活性。这种灵活性,有利于将盘112 的容量增加到多于八个掩模114,使一种反应组分可通过多个掩模沉积。当需要 在集合的不同点获得反应组分的不同的薄膜厚度时,这种方法特别有用。另外, 这系统可从极坐标系统转化成X-Y坐标系统,其中溅射枪、掩模和基材成直角配 置,
B.有掩模盒的溅射系统
图7说明了组合溅射系统的另一种设计。这系统包括八个RF磁控管溅射枪 110,每一个含有所需的一种反应组分,从反应腔的边上插入组成一圈。基材接 到可直线和旋转运动的轴130上。在沉积期间,基材可以平移和旋转,使其对着 八个RF磁控管溅射枪110的任何一个。基材放人基材固定器132,132除了固 定基材外,还可将第二掩模134牢固地压在基材118上(原始掩模是确定了基材上 的反应点的大小和密度的格子,在整个试验过程都是固定的)。沉积了一种反应组 分后,使用控制器除下第二掩模,将其置于盒子140中,取下下一步需要的第二 掩模,将其放在基材固定器132上面。基材固定器上的固定结构将确保将掩模对 准在25微米内。(对本领域的技术人员,很明显的是有多种固定结构可以优于25 微米的精度使基材与掩模对准)。图7所示的图形中,控制器138可以在垂直方向 上下运动,盒子140可以在水平方向作直线运动。用这样的格式,控制器138可 用于移出在盒子140中的任何第二掩模。这种设计可较好地适合于使用两种掩 模,更好的可使用八种掩模,还要好的可使用20种掩模,最好的可使用多于20 种掩模。采用这种系统,可通过各个掩模沉积所有反应组分,形成分层的薄膜前 体的组合的集合。
C.有掩模盒的脉冲激光沉积系统
与上面描述的系统有关的一个系统是有盒子的交换结构的脉冲激光沉积系 统。图8说明了这一设计。在回转轮上放人反应组分,回转轮至少可装入四种反 应组分,更好的至少可装入八种反应组分。另外一种方法是,在多边形体142的 不同面上各放置一种反应组分(见图8)。例如,如果多边形体是十面体,在其上 可放十种反应组分。不论那一种设计,其目的是能迅速将反应组分移至激光束144 前方放置特定的时间周期,并立刻调换反应组分。在回转轮的实施方案中,快速 旋转反应组分使其与激光束144相交。在多面体实施方案中,通过将所需的多面 体的面旋转至面对固定的激光束144的位置,来交换反应组分。
与溅射薄膜沉积技术相比,脉冲激光薄膜沉积技术在交换反应组分方面提供 了更大的灵活性和速度,但在大于1厘米2的面积上其均匀性有所降低。然而, 目前有几种采用激光的技术能在100厘米2的表面上达到均匀性。第一种最普通 的这种技术是在沉积反应组分期间使基材作行星运动。这种行星运动可确保反应 组分射出的材料卷流均匀地铺展在整个基材上。在沉积期间移动基材的代价是速 度降低,因为,需要许多个1厘米2的沉积点来有效地均匀覆盖如直径为5厘米 的一个圆。
沉积期间,在大面积上获得均匀性的另一种方法是使用了扫描激光束的技 术。图8说明了这种设计,程序可控镜146使激光在整个消融靶即反应组分的直 径上扫描。使扫描激光束的速度作为位置的函数而变动,在靠近基材外缘处可在 较长时间内产生消融卷流,从而产生均匀的膜。这种技术还有一个优点,可始终 产生不随时间变化的卷流。
在图8所示系统中,基材安装在可旋转和垂直移动的轴130上。而且,除了 采用扫描的激光束外,每个消融靶即反应组分旋转以使靶的全部表面暴露在激光 束下。这改进了在大于1英寸2面积上的沉积的均匀性。如图7说明的系统那样, 基材放在样品固定器132中,第二掩模134放在基材固定器132内的基材的上面。 通过使用固定结构正确对准第二掩模134和基材。固定结构的精度最好优于25 微米。在沉积步骤之间,不破坏真空的条件下,用在反应室内的盒子中的其余第 二掩模来交换掩模。交换掩模的一般过程已于上面说明。
D.有滑动与开关掩模系统的脉冲激光沉积系统
当建立仅含三元、四元和五元材料的包括1,000种材料以上的集合时,涉及 不同掩模步骤的数目很容易达到30。而且,每一个集合很可能需要使用一些原 始的掩模图形。因此,有一个能在基材的前方形成几百种不同掩模图形,而每一 个图形只需要在几秒钟内就可形成的系统将是非常有利的。图9说明了这样的一 个系统。
在这一设计中,反应组分和激光的配置如图9所示。在基材固定器132中的 基材接到轴130上。轴130可在X、Y和Z的方向平移并能旋转。基材放在有孔 的固定板150下,孔应大于1厘米2,更好的大于6厘米2,最好的大于50厘米2。 在孔板150的上方是在其上有多个掩模的平片152。片152接到控制器或轴130, 可将任一掩模平移至孔板150上面。一般,在孔板150与片152之间几乎没有间 隔。
片152上的一个掩模按九个正方形的最普通的形式组成,每一个正方形与孔 板150上的孔的大小基本相同。只有中间的正方形是空的。这种掩模如图10所 示。当掩模接到能在X和Y方向平移的平片上时,这种掩模能有效地成为一种 X/Y开关掩模。因此,可以形成不同大小的正方形、长方形、‘L’和在X或Y 的方向的条形。假定基材也能在X和Y方向平移,在这种结构就形成了两个开关 的结构。本领域的技术人员很容易地就能理解,可以有其他的排列(如‘L’形 掩模代替正方形掩模),也可以形成作用与在此描述相同的两个开关的系统。
采用X/Y开关掩模和基材的组合,可以形成成百个不同掩模图形,在几秒钟 内就能形成一个。例如,图10B中所示的5个掩模图形可以沿基材形成五个分别 的列,用于五种不同反应组分。用X/Y开关掩模完成同样设计的方法为,首先将 掩模滑动到右面,用孔板的右边形成一个有基材的五分之一大小的开口(如图10B 中的第一掩模),然后,每次沉积后向左移动基材。因此,在不需要交换掩模下, 以沉积步骤的相同次数即5次,形成同样的图形。而且,当需要某一组分的厚度 横跨集合作梯度变化时,可如图10C所示,使X/Y开关以恒定的速度从右到左平 移。
前面的X/Y开关系统可与更普通的二元掩模技术组合使用。例如,图10D的 掩模平移扫过基材时,可在基材的每一半沉积五种不同的组分。然而,用X/Y开 关系统需要两倍的步骤。所以,常常有利的是在位于孔板150正上方的平片152 上,除了X/Y开关外还加上二元掩模。图11说明了这样的片结构的一个例子。
除了用于与普通的二元掩模技术结合,X/Y开关系统也可用于与其他掩模技 术结合。特别是,可与前面描述的用于进行涉及使用不同组的反应组分的试验的 形成掩模的方法一起使用,希望其中每组的元之间不会相互作用。下面为如何进 行的一个例子。
在这一实施例中,有三组反应组分即组8、组5和组3,每组分别含有8个、 5个和3个组元。而且组8的每一个组元有5个设定值,组5的每个组元有3个 设定值,组3的每个组元有1个设定值。因此,阵列中反应点的数量为1800或(8 ×5)×(5×3)×(3×1)。为制备有1800个反应点的阵列,可使用一个宽度上有 40行,长度上有45列的基材。组8有8个组元,每个组元有5个设定值,可沿 行沉积,而有5个组元,每个组元有3个设定值的组5和有3个组元,每个组元 有1个设定值的组3可沿列沉积。采用图9所描述的激光系统,假设沉积时间对 1个“1×1”的面积,约为5埃/秒,每层的沉积厚度为2埃,所需的掩模步骤 数为34,总的沉积时间为23分钟。总的沉积时间并未考虑交换34个掩模所需 的转换时间。采用上面描述的X/Y开关系统,需要90步,1小时的总沉积时间。 然而,采用两种掩模与X/Y开关系统结合,掩模的步骤减少到50,沉积时间减 少到33分钟。
上面是可用于进行本发明的方法的许多不同的多靶、薄膜沉积系统的一个例 子。这样的系统提供了用于形成分层薄膜材料的组合的集合的一般方法和设计。 本领域的技术人员应能理解,可以在次要方面对任何不同的薄膜沉积技术进行修 改和优化。
VI.相对于基材移动分配器
