包含光敏酸发生物单体的组合物及用其包被的载体及其应用

申请号 CN200410054537.2 申请日 2004-07-23 公开(公告)号 CN100374956C 公开(公告)日 2008-03-12
申请人 三星电子株式会社; 发明人 郑盛旭; 徐承柱; 朴在钻;
摘要 本 发明 提供了包含光敏酸发 生物 质 单体 和 表面活性剂 的组合物,以及利用所述的组合物在载体上合成化合物的方法。所述方法包括将具有酸敏保护基的第一种分子层键合至固体载体上;在第一种分子层上包被本发明的光敏酸发生物质单体组合物层;将组合物层曝光然后 热处理 以从相应于曝光区域的第一种分子去除酸敏保护基;从曝光和未曝光的区域清洗并去除组合物层;并将第二种分子键合至暴露的第一种分子。
权利要求

1.一种基本上由光敏酸发生物单体和非离子性表面活性剂组成的光 敏酸发生物质单体组合物,其中光敏酸发生物质单体为下式III表示的锍光 敏酸发生物质单体:

其中R-为CF3SO3 -、C4F9SO3 -、CF3(CF2)3SO3 -或p-TSO-,R1为羟基或H, 且R2为羟基或H;
并且其中非离子性表面活性剂为100%的氟代脂肪族聚合物酯或95% 氟代脂肪族聚合物酯和5%N-甲基吡咯烷的混合物;
其中光敏酸发生物质单体和非离子性表面活性剂的重量比为100∶1~ 500∶1。
2.用权利要求1的组合物包被的固体载体。
3.权利要求2的固体载体,其中固体载体由、玻璃、表面处理的玻 璃、聚丙烯或活化的丙烯酰胺形成。
4.一种在载体上合成化合物的方法,所述方法包括:
将具有酸敏保护基的第一种分子层键合至固体载体上;
在第一种分子层上包被如权利要求1中定义的包含光敏酸发生物质单 体和非离子性表面活性剂的光敏酸发生物质单体组合物层;
对组合物层曝光然后热处理以在相应于曝光的区域从第一种分子上去 除酸敏保护基;
从曝光和未曝光区域清洗并去除组合物层,并且
将第二种分子键合至暴露的第一种分子。
5.权利要求4的方法,其中所述载体为硅、玻璃、表面处理的玻璃、 聚丙烯或活化的丙烯酰胺。
6.权利要求4的方法,其中化合物为核酸或蛋白.
7.权利要求6的方法,其中核酸为DNA、RNA、PNA或LNA。
8.权利要求4的方法,其中第二种分子为蛋白或核酸的单体。
9.根据权利要求4~8中任一项的方法制备的微阵列。

说明书全文

发明领域

本发明涉及包含光敏酸发生物单体的组合物、用该组合物包被的固 体载体、利用该组合物在载体上合成化合物的方法,以及根据该方法制备 的微阵列。

相关技术描述

在载体上合成生物聚合物已经为人所知多年。在一个例子中,Fordor 等教导了一种新的合成技术,其中将具有UV-敏感的保护基的核酸或基酸 连接到固体表面上。利用光刻掩膜将选择的固体表面区域曝光从而去除保 护基,然后与带有光敏保护基的新核酸或氨基酸反应,在特定的位置聚合 核酸或氨基酸(参见美国专利5,445,934和5,744,305)。由于这种方法可以在 特定位置进行特定序列/长度的寡核苷酸探针的选择合成,因此可用于在预 定位置合成具有需要序列和长度的各种寡核苷酸探针。同时,由于这种方 法使用了半导体装置中使用的极为精细加工的掩膜(mask),因此该方法对制 备高密度的寡核苷酸探针极为有用。Fordor等也建议一种利用寡核苷酸探 针测序的方法,该方法比Sanger方法更为简单快捷,可用于制备高密度的 寡核苷酸探针。但是,光敏保护基的去除与光源的强度成比例,后者在制 备高密度芯片的超精细方法中发挥有害的作用。