要用分配器在基材的精确确定的区域沉积反应物液滴,需要一个供料装置和 基材所共有的参考系。换句话,装置的参考坐标必须精确地变换到基材的参考坐 标上。理想的情况下,仅需要基材上的两个点就能完全变换反应区域的阵列。分 配器装置定出这些参考点的位置,并调整其内参考坐标以提供所需的变换。之 后,分配器可在特定的方向移动特定的距离,将位置改变到已知的区域上方。当 然,分配器必须能够提供精确的重复运动。而且,在形成参考记号后,阵列的各 个区域不能相对于参考记号移动。不幸的是,制造和使用过程中常会遇到的压制 或其他机械操作会扭曲基材,而改变参考记号与反应区域之间的对应性。
考虑到这种可能,最好采用含有“整体”和“局部”的参考记号的基材。在 较好的实施方案中,一般在基材上仅有两个处于方便位置的整体参考记号来确定 最初的参考系。当这些点确定后,分散混合器装置就有了基材和其上的反应区域 的大致的图。为有助于确定反应区域的确切位置,将基材进一步划分成局部参考 系。因此,最初“行程”调整中,将分配器置于一个局部参考系中。在局部区域 内,分配器装置寻找局部参考记号,以进一步确定局部参考系。由这些,分配器 可精确地移动到需沉积反应物的反应区域。以这种方式,就可最大程度地减少扭 曲或其他变形的影响。由预期到的基材变形量来确定局部参考记号的数量。如果 基材很刚硬,几乎没有变形发生,只需要很少的局部参考记号。如果预期到会有 显著变形,就需要更多的局部参考记号。
从一个参考点开始,微量移液管或其他分配器以正确的方向和距离从一个反 应区域平移到另一个反应区域(这就是“推算法定位”的导航技术)。因此,分配 器可以从一个区域移动到一个区域,分配正确计量的反应物。为能最初确定参考 点和将分配器对准它,可采用视觉系统或仅由仪表操作的系统。在视觉系统中, 分配器的喷嘴上固定连接一个摄像机。当摄像机确定了参考点,分配器就在离开 这点固定的距离和方向的位置,从而建立了参考系。仅由仪表操作的系统由如电 容、电阻或其他光学技术来确定参考点。一个光学技术的例子,使激光束透过基 材或从基材反射。当光束遇到参考记号,由传感器检测到光密度的变化。类似可 应用电容和电阻技术。当遇到参考记号时,传感器记下电容或电阻的变化。
本发明中,可根据使用的区域大小改变各个区域之间的间隔。例如,如果使 用1毫米2的区域,各个区域之间的间隔最好是1毫米或更小。如果使用10微米 2的区域,各个区域之间的间隔最好是10微米或更小。而且,单元之间的角度最 好一致,在0.1°内。当然,用于确定单元的排列的光刻法或其他方法可精确地确 定角度和空间。然而,在后续工艺中(如压制工艺)会改变角度。因此,在一些实 施方案中,有必要在整个阵列中使用“局部”参考点。
能够以所需的精度移动的平移机构最好配备在半导体设备制造和检测中使用 的位置反馈结构(即编码器)。这样的机构最好是没有明显后冲和滞后的闭环系 统。在一个较好的实施方案中,平移机构应具有高分辨力即每个编码器计数大于 五个达信号(motor ticks)。而且,这样的机电结构最好对区域直径上的移动距离 有高的重复性(最好为±1-5微米)。
为能在基材上精确沉积反应物溶液,分配器的喷嘴必须放置在表面上方离开 正确距离的位置。在滴加液滴时,分散混合器的端部应位于距基材表面0.1-6厘 米的上方。获得这样的精确度所需的控制度可用上面描述的重复性高分辨率平移 机构实现。在一个实施方案中,通过以小增量向基材移动分配器,直到其端部触 到基材,来确定高出在基材的高度。在这点,使分配器移动离开表面固定数目的 增量,即对应于一定的距离。从此滴加液滴到单元。最好分配器移动的增量数可 根据所使用的区域大小来改变。
在另一个实施方案中,分配器的喷嘴包了一层外壳,外壳刚性地从分配器端 部伸出一段固定的距离。最好这段距离相应于在基材的选择区域提供液滴所落下 的距离。因此,当外壳接触到基材表面时,停止分配器的移动并滴加液滴。在这 个实施方案中,接触后就不必从基材后缩分散混合器。在这一实施方案和前面的 实施方案中,可由各种技术如通过检测分配器端部(或外壳)与下面的基材之间的 电容或电阻来测定接触表面的点。在与表面接触时可观察到电容或电阻的迅速变 化。
以上只针对平移运动来描述分配器的供料系统。但也可使用其他系统。在一 个实施方案中,通过类似于磁和光储存介质领域所使用的系统,使分配器对准所 需的区域。例如,由在盘形基材上的径迹和扇区位置来鉴别沉积反应物的区域。 在旋转盘基材时,将分配器移动到合适的径迹上。当合适的单元位于分配器下面 时(由径迹上的合适的扇区确定),就滴加反应物液滴。
可通过本领域的技术人员了解的各种技术来控制液滴的大小。例如,在一个 实施方案中,可采用普通的微量移液管装置,从毛细管分散5毫微升或更小的液 滴。当采用非润湿掩模时,这样的液滴适合于直径为300微米或更小的区域。
尽管在上面的实施方案使用了液滴的系统,每种试验物质的微小等分部分还 可以粉末或小颗粒形式提供到反应区域。例如由所需的化合物或组分和一种或多 种惰性粘结材料形成颗粒。这样的粘结剂组成和这样的“颗粒”的制备方法对本 领域的技术人员来说是显而易见的。这样的“微粒”应可与各种试验物质配伍, 具有长期稳定,并易于从储存器中取出和分散。
VII.使组分阵列反应的合成路线
一旦在基材的预定区域提供了组分的阵列,可采用各种不同反应路线使各组 分同时反应。例如,通过溶胶-凝胶方法,热、红外或微波加热法,煅烧、烧结 或退火法,水热法,助熔法,通过溶剂蒸发的结晶法,采用溶液基合成技术、光 化学合成技术、聚合反应技术、模板控制合成技术、外延生长技术使组分反应。 其他可用的合成技术对本领域的技术人员是显而易见的。而且,最合适的合成路 线取决于合成的材料的类型,在任何情况下的选择对本领域的技术人员都是明显 的。另外,对本领域的技术人员来说很明显的一点是,如果需要,反应组分在反 应前,可采用如超声波技术、机械技术等进行混合。可在给定的基材预定区域直 接应用这样的技术或同时在所有预定区域应用这技术(如,以能使组分有效地混 合的方式机械地移动基材)。
传统的固相合成路线涉及固体反应物的烧结。例如,用于合成超导体的标准 方法是,一起研磨几种金属氧化物粉末,压制该混合物,之后,在800-1000℃焙 烧。粉末混合物中的元素烧结,即发生化学反应形成新的化合物,并熔合成固体, 而没有经过液相或气相。气相元素如氧,可在烧结期间加入或在随后的步骤中加 入,反应过程中可改变系统的压力。不幸的是,采用传统的烧结技术,由于原子 或离子在固相反应物、中间反应物和产物中的扩散很慢,限制了反应速度。而且, 常常需要高温来加速扩散和在热力学上促使稳定相的形成。
与这样的传统路线不同,本发明的新的固相合成路线可在较低温度下合成化 合物。发现,通过大大缩短反应物扩散的距离和增加表面积与体积的比,可在较 低温度下提高反应速度。通过以非常薄的薄膜形式沉积反应物,或以溶液形式在 基材上提供反应物的基于溶液的合成技术,可达到这点。而且,当在约200-600 ℃下进行合成反应时,可使用熔融盐来溶解反应组分。这种技术一般指助熔法。 类似,在水热法中,使用含有溶解的无机盐的水或其他极性溶剂来溶解反应组 分。一般在加压和100-400℃的温度范围进行水热法。而且,采用本发明的各种 合成路线,可在惰性气氛、氧或其他气体下,对反应组分阵列加压或减压。另外, 本发明的合成路线中,基材的各个区域可经受不同的热处理,如激光热分解,其 中向基材的预定区域提供预定持续时间和强度的能量脉冲。
实际上,在本发明的另一个实施方案中,通过使用薄膜电阻元件分别加热预 定区域,使基材上的各预定区域处于不同的反应温度。在这一实施方案中,采用 任何前面描述的薄膜沉积技术,在一个清洁的基材上沉积如钨的电阻元件。例 如,沿预定区域的行或列以带状形式沉积电阻元件。每条带连接到接在电源的导 线上。通过改变在给定带上的输入功率来调节预定区域的温度。一般任何熔点高 于反应进行的温度的导体材料都可作为电阻元件。合适的材料包括但不限于,金 属、合金和陶瓷。这样的材料的例子包括但不限于,铟掺杂的氧化(ITO)、钨、 钼、钽、铂、铜-镍合金、铂和铑合金、铝-镍合金等。
在一些情况下,需要用保护涂料涂布电阻元件,以防止电阻元件和组分阵列 的互扩散。使用前面描述的薄膜沉积技术,以薄膜材料的形式涂布保护涂料。由 能有效导热,并在进行反应的温度下为惰性的材料制成保护涂料。合适材料的例 子包括但不限于,氧化镁、钛酸锶、钛酸钡、三氧化二铝和其他电导性良好和惰 性的半导体和陶瓷材料。
一旦沉积了电阻元件,采用薄膜沉积技术与掩模技术结合,以产生组分阵列。 图12说明了这种方法的一个例子。在这一实施例中,在沉积薄膜阻带以后再 产生化合物的集合。如图12所示,一个电阻元件占据了基材上预定区域的整个 一列。对本领域的技术人员来说很明显的是电阻元件可以沉积成任何图形,而 且,设计的沉积方法可使电阻元件覆盖基材上不同的预定区域。
而且,采用本发明的合成路线,可在各个供料步骤之间处理组分阵列。例如, 在基材的第一区域提供组分A之后,在升高的温度下暴露在氧中。随后在基材的 第一区域提供组分B,然后组分A和B在一组反应条件下反应。可在各个提供 步骤之间进行其他处理加工步骤,这点对本领域的技术人员是显而易见的。
因此,使用本发明的方法,可以制备下面的材料:共价网状固体、离子型固 体和分子型固体。更具体地说,采用本发明的方法可以制备,如无机材料、金属 间材料、金属合金、陶瓷材料、有机材料、有机金属材料、非生物有机聚合物、 复合材料(如无机复合物、有机合物或其组合)等。例如,使用基于溶液的供料技 术在基材的预定区域提供反应组分,可以制备陶瓷。一旦在基材上提供了所需反 应组分,加热基材至溶剂的沸点,以蒸发除去溶剂。还可在加热的基材提供反应 组分,除去溶剂。然后氧化基材以从阵列中除去不需要的组分(如碳、氮等)。在 约800-875℃的温度下快速加热基材2分钟。之后,迅速停止反应,扫描阵列找 出具有如荧光性、超导性、介质强度等特定性能的材料。采用类似的方法可以制 备磁性材料,不同之处为,在磁性材料的情况下,需在磁场存在下,在基材上提 供组分并使其同时反应。
而且,采用本发明的方法可以制备沸石即水合硅酸铝和水合硅酸钠、硅酸钙 的阵列。要制备这样材料的阵列,应以浆液的形式在基材的预定区域提供反应组 分。例如,采用较低温度的水热法(如60℃-约70℃),沸石就能从溶液中结晶。 另外,通常以溶液的形式,在基材的预定区域提供所需的单体,可以制备有机聚 合物。一旦提供了所需的单体,可在基材的每个区域加入引发剂。使聚合反应进 行直到消耗了所有的引发剂,或直到以某种方式停止反应。反应完成后,可通过 在真空下蒸发除去溶剂。
本领域的技术人员应能理解以上所述的合成路线仅用于说明而不是限制在一 个基材上使反应物同时反应形成至少两种材料的方式。也可以采用本领域的技术 人员了解和使用的其他合成路线和改进方法。
VIII.筛选材料阵列的方法
一旦制备后,可从阵列中并行地筛选具有可用性能的材料。同时对整个阵列 或其中的一部分(如预定区域中的一行)并行地筛选具有有用性能的材料。最好用 扫描检测系统来筛选材料阵列,其中单位面积上区域密度大于0.04区域/厘米2, 较好的大于0.1区域/厘米2,更好的大于1区域/厘米2,还要好的大于10区域/ 厘米2,最好的大于100区域/厘米2。在最好的实施方案中,最好用扫描检测系 统来筛选材料阵列,其单位面积上的区域密度应大于1,000区域/厘米2,较好的 大于10,000区域/厘米2,更好的大于100,000区域/厘米2,最好的大于10,000,000 区域/厘米2。
因此,在较好的实施方案中,材料阵列是合成在单片基材上。通过在单片基 材上合成材料阵列,可更容易地从阵列中筛选出具有有用性能的材料。筛选的性 能包括,如电性能、热性能、机械性能、形态、光学性能、磁性、化学性能等。 更具体地说,可筛选的有用性能列于表I。发现的任何具有有用性能的材料随后 可以大规模生产。
用本领域的技术人员所了解和采用的普通方法和设备可以筛选表I列出的性 能。用于筛选表I列出的有用性能的扫描系统包括但不限于:扫描喇曼光谱;扫 描NMR光谱;扫描探针波谱包括如表面电势计、隧道电流、原子力、音频显微 镜、切应力显微镜、超速光激发、静电力显微镜、隧道诱导光发射显微镜、磁力 显微镜、微波诱导表面谐波产生显微镜、非线性交流电隧道显微镜、近场扫描光 学显微镜、非弹性电子隧道能谱计等;不同波长的光学显微镜;扫描椭圆光度法 (用于测定介电常数和多层薄膜的厚度);扫描涡流显微镜;电子(衍射)显微镜等。
更具体地说,要筛选电导率和/或超导性,可使用下面的设备:扫描RF磁化 率探针、扫描RF/微波裂环谐振器检测器、或扫描超导量子干涉装置(SQUID)检 测系统。要筛选硬度,可使用毫微压头(金刚石端)。要筛选磁致电阻,可使用扫 描RF/微波裂环谐振器检测器或SQUID检测系统。要筛选结晶度,可使用红外或 喇曼光谱仪。要筛选磁化强度和矫顽力,可使用扫描RF磁化率探针、扫描RF/ 微波裂环谐振器检测器、SQUID检测系统或霍尔探测器。要筛选荧光性,可使 用光检测器或电荷耦合器件摄像器。还可以使用本领域的技术人员了解的其他扫 描系统。
    表I.  筛选的性能的例子 电性能: 超导性 临界电流 临界磁场 电导率 电阻薄膜的电阻率 介电常数 介质强度 介质损耗 偏压下的稳定性 极化 电容率 压电性 电迁移 热性能: 膨胀系数 热导率 温度变化 挥发度与蒸汽压 机械性能: 应力 各向异性 粘结性 硬度 密度 延性 弹性 空隙率 形态学: 晶体或非晶体微结构 表面形态 晶粒取向 光学性能: 折射率 吸收率 双折射 光谱特性 色散 调频 发射 磁性能: 饱和磁通密度 磁致电阻 磁致伸缩 矫顽力 磁导率 化学性能: 组成 配位 酸-性 催化剂 杂质 与基材的反应性腐蚀与抗侵蚀性
本发明的阵列可依次进行筛选,或用扫描系统并行地进行筛选。例如,可采 用如磁粉法(magnetic decoration)(比特图)和电子全息照相筛选材料阵列的超导 性。也可用如霍尔探测器、磁力显微镜、SQUID显微镜、AC磁化率显微镜、微 波吸收显微镜和涡流显微镜等,扫描材料阵列的超导性。
在目前较好的实施方案中,采用扫描探测系统。在一个实施方案中,其上有 材料阵列的基材是固定的,而探测器可作X-Y运动。在这一实施方案中,基材放 在密封室内,紧接检测器,检测器(如RF共振器、SQUID检测器等)连接到一个低 热导率的硬棒上,硬棒与其扫描范围可达1英寸和空间分辨率为2微米的室温下 的X-Y定位台耦合。用连接到计算机控制的定位器上的步进电动机(或伺服电动 机)控制检测器的位置。由在室周围的液态氦储存器的氦交换气降低检测器和基材 的温度。这一扫描系统可以在600K°-4.2K°(当浸在液态氦中时)的温度范围内操 作。
另一个实施方案中,固定检测器,上有材料阵列的基材可作R-θ运动。在这 一实施方案中,基材放在一个由齿轮导轨驱动的旋转台上(如正齿轮),齿轮导轨 与一个千分尺和步进电动机偶合。旋转台放在一个由另一个千分尺和步进电动机 驱动的低温滑动台上。该系统能以1微米空间分辨率扫描半径为1英寸的区域。 使用计算机控制扫描和探测。与另一个实施方案相同,可用在室周围的液态氦储 存器的氦交换气来降低检测器和基材的温度。这一扫描系统可以在600K°- 4.2K°(等浸在液态氦中时)的温度范围内操作。
采用前面两个实施方案的任一个,可以采用如扫描RF磁化率检测系统检测 巨大的材料阵列的超导性(见如图13)。采用光刻技术,可以制造微螺旋形线圈(约 1×1毫米2),来探测靠近线圈的样品的电导率。由相敏检测电路接受信号。之 后由计算机分析数据来得到给定样品的性能与化学计量量之间的关系。如果需 要,分析结果可反馈到供料体系,使体系在下一个合成循环中“移向”最有希望 的化学计量。
而且,可以用并联LC谐振电路的超导微型电路装置扫描超导性材料阵列。 并联LC电路简单地就是一个电感器与一个电容器并联。这两个电路元件的电性 能赋予电路谐振频率,在谐振频率处,将输入电压的最大值传送到输出。一般由 其Q值量度的峰的锐度是由电路中所使用的材料决定,而谐振频率则决定于电容 和电感。已知由超导材料如铌制造的电路能给出非常高的Q值,即Q值在10,000 或更高数量级。这与普通的Q值在几百数量级的非超导电容器和电感器不同。铌 电路的锐峰可以得到高灵敏度检测。