另一方面,利用光刻胶(photoresist,下文指‘PR’)的光刻方法,其用于 半导体工业中微图案的形成,作为改进DNA芯片密度的基本技术已经引起 了关注。由于半导体芯片的大小或容量取决于光刻方法的空间分辨率,这 种方法已经在半导体以及微电子工业中发挥了引导性的作用。光刻方法利 用曝光区域以及未曝光区域的PR溶解性差异。曝光区域的溶解性的下降称 为负系统;溶解性增加称为正系统,并且主要地用于制备半导体芯片。通 过利用上述光刻方法,更多的寡核苷酸探针可排布在有限的芯片面积上。 到目前为止,光刻方法已经用于利用一般PR系统的方法(参见美国专利 5,658,734)和利用微镜的方法中。利用PR系统的光刻方法(下文指‘PR方法’) 具有利用半导体工业上已经开发或商品化的材料的优点。根据该方法,曝 光形成图案,洗涤后在表面上形成标准的固相核酸合成反应,并连接形成 核苷酸。PR包括重氮醌/甲酚-线型酚清漆,对表面具有高粘附性,在I- 线(365nm)中显示出良好的图案特性,并用于16兆字节DRAM处理中。但 是,PR在性溶液([OH-]>0.1M)中显影,引起碱基氨基的酰胺键的裂解。 已经建议利用在PR下的保护性涂层来克服显影中所述问题(参见J.Vac.Sci. Tech.,B7(6):1734,1989)。

PR方法由3个主要步骤组成。第一个步骤主要通过PR包被、曝光以 及显影形成PR图案。第二个步骤利用酸性溶液去除曝光区域以及刻蚀区域 以及PR的保护基。第三个步骤为核酸的依次连接以及后处理。PR方法具 有如上所述的复杂处理的缺点。

为了克服PR方法的这种缺点,有人建议光敏酸图案形成阵列(photoacid patterned array,PPA)体系(参见美国专利5,658,734)。PPA体系用光敏酸发生 物质(photoacid generator,下文称为‘PAG’)混合的聚合物基质。在这种PPA 体系中,只在曝光区域产生酸,并且在热处理以后发生保护基的去除。因 此,在PR方法中实施的2个分离的步骤可在1个步骤中进行。但是,这种 PPA体系也暴露出几个问题。例如,PPA系统产生的酸残留在聚合物基质中, 并且需要加入更多的PAG。过量的PAG散射光线,反过来干扰微图案的形 成。而且,必须用有机溶剂例如丙和甲基乙基酮(MEK)去除聚合物基质(聚 合物以及PAG的混合物膜),因此再加工以及复原非常昂贵。

另外一种利用光刻制备DNA芯片的方法是使用微镜(micromirror)。这 种方法包括利用能与寡核苷酸反应的PR包被固体载体、向间隔层中加入光 敏酸发生物质,并将预定部分用微镜曝光以产生酸。然后,产生的酸可去 除与寡核苷酸相连的保护基,从而使寡核苷酸反应。重复上述步骤使寡核 苷酸以期望的图案进行排列。这种制备芯片的方法与PR方法相比,更为简 单。但是,这种方法也具有缺点:光敏酸发生物质的反应在溶液中进行, 因此制备高密度的芯片较为困难并且设备成本昂贵。

为了克服现有技术中的问题,美国专利6,359,125公开了一种在固体载 体制备肽核酸(PNA)阵列的方法,利用聚合的光敏酸发生物质代替在聚合物 基质中的光敏酸发生物质。但是,使用聚合的光敏酸发生物质,其还涉及 单体聚合的步骤,导致高的制造成本以及复杂的过程。因此,仍然存在用 常规方法以低成本方便制备并且具有高的酸产生效率的光敏酸发生物质的 需求。本发明者进行了克服这些问题的研究并发现了本发明的光敏酸发生 物质单体。

发明概述

本发明提供了可用于包被载体的包含光敏酸发生物质单体的组合物。

根据本发明一方面,提供了用该组合物包被的载体。

根据本发明另一方面,提供了利用该组合物在载体上合成化合物的方 法。

根据本发明另一方面,提供了用上述方法制备的微阵列。

附图简述

本发明的上述以及其他特征和优点通过参考附图对示例性实施方案的 详细描述将变得更明显,其中:

图1为举例说明根据本发明方法合成的需要寡肽的实验结果。

发明详述

本发明提供了包含光敏酸发生物质单体以及非离子性表面活性剂的组 合物。光敏酸发生物质单体包括一系列锍或碘光敏酸发生物质。优选地, 锍光敏酸发生物质单体可用下式I~III之一表示:

其中R-为CF3SO3 -或C4F9SO3 -且R1为CH3;

其中R-为CF3SO3 -或C4F9SO3 -;

其中R-为CF3SO3 -、C4F9SO3 -、CF3(CF2)3SO3 -或p-TSO-,R1为羟基或H, 且R2为羟基或H。

同样,碘光敏酸发生物质可用下式IV或式V表示:

其中R-为CF3SO3 -或C4F9SO3 -,

其中R-为CF3SO3 -、C4F9SO3 -或p-TSO-。

在本发明中,非离子性表面活性剂包括氟-基表面活性剂。优选地,表 面活性剂为100%氟代脂肪族聚合物酯或95%氟代脂肪族聚合物酯和5%N- 甲基吡咯烷酮(NMP)的混合物。

本发明的光敏酸发生物质单体和表面活性剂可以5~50%(w/v)的量溶 解在合适的有机溶剂中,如N-甲基吡咯烷酮(NMP)。表面活性剂的量优选 地为1,000~1,500ppm。同样,光敏酸发生物质单体的量优选地为1,000~ 100,000ppm。

如果光敏酸发生物质单体组合物暴露于UV光,其可产生酸。该组合 物可包被固体载体而不发生聚合。

同样,本发明提供了用光敏酸发生物质单体组合物包被的固体载体。 固体载体可包括,例如,、玻璃、表面处理的玻璃、聚丙烯或活化的丙 烯酰胺。

进一步,本发明提供了一种在载体上合成化合物的方法。所述方法包 括在固体载体上结合第一种分子层,所述第一种分子具有酸敏保护基;在 第一种分子层上涂覆根据本发明的光敏酸发生物质单体组合物层;对组合 物层进行曝光然后加热从相应于曝光部分的第一种分子上去除酸敏保护 基;清洗并去除曝光和未曝光区域的组合物层;并将第二种分子结合至暴 露的第一种分子。

在本发明中,固体载体包括化硅、硅酸盐玻璃、有机聚合物如 聚丙烯或活化的丙烯酰胺,以及本领域普通技术人员熟知的其他固体载体, 其具有带有反应活性位点适于固定带有敏感保护基的分子层的表面。可以 合成的分子可为核酸或蛋白。术语核酸包括DNA、RNA、PNA(肽核酸)或 LNA(locked nucleic acid)。术语PNA指具有包括经肽键连接的N-(2-氨基乙 基)-甘氨酸重复单元骨架的核酸类似物,碱基经亚甲基羰基键连接到骨架 上。

在本发明方法的第一步骤中,第一种分子层键合到固体载体上。第一 种分子可为连接分子(或连接子(linkers))。适合玻璃载体的连接分子包括同 时具有下列特性的分子:(i)能将连接分子连接到载体的官能基(例如,烷氧 甲硅烷基)以及(ii)具有能将连接分子与其他分子连接的活性位点的官能基 (例如,羟基)。连接分子的实例包括氨基烷基羧酸,如ω-氨基己酸。此外, 术语酸敏基团指可被酸去除的保护基。保护基的实例包括取代的三苯甲基, 如三苯甲基(trityl)和二甲氧基三苯甲基(DMT);但是,可以使用本技术领域 普通技术人员公知的任何酸敏保护基。

在本发明的包被步骤中,本发明的光敏酸发生物质单体组合物层被包 被在在前述步骤中键合到载体的第一种分子层上。光敏酸发生物质单体和 表面活性剂与上述解释的相同。包被步骤可利用任何本技术领域中公知的 方法进行,例如,可使用旋涂(spin coating)。光敏酸发生物质单体组合物层 的厚度为约0.1~1μm,优选约0.3~0.5μm。

在本发明方法的曝光步骤中,在包被步骤中形成的组合物层进行曝光 并且然后热处理以从相应于曝光部分的第一种分子上去除酸敏保护基。曝 光可通过预定图案的掩膜进行。曝光也可利用微镜代替掩膜进行(参见美国 专利6,426,184,其公开在此引入作为参考)。可使用任何波长范围的光。优 选地,使用的光波长为150~400nm,最优选波长为365nm。热处理步骤加 速光敏酸发生物质产生的H+离子的扩散并因此从第一种分子上去除酸敏保 护基。热处理可在60~100℃优选80℃处理0.5~3分钟,优选1分钟。但 是,热处理并不限于上述条件。