在这一系统中,实际的检测是由感应线圈完成。电感器的电感是通过其线圈 的磁场几何形状的函数。在附近存在超导样品的情况下,材料磁场的排斥使通过 电感器的磁场畸变(即迈斯纳效应)。这也就改变电感,使谐振频率偏移。通过跟 踪谐振,就可以容易地决定何时材料为超导性。在这种扫描装置中,总电路约为 5×2.5毫米,其有效面积约相当于此的四分之一。线圈为每边约1.5毫米的螺旋 线圈,电容器为有SiO2电介质(即绝缘体)层的两板式铌电容器。SQUID磁强计 已获得10微米的空间分辨率,但其灵敏度受到在Josephson结中存在的噪音的限 制。然而,在本发明的扫描装置中,Josephson结中的噪音不妨碍仪器,因此, 可获得对1微米或更小样品的灵敏度。在这一实施方案中,灵敏度是比空间分辨 率更严格的标准。
本领域的技术人员能容易地理解的是上述的检测体系仅用于说明而不是限制 用于从材料阵列筛选具有有用性能的材料的方法。同样可以采用本领域的技术人 员了解和使用的其他检测体系。
IX.其它实施方案
在本发明的另一个实施方案中,通过在第一和第二基材的预定区域以基本相 同的浓度提供基本相同的反应组分,之后在宽的组分阵列中,使在第一基材上的 组分按第一组反应条件,在第二基材上的组分按第二组反应条件反应,可以制备 至少两种不同的材料阵列。如果第一基材在其第一区域有组分A和B,另外在其 第二区域有组分X和Y,第二基材是制备成在其预定区域有基本相同的组分。也 就是说,第二基材在其所含组分方面与第一基材基本相同。因此,在这一实施 例中,第二基材在其第一区域也含有组分A和B,另外在其第二区域也含有组分 X和Y。
一旦在基材的合适的预定区域提供了组分,在第一基材上的组分按第一组反 应条件,第二基材上的组分按第二组的反应条件反应。本领域的技术人员应能理 解可在第一基材上的组分按第一组反应条件反应的同时,使第二基材上的组分按 第二组反应条件反应,或者在第二基材按第二组反应条件反应之前或之后,第一 基材上的组分按第一组反应条件反应。
在这一实施方按中,可以研究和优化各种反应参数的效果。可以改变的反应 参数包括,如反应物数量、反应物溶剂、反应温度、反应时间、进行反应时的压 力、进行反应时的气氛、停止反应的速度等。可以改变的其他反应参数对本领域 的技术人员是显而易见的。另外的方法是第一组反应条件与第二组反应条件相 同,但在这一实施方案中,在第一和第二基材上的组分反应后的处理步骤,第一 基材不同于第二基材。例如,第一基材可在升高的温度下,暴露在氧气中处理, 而第二基材可以不经处理。
这一实施方案的另一方面,在其第一区域有组分A,第二区域有组分X的第 一基材在特定反应条件下处理(如在升高的温度下在氧气中处理),而在其第一区 域也有组分A,第二区域也有组分X的第二基材则不在这样的反应条件下处理。 之后,在第一和第二基材的第一区域提供组分B,在它们的第二区域提供组分Y。 一旦在第一和第二基材的第一和第二区域提供了所需的组分,可以在基本相同的 反应条件下同时使组分反应。这个实施方案可以确定中间处理步骤对特定材料阵 列的效果。如前面提到的,可以改变各种不同的反应参数中的任何一个。
本发明的还有一个实施方案中,提供了制备其化学组成和组分的化学计量量 各异的材料阵列的方法。这种方法中,可以化学计量梯度在特定的预定区域提供 反应组分。而且,可以在特定的预定区域以特定化学计量量提供多种反应组分。 例如,第一材料的第一组分和第二材料的第一组分可分别沉积在第一和第二反应 区域。之后,第一材料的第二组分和第二材料的第二组分可以化学计量的梯度从 顶端到底部(或从左到右)分别沉积在第一和第二反应区域。一旦组分提供到基 材,各组分可以同时反应以形成化学组成和组分的化学计量量各不相同的材料。
在本发明的还有一个实施方案中,提供了具有有用性能的材料。这种材料的 制备方法包括这些步骤:(a)在单片基材上形成不同材料的一种阵列;(b)从阵列中 筛选出具有有用性能的材料;和(c)制造更多具有有用性能的这种材料。这样的材 料包括,如金属间材料、金属合金、陶瓷材料、有机金属材料、有机聚合物、复 合材料(如无机复合物、有机复合物或其组合)等。另外,有用的性能包括,如电 性能、热性能、机械性能、形态、光性能、磁性能、化学性能等。
采用前面的方法,发现了新的一族具有巨磁致电阻(GMR)的氧化钴。采用薄 膜沉积技术与掩模技术结合形成了含有不同LnxMyCoOδ组成和不同化学计量量 的材料阵列,其中Ln例如是钇和镧,M例如是铅、钙、锶和钡(见下面的实施例 D,用于制备氧化钴薄膜材料的规约)。一旦形成,就从材料阵列中筛选具有有用 性能的材料。更具体地,是从材料阵列中筛选出具有巨磁致电阻(GMR)性能的特 别材料。这样做时,发现了具有大磁致电阻(MR)的材料。一旦鉴别出具有有用性 能的材料,可以制备更多数量的这种材料以供进一步分析。
GMR氧化钴新家族中的化合物具有下面的通式:Ay.(1-x)My.xCoOz,其中的A 是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、 铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)的一种金属;M是选 自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)、铊(T1)和铋(Bi)的一种金属;y是约1-2范围 内的值,x是约0.1-0.9范围内的值;z是约2-4范围内的值。在GMR氧化钴新 家族中的化合物一般具有与钙钛矿有关的层状结构,即略变形的立方系钙钛矿结 构。
目前较好的实施方案中,GMR氧化钴新家族中的化合物具有下面的通式: A1-xMxCoOz,其中的A是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、 钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和 镥(Lu)的一种金属;M是选自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)和镉(Cd)的一种金 属;x是约0.1-0.9范围内的值;z是约2-4范围内的值。在这一通式范围内,有 一些实施方案较好,即其中的x是0.2-约0.7范围内的材料,更好的其中x是0.3- 约0.5范围内的材料。
在一个较好的实施方案中,GMR氧化钴新家族中的化合物具有下面的通 式:La1-xMxCoOz,其中M是选自钡、钙和锶的金属;x是约0.1-0.9范围内的值; z是约2-4范围内的值。在这一通式范围内,有一些实施方案较好,即其中的x 是0.2-约0.7范围内材料,更好的x是0.3-约0.5范围内的材料。如上所述,GMR 氧化钴新家族中的化合物一般具有与钙钛矿有关的层状结构。
本发明的另一个实施方案中,采用前面描述的制备材料阵列的方法可以制造 如薄膜电容器或薄膜场致发光组件的微型器件的集合。例如,由绝缘材料或电介 质材料隔开的两种电极材料组成的薄膜电容器。形成薄膜电容器阵列,可首先通 过在基材的每一个预定区域沉积一种电极材料,用前面描述的方法可以在电极表 面上产生电介质材料的阵列。再在这层的上面沉积另一个电极层,由此产生薄膜 电容器的阵列,每个电容器含有不同的电介质材料。通过测定基材上每个预定区 域的电容量,可以试验和优化用于薄膜电容器的各种电介质材料的性能。本领域 的技术人员应能容易地理解,这种方法完全可以应用到其他薄膜器件中,如薄膜 场致发光显示器件。另外,对本领域的技术人员很明显的是在一个薄膜器件中各 层的任何一层可以是相同或不同的化学计量量的不同材料的阵列,或是不同化学 计量量的相同材料的阵列。而且,可以改变各层的顺序(如薄膜电容器的电极材料 可以沉积在其余层的上面或下面)。因此,采用本发明的方法,可以优化薄膜器件 中的每一层。
本领域的技术人员应理解前面对各种供料技术、合成路线、筛选方法等的讨 论完全适用于本发明上面的实施方案。
X.实施例
以下面的实施例说明本发明的效果。
A.16种氧化铜薄膜材料阵列的合成
本实施例说明了氧化铜薄膜材料阵列的合成和筛选。在1.25厘米×1.25厘米 的有(100)抛光表面的氧化镁基材上提供反应物。其上含有16个预定区域的基材 放在真空下的反应室内。采用溅射系统和二元掩模技术结合,以薄膜的形式在基 材上提供反应物。二元掩模由不锈制成。采用RF磁控管枪溅射系统在基材的 预定区域提供反应组分。使用的RF磁控管溅射枪(由US,Inc.,Campbell,CA制造) 其直径约1.3英寸。RF输入功率(由有匹配网的Plasmtherm-2000提供)为50-200 瓦时,沉积速度范围对五种不同组分约为0.3-2埃/秒。在基材上面约3-4英寸处 放置RF磁控管喷嘴,沉积薄膜的均匀性在直径为1-2英寸的区域约为5%。由 计量和通过手动阀式管的差动排气来控制溅射气流(氩或氩和氧)。已知要获得 高的沉积速度,最好的气压范围约为5-15毫乇。用残余气体分析仪(Ferran Scientific,San Diego,CA的微磁极传感器)在没有差动排气下,来检测室内每种气 体组分的分压,直接可达15毫乇。
用于产生氧化铜材料阵列的反应组分如下:CuO、Bi2O3、CaO、PbO和 SrCO3。CuO作为基本组元力图发现新的氧化铜材料,因此在基材的16个预定 区域上,每个区域都提供这种组分。在基材的预定区域提供所需的组分前,用250 1/秒涡轮泵,在10-15分钟内,将反应室的基础空气压降低到约10-5-10-6乇,如 果需要,还可以采用延长排气时间和将反应室加热到约100-150℃,将其进一步 降低到10-8乇。由于使用了仅有一个RF磁控管枪的溅射系统,在每次更换组分 时会破坏真空,而需要重新建立。用晶体微天平(Sycon Instruments,Syracuse的 STM-100)检测薄膜沉积厚度。由于晶体微天平不是精确地位于基材的同一位置, 有必要用表面光度仪校正厚度检测器对每个组分的读数。
以下面的顺序在MgO基材上提供反应组分:Bi2O3、PbO、CuO、CaO和 SrCO3。化学计量量定为,使每种组分以相同的摩尔量存在,即沉积膜中为 1Bi∶1Pb∶1Cu∶1Sr∶1Ca。对有五层的位置,薄膜的总厚度约为0.5微米。表2列出 了各个薄膜的厚度和沉积每一种组分的溅射速度。
     表2  用于产生氧化铜阵列的组分的沉积厚度和溅射速度     组分   沉积厚度(埃)   溅射速度(埃/秒)     Bi2O3      1200          2     PbO      970         1.6     CuO      540          1     SrCO3      1650          3     CaO      720          3
一旦在如图14所示的基材的16个预定区域提供了所需的组分,将基材置于 一个炉内,随后使各组分反应。图15是在1.25厘米×1.25厘米的氧化镁基材上 16种不同化合物的阵列的照片。每点的颜色是从一定角度的白色光源反射的光的 天然色。采用下面的加热和冷却程序,使组分同时反应:50-725℃2小时, 725-820℃1小时,820-840℃0.5小时,840-750℃0.5小时。一旦基材冷却到 约750℃,关闭能源。在常压下进行加热和冷却程序。未观察到明显的蒸发和熔 化。
一旦反应后,筛选16个预定反应区域的电阻。筛选后,找到了两个含有导电 材料的预定区域。在这两个区域,以在线4探头结构放置触点,测定的接触电阻 小于百欧姆(Ω)数量级。之后在液态氦低温恒温器中,将样品冷却到4.2°K,以测 定作为温度函数的电阻率。使用工厂校正的CernoxTM电阻温度传感器(LakeShore) 来测定温度。图16A和16B说明了两种导体材料的电阻与温度的关系。 BiPbCuSrCa材料从室温到约100°K具有金属的导电率(电阻随温度下降),而 BiCuSrCa材料具有比较平坦而随温度略上升的电阻。两种样品的超导临界温度 (Tc)约为100°K。在电阻率测定中未观察到两种超导相的证据。
B.128种氧化铜薄膜材料的阵列的合成
本实施例说明了由Bi、Ca、Cu、Pb和Sr的不同组合、化学计量量和沉积 顺序组成的128元的集合的合成和筛选。使用RF磁控管溅射枪溅射靶材料通过 物理掩模,产生集合。以氩作为溅射气体,在10-5-10-6乇下进行溅射,溅射速度 为0.1-1埃/秒。由晶体微平检测薄膜沉积厚度,并由表面光度仪校正。在直径2 英寸的区域,沉积薄膜的均匀度变化约5%。有(100)抛光表面的氧化镁单晶体用 作基材,CuO、Bi2O3、CaO、PbO和SrCO3用作溅射靶。采用二元掩模方法, 通过用一系列第二掩模(图17)层压原来的含有128个孔(1×2毫米)的初级物理掩 模,产生集合。(见Fodor,S.P.A.,等人,Science 251,767(1991))。以逐级的模式, 通过合适的二元掩模溅射前体。可同时合成六种相同的128元的集合,并在不同 反应条件下处理。在二元合成中,由掩模步骤数目(m)可形成2m种化合物。阵列 含有通过从整个沉积/掩模顺序中减少一步或多步形成的所有组合。可采用其他的 掩模方法产生其他的集合,如源于一组10个前驱体的所有四元化合物组成的集 合。
如上所述,形成了128元集合来考查化学计量量和沉积顺序对BiSrCaCuO薄 膜的性能的影响。产生的集合如下:1,Bi,M0;2,Bi,M1;3,Cu,M0;4,Cu,M2;5, Cu,M3;6,Sr,M0;7,Sr,M5;8,Ca,M6;9,Cu,M4;10,Ca,M7,其中,第一个数据 标明沉积步骤,第二个数据标明元素,第三个数据标明掩模(见图18)。除了在步 骤3和5中Cu∶Bi的比为0.5∶1,每层相对于Bi的摩尔化学计量为1∶1(Bi的沉积 层厚度为300埃)。集合物随后在840℃空气中烧结。加热和冷却程序为:50-725 ℃2小时,725-820℃1小时,820-840℃0.5小时,840-750℃0.5小时。整个 加热过程在空气中进行。未观察到明显的蒸发和熔化。用四点探头测定每一位置 的电阻。
如在图19A所示的BiCuSrCaO薄膜的低电阻率薄膜显示了金属性,临界温度 Tc为80°K和90°K。与在16元集合中找到的BiCuCaSrO薄膜的性能不同。在128 元集合中还发现了其他具有相同化学计量量和不同沉积顺序的薄膜,但具有不同 的电阻率与温度的关系曲线,如BiCuSrCaCuCaO和BiCuCuSrCaCaO(图19B)。 由这些结果可设想,通过控制沉积的顺序有可能获得不同的相。有过量Ca和Cu的薄膜,如BiSrCaCuO比为2,2,4,4和2,2,4,5,显示了一个110°K相,与形成 2Sr2Ca2Cu3O10是符合的。
C.含有BiSrCaCuO和YBaCuO超导材料的128种氧化铜薄膜材料阵列的合 成。
本实施例说明了由Ba、Y、Bi、Ca、Sr和Cu的不同组合、化学计量量 和沉积顺序组成的128元的集合的合成和筛选。使用RF磁控管溅射枪溅射靶材 料通过物理掩模,产生集合。以氩作为溅射气体,在10-5-10-6乇下进行溅射,溅 射速度为0.1-1埃/秒。由晶体微天平(Sycon Instruments,Syracuse,NY的STM-100) 检测薄膜沉积厚度,并再由表面光度仪校正。在直径1-2英寸的区域,沉积薄膜 的均匀度变化约5%。有(100)抛光表面的氧化镁单晶体用作基材,BaCO3、 Y2O3、Bi2O3、CaO、SrCO3和CuO用作溅射靶。如下所述采用非二元掩模方 法产生集合。
形成128元集合来考查化学计量量和沉积顺序对BiSrCaCuO和YBaCuO薄膜 材料的性能的影响。集合按以下方法产生:1,Bi,M1;2,Cu,M2;3,La,M3;4,Y3, M4;5,Ba,M5;6,Sr,M6;7,Ca,M7,其中,第一个数据标明沉积步骤,第二个数 据标明元素,第三个数据标明掩模(见图20)。各个薄膜的厚度如下:Bi2O3,1000 埃;CuO,716埃;La2O3,956埃;Y2O3,432埃;BaCO3,1702埃;SrCO3,1524 埃;CaO,635埃。进行低温扩散(约200-300℃),在常压下,集合在840℃烧 结。采用的加热和冷却程序如下:200-300℃12小时,300-700℃1小时, 700-750℃2小时,750-840℃0.4小时,840-840℃1小时,840-560℃1小 时,560-250℃6小时。在250℃6小时后,关闭能源。整个加热过程在空气中进 行。未观察到明显的蒸发和熔化。
反应后,筛选128个预定区域的每个的电阻。用4点接触探头测定每个位置 的电阻。如在图21所示的BiCuSrCaO薄膜和YBaCuO薄膜的低电阻薄膜显示了 金属性,临界温度Tc分别为80°K和60°K。(见图21)。
D.氧化钴薄膜材料阵列的合成
本实施例说明了氧化钴(CoO)薄膜材料阵列的合成和筛选。在2.5厘米×2.5 厘米的有(100)抛光表面的LaAlO3基材上提供反应物。其上含有128个预定区域 的基材放在真空下的反应室内。采用溅射系统和非二元掩模技术结合,以薄膜的 形式在基材上提供反应物。所使用的掩模由不锈钢制成。采用RF磁控管枪溅射 系统在基材的预定区域提供反应组分。使用的RF磁控管溅射枪(由US,Inc., Campbell,CA制造的Mini-mak)其直径约1.3英寸。RF输入功率为50-约200瓦 时(由有匹配网络的Plasmtherm-2000提供),沉积速度范围约为0.3-约2埃/秒,沉 积各种反应组分。在基材上面约3-4英寸处放置RF磁控管喷嘴,沉积薄膜的均 匀性在直径为1-2英寸的区域约为5%。由计量阀和通过手动阀的差动排气来 控制溅射气流(氩或氩和氧)。已知要获得高的沉积速度,最好的气压范围约为5- 15毫乇。用残余气体分析仪(Ferran Scientific,San Diego,CA的微磁极传感器)在 没有差动排气下,来检测室内每种气体组分的分压,直接可达15毫托。
用于产生氧化钴材料阵列的反应组分如下:Y2O3、La2O3、Co、BaCO3、 SrCO3、CaO、PbO、Co、Co、La2O3、La2O3、Y2O3和Y2O3。集合按如下 方法产生:1,Y,M1;2,La,M2;3,Co,M3;4,Ba,M4;5,Sr,M5;6,Ca, M6;7,Pb,M7;8,Co,M8;9,Co,M9;10,La,M10;11,La,M11;12,Y, M12;13,Y,M13,其中第一数字标明沉积步骤,第二数字标明元素,第三数字 标明使用的掩模(见图22)。Co作为基本元素力图发现新的氧化钴材料,因此在 基材的128个预定区域上,每个区域提供这种组分。在基材的预定区域都提供所 需的组分前,用2501/秒的涡轮泵,在10-15分钟内,将反应室的空气压降低到 约10-5-10-6乇,如果需要,还可以采用延长排气时间和将反应室加热到约100-150 ℃,将其进一步降低到10-8乇。由于使用了仅有一个RF磁控管枪的溅射系统, 在每次更换组分时会破坏真空,而需要重新建立。用晶体微天平(Sycon Instruments, Syracuse的STM-100)检测薄膜沉积厚度。
以下面的顺序在MgO基材上提供反应组分:Y2O3、La2O3、Co、BaCO3、 SrCO3、CaO、PbO、Co、Co、La2O3、La2O3、Y2O3和Y2O3。对有五层的 位置,薄膜的总厚度约为0.4微米。表3列出了各个薄膜的厚度。
  表3  用于产生氧化钴阵列的组分的沉积厚度     组分     沉积厚度(埃)     Y2O3        245     La2O3        350     Co        145     BaCO3        600     SrCO3        538     CaO        245     PbO        316     Co        128     Co        55     La2O3        245     La2O3        245     Y2O3        122     Y2O3        245
一旦在基材的128个预定区域提供了所需的组分,将基材置于一个炉内,随 后组分反应。采用下面的加热和冷却程序,使在集合2(L2)中的组分同时反应: 200-300℃12小时,300-650℃1小时,650-850℃3小时,850-900℃3小时, 900-400℃2小时。一旦基材冷却到约400℃,关闭能源。在常压下进行加热和 冷却程序。未观察到明显的蒸发和熔化。
以下面的加热和冷却程序使在集合3(L3)中的组分同时反应:室温(RT)-200 ℃1小时,200-350℃15小时,350-RT(系统关闭使基材冷却到RT),RT-650 ℃2小时,650-740℃13小时,740-850℃1小时,850-900℃3小时,900-650 ℃0.5小时,650-250℃2小时。一旦基材冷却到约400℃,关闭能源。在常压 下进行加热和冷却程序。未观察到明显的蒸发和熔化。
一旦反应后,筛选在L2和L3集合中128个预定反应区域的巨磁致电阻(GMR) 材料。以计算机控制的多道转换系统,采用4探头接触方法测定每个样品的作为 磁场(垂直于探头电流)和温度的函数的电阻。用具有超导性12忒斯拉(T)磁体的 液态氦低温系统(由Janis Research Co.,Inc.,Willmington,MA制造),实现各种温 度和进行场的测定。图23为集合的图形和每个样品的化学计量。图23中黑色、 实心圆显示有显著GMR(>5%)效应的样品。
由图23,很明显找到了基于氧化钴的GMR材料的新家族。在GMR氧化钴 新家族中的化合物有下面的通式:Ay·(1-x)My·xCoOz,其中的A是选自镧(La)、 钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝 (Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yp)和镥(Lu)的一种金属;M是选自钙(Ca)、 锶(Sr)、钡(Ba),铅(Pb)、铊(Tl)和铋(Bi)的一种金属;y是约1-2范围内的值,x 是约0.1-0.9范围内的值;z是约2-4范围内的值。在这一GMR氧化钴新家族中 的化合物一般具有层状与钙钛矿有关的结构。
在目前较好的实施方案中,GMR氧化钴新家族中的化合物具有下面的通 式:A1-xMxCoOz,其中的A是选自镧(La)、钇(Y)、铈(Ce)、镨(Pr)、钕(Nd)、钷 (Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱 (Yp)和镥(Lu)的一种金属,M是选自钙(Ca)、锶(Sr)、钡(Ba)、铅(Pb)和镉(Cd)的 金属;x是约0.1-0.9范围内的值,更好为0.2-0.7,最好为0.3-0.5;z是约2-4 范围内的值。
而且,从图23,一些这样的氧化钴化合物具有通式La1-xMxCoOz,其中M是 选自钙、锶和钡的元素;x是约0.1-0.9范围内的值;z是约2-4范围内的值。对 这些特别的氧化钴化合物,已知其较好的摩尔比即x约为0.2-0.7,更好的约为 0.3-0.5。图24A和24B给出了在固定温度下(60°K),代表性样品的作为磁场函数 的归一化的磁致电阻。图25A和25B给出了在不同磁场下,代表样品L3(13,2) 的电阻和归一化MR随温度的变化。与氧化锰(Mn)磁致电阻(MR)材料不同(Jin,S., 等人,Appl.Phys.Lett.66:382(1995)),发现MR效应随碱土金属离子的大小的增 加而增加。(见图24A和24B)。
样品L2的MR效应大于L3。设想是由于略不同的热处理导致氧化的差别。 在这一集合中测得的最大MR比为72%,是在T=7K和H=10T的样品L2(15, 2)获得。这一值与按相似方式以锰(Mn)为基本元素的集合产生的薄膜所测定的值 相近。与含锰材料相似,组成、化学计量、基材和合成条件的优化会导致MR比 的增加。然而,对应的Y(Ba,Sr,Ca)Co化合物的MR效应小得多(<5%)。
合成了化学计量量为La0.67(Ba,Sr,Ca)0.33CoOz,(其中z是约2-4范围内的值) 的三个大块样品,进一步研究结构。X衍射图(图26A-C)表明晶体结构基本上是 晶格常数为a的立方钙钛矿,对钡、锶和钙化合物a分别等于3.846埃,3.836 埃和3.810埃。强度峰的小分裂源于相对于完美立方钙钛矿结构的菱形畸变(见 Askham,F.,等,J.Amer.Chem.Soc.72:3799(1950))。
另外,合成了化学计量量为La0.58Sr0.41CoOz,(其中z是约2-4范围内的值)的 一个大块样品,并用SQUID磁强计(Quantum Desiqn)测定其磁化强度。测定了作 为磁场函数的样品的MR和在1T磁场中作为温度函数的样品的磁化强度,并示 于图27。在200°K开始铁磁转变并在低于50°K饱和。这种大块样品的MR比(60 %)明显高于相应的薄膜样品L2(30%)。这一样品的X射线分析确定其为a=3.28 埃的立方钙钛矿结构。
E.16种不同有机聚合物阵列的合成
本实施例说明了通过苯乙烯与丙烯腈聚合反应形成16种不同有机聚合物的 阵列的可能。本实施例使用了其上有16个预定区域的3×3厘米派热克斯玻璃 基材。每个预定区域为3×3×5毫米,因此每个预定区域的体积约为45微升。 要确保在给定区域的反应物不迁移到邻近区域,使用的反应体积为35微升。
使用2M苯乙烯单体的甲苯溶液和2M丙烯腈的甲苯溶液。使用的引发聚合 反应的引发剂是过氧化苯甲酰。使用70mM的过氧化苯甲酰的甲苯溶液。每个反 应中引发剂以10mM的浓度存在。用有三个喷嘴的喷墨分配器在基材的每个预定 区域提供苯乙烯、丙烯腈和过氧化苯甲酰溶液。第一喷嘴连接到含有2M苯乙烯 的甲苯溶液的储存器,第二喷嘴连接到含有2M丙烯腈的甲苯溶液的储存器,第 三喷嘴连接到含有70mM的过氧化苯甲酰的甲苯溶液的储存器。在每个预定区域 提供了单体后才提供引发剂。
为了产生苯乙烯和丙烯腈的16种不同聚合物的阵列,按表4所列出的量在基 材的16个预定区域提供反应物。一旦在基材的16个预定区域提供了单体,再加 上5微升70mM的引发剂溶液。在约60℃和常压下进行聚合反应。反应进行到 引发剂用完。完成聚合反应后,真空(100乇)蒸发除去有机溶剂。用毫微压头(尖 头)筛选产生的聚合物的硬度。
表4用于产生16种不同聚合物阵列的各种反应组分 反应区域   2M苯乙烯溶液量(微升)   2M丙烯腈溶液量(微升)     1           30           0     2           28.5          1.5     3           27           3     4           25.5          4.5     5           24           6     6           22.5          7.5     7           21           9     8           19.5         10.5     9           18          12     10           16.5         13.5     11           15          15     12           13.5         16.5     13           12          18     14           10.5         19.5     15           9          21     16           7.5         22.5
F.沸石阵列的合成
本实施例说明了合成不同沸石的阵列的可能方法。在有16个预定区域的9 ×9厘米的Teflor基材上提供反应物。基材放置在温度约为100℃的密封容器中。 基材上每个预定区域是1×1×2厘米的凹处。用自动的移液滴管在基材上提供 反应物。用于产生沸石阵列的五种化合物是:Na2O·Al2O3·5H2O,KOH, Na2O·2SiO2·5H2O,NaOH和H2O。在水中溶解前四种组分,使其浓度分别为2.22M, 2.22M,8.88M和11.1M。在基材的预定区域提供这些组分,重要的是最后才加上 Na2O·2SiO2·5H2O溶液。按表5所列出的量在基材的预定区域提供这五种反应组 分。
一旦在基材的合适的预定区域提供了前面的反应组分,使它们反应,用喇曼 光散射系统扫描阵列的微结构。可在基材上提供组分后的2-3小时开始阵列的扫 描,持续5-10天。在这一实施例中,最初在反应区域1形成沸石A,然而,沸 石A随时间转化成沸石P。在反应区域3形成沸石X。在反应区域6形成方钠石。 在反应区域12形成沸石L。另外,在其余的反应区域形成其他的沸石。
                表5.用于产生沸石阵列的各种反应组分     反应     区域      2.2M Na2O·Al2O3·H2O     溶液量     (微升)   8.88M   KOH   溶液量   (微升)       2.2M Na2O·2SiO2·5H2O       溶液量       (微升)     11.1M     NaOH     溶液量     (微升)     H2O量    (微升)     1     100     0         100     80     480     2     100     0         100     80     1280     3     100     0         200     40     420     4     100     0         200     40     1220     5     100     0         100     320     240     6     100     0         100     320     1040     7     100     0         200     280     180     8     100     0         200     280     980     9     100     200         100     80     280     10     100     200         100     80     1080     11     100     200         200     40     220     12     100     200         200     40     1020     13     100     200         100     320     40     14     100     200         100     320     840     15     100     200         200     280     0     16     100     200         200     280     800
G.采用喷射沉积技术合成氧化铜化合物阵列的合成
本实施例说明了采用喷射沉积技术合成氧化铜化合物阵列。在其上有16个预 定区域的1.25×1.25厘米的氧化镁基材上提供反应物。采用喷雾器与物理掩模 技术结合,以薄膜的形式提供反应物。本实施例所使用的喷雾器为Sinitek 8700- 120Ms超声波喷雾器。在0.26GPM的水流速度和120KHz的频率,喷雾器能产生 2英寸的锥形喷射图形,液滴直径为18微米。
本实施例中产生无机材料阵列的四种化合物是:Bi(NO3)3,Cu(NO3)3, Ca(NO3)3和Si(NO3)3。这些组分溶解在水中,其浓度分别为0.8M,2M,2M和2M。 Bi(NO3)3溶液的pH值约为0.9。在向基材的预定区域提供反应物时,很重要的是 要控制喷雾器的流速和基材的温度,使反应物液滴与基材表面接触后立刻干燥。 采用的流速保持在约0.26GPM,基材温度维持在约210℃。另外,很重要的是要 控制喷雾时间,使每种反应物的量即摩尔数基本相同。喷雾时间控制在使在基材 表面沉积的每层薄膜厚度约为1-4微米。
采用二元掩模技术,按Ca(NO3)3,Bi(NO3)3,Cu(NO3)3和Si(NO3)3的顺序采用 下面的步骤在基材上提供Ca(NO3)3,Bi(NO3)3,Cu(NO3)3和Si(NO3)3的水溶液。如 说明指出的,氧化镁基材上有16个预定区域,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15和16。在第一掩模步骤,掩盖区域9,10,11,12,13,14,15和16,以薄膜 形式在露出的区域提供Ca(NO3)3的水溶液。第二掩模步骤中,重新定位掩模,掩 盖住区域3,4,7,8,11,12,15和16,以薄膜形式在露出的区域提供Bi(NO3)3的水 溶液。第三掩模步骤,掩盖区域5,6,7,8,13,14,15和16,以薄膜形式在露出的 区域提供Cu(NO3)3的水溶液。最后,在第4掩模步骤掩盖区域2,4,6,8,10,12,14 和16,以薄膜形式在露出的区域提供Si(NO3)3的水溶液。
一旦在基材的合适的预定区域提供了所需的组分,就使其上有反应物阵列的 基材在300℃氧化,以从阵列中除去氮。之后,在880℃急骤加热基材2分钟, 在一个铜块上迅速急冷。然后,筛选材料阵列上的超导性材料。
H.16种不同硅酸锌燐光体阵列的合成
本实施例说明可能合成16种不同硅酸锌燐光体阵列的方法。使用其上有16 个预定区域的1×1毫米的派热克斯玻璃基材。每个预定区域为100×100×500 微米,因此每个预定区域的体积约为5,000微微升。为确保在给定区域中的反应 物不迁移到邻近区域,使用的反应体积为3,000微微升。
采用有三个喷嘴的喷墨分配器在基材的每个区域同时提供反应物。第一喷嘴 连接到含有1M氧化锌水溶液的储存器。为能产生16种不同燐光体的一种排列, 按表6所列出的反应物数量在基材的16个预定区域供料。在氮气氛中,1400℃ 下进行合成反应2小时。一旦形成,通过用特定激励波长辐照样品,用Perkin-Elmer LS50荧光光谱测定仪记录发射光谱,来从每个区域筛选场致发光材料或燐光体。
  表5.  用于产生硅酸锌燐光体阵列的各种反应组分   反应区域     SiO2    MnCO3(微微升)     ZnO     1     1500     1425     75     2     1500     1350     150     3     1500     1275     225     4     1500     1200     300     5     1500     1125     375     6     1500     1050     450     7     1500     975     525     8     1500     900     600     9     2000     950     50     10     2000     900     100     11     2000     850     150     12     2000     800     200     13     2000     750     250     14     2000     700     300     15     2000     650     350     16     2000     600     400
I.采用溅射技术与光刻掩模技术结合合成氧化铜薄膜材料的阵列
本实施例说明了氧化铜材料阵列的合成和筛选。在其上有256个预定区域的 1.25×1.25厘米的氧化镁基材上提供反应物。氧化镁基材的一面是粗糙面,另一 面是经很好抛光的(用1微米的金刚石膏抛光)。需要极清洁和光滑的表面来很好 地粘结溅射金属氧化物层。采用溅射系统与光刻技术结合即以光敏抗蚀剂图形作 为物理掩模,以薄膜的形式在基材上提供反应物。光敏抗蚀剂的图形决定了沉积 材料的部位和除去的部位。
用一个清洁的、很好抛光的基材,第一步旋涂光敏抗蚀剂。以Shipley 1400- 31作为光敏抗蚀剂,因为其具有好的耐热性,即其在约100℃处理后仍能保持可 溶性。沉积两层光敏抗蚀剂,其总厚度为3微米。由一个滴加瓶在基材上涂布光 敏抗蚀剂,基材以600rpm速度旋转30秒。一旦沉积了第一层光敏抗蚀剂,在 90℃软焙烧15分钟。之后冷却基材,沉积第二层光敏抗蚀剂,然后在90℃软焙 烧5分钟。冷却基材后将基材浸在氯苯中10分钟。氯苯能使抗蚀剂的表面改性, 除去低分子量树脂。用氯苯处理后,光敏抗蚀剂的表面在显影剂中的溶解度低于 下层区域。与光在光致抗蚀剂-基材的界面的背散射和以光敏抗蚀剂显影速度的微 分差别相关联,在光致抗蚀剂形成突出部分。这形成了不连续的光敏抗蚀剂层, 防止薄金属层包住光敏抗蚀剂。
一旦沉积了光敏抗蚀剂,基材就可进行曝光。根据第一层的所需位置选择一 个掩模。在Canon Fine Projection Mask Aligner(FPA-141F)上使光敏抗蚀剂曝光。 一个256元集合的第一层含有128个位置,每个位置为100×100微米,每位置 之间的距离为50微米。曝光后,光敏抗蚀剂在microposit显影剂中显影45秒, 然后在水中清洗1分钟。
现在基材准备沉积第一层。在基材上溅射300埃的BiO3。一般溅射温度会超 过光敏抗蚀剂的极限。然而,发现以低功率的溅射枪(150瓦),靶基材的距离为 10厘米,基材的加热不会出现问题,甚至沉积时间持续8小时也是这样。在基材 温度超过100℃的情况下,最好使用冷却块。
可将基材置于丙的超声波浴中,进行剥离过程。金属粘结在经前面的曝光 和显影后除去了光敏抗蚀剂的部位,而形成图形后抗蚀剂保留的部位金属被除 去。丙酮很容易溶解光敏抗蚀剂,因此,金属剥离。以同样的方式在基材上沉积 后继的组分层,但必须将下一层与第一层对齐,改变金属沉积的位置。在这一实 施例中,下一层是CuO,接下来是SrCO3和CaO。
一旦在基材的256个预定区域提供了所需的组分后,将基材置于一个炉子 中,随后组分反应。反应后,用四点接触探头筛选每个预定区域的电阻。
XI.结论
本发明提供了大大改进了的用于在单片基材上并行地沉积、合成和筛选材料 的阵列的方法和设备。应理解上面的描述仅用于说明但不构成限制。本发明的许 多实施方案和改动对本领域的技术人员都是显而易见的。仅仅作为例子,可采用 各种处理次数、反应温度、其他反应条件和一些处理步骤的不同顺序。因此本发 明的范围不是由上面的说明决定,而应根据所附的权利要求来决定。
申请是1994年8月18日申请的08/327,513的部分继续申请,原案的内 容在此作为参考。
政府利益的说明
本发明按照能源部授予的合同DE-AC03-76SF00098,由(美国)政府资助完 成。政府对本发明具有一定的权利。
QQ群二维码
意见反馈