本发明方法在曝光步骤之前还可包括软焙烧(soft-baking)以去除光敏酸 发生物质单体组合物中的有机溶剂。软焙烧可在30~110℃,优选60℃进 行0.5~2分钟,优选1分钟。

在本发明的清洗和去除步骤中,用有机溶剂清洗并去除曝光部分和未 曝光部分的组合物层。极性有机溶剂,优选在其中光敏酸发生物质能溶解 的有机溶剂,可用来作为清洗溶剂。例如,清洗溶液可为二甲基甲酰胺(DMF) 的甲醇溶液。

在本发明方法的下一步骤中,第二种分子选择性地键合至第一种分子 上,从后者上通过曝光和热处理已经去除酸敏保护基。第一种分子的键合 位点为,例如,对亚磷酰胺偶联剂反应性的羟基(R-OH)。键合位点的另 一例子是用于多肽合成中的伯氨基。同样,键合位点包括但不限于其他的 官能团,如酮和醛,其可进行保护和未保护以进行键合反应。

第二种分子可为蛋白或核酸的单体。第二种分子优选地为那些具有酸 敏保护基的分子。这里所用的术语“单体”包括二聚体、三聚体和多聚体。适 合的单体包括保护和活化形式的L和D氨基酸、核苷酸、单糖、肽以及合 成的核苷酸类似物。优选的单体包括下述核苷酸:保护和活化形式的腺苷 磷酸苷磷酸、胞苷磷酸、尿苷磷酸、脱氧腺苷磷酸、脱氧鸟苷磷酸、 脱氧胞苷磷酸和脱氧胸苷磷酸以及其模拟物。活化形式的核苷酸包括,例 如,亚磷酰胺核苷酸分子。第二种分子的实例不限于上述列出的种类并可 包括本领域普通技术人员容易得到的那些,并且其取决于要合成的聚合物 包括DNA、RNA、PNA、LNA和多肽。用于结合反应的保护基和活化基取 决于具体的合成反应,这对本领域的普通技术人员而言是公知的。与第一 种分子结合的第二种分子的实例以及结合的实例公开在Fodor等,Science, 251,p.767(1991)中,其公开在此引入作为参考。

本发明方法可重复进行直到在载体上合成出期望数目或长度的化合 物。

在具有期望的数目或长度的化合物以阵列的形式合成之后,化合物上 的保护基优选地被去除。

此外,本发明提供了按照本发明方法制备的微阵列。微阵列可根据本 发明方法在预定的区域合成预定数目的化合物而制备。

下文中,本发明将通过下述实施例进行更详细的描述。实施例仅是说 明性的并不用来限制本发明的范围。

实施例

实施例1:

包含光敏酸发生物质单体和表面活性剂的组合物的包被特性的测试

在本实施例中,制备了多种包含光敏酸发生物质单体和表面活性剂的 组合物并测试了它们在固体载体上的包被特性。

首先,将光敏酸发生物质单体(二羟基酚二甲基碸甲苯锍盐, dihydroxynaphtholdimethylsulphone toluene sulphonium salts)分别地与多种表 面活性剂进行混合,如下表1中列出的那样,其中光敏酸发生物质单体与 表面活性剂的重量比范围为100∶1~500∶1。然后,将得到的光敏酸发生 物质单体组合物分别地包被在玻璃或硅片固体载体上。包被利用旋涂法进 行。光敏酸发生物质单体组合物在载体上以2,000rpm旋涂20秒。

表1:使用的表面活性剂以及包被特性结果

  厂商   商品名称   形态   包被特性   F-127   固体   ×   AcSi   液体   ×   Ac   液体   ×   MSQ   固体   ×   Aldrich   435457   聚(乙二醇)-B-聚(丙二醇)-B-聚(乙   二醇)MN4400   液体   ×   Aldrich   435465   聚(乙二醇)-B-聚(丙二醇)-B-聚(乙   二醇)MN5800   气体   ×   Aldrich   858366   BRIJ 35(聚氧乙烯(23)月桂基醚)   固体   ×   Aldrich   235989   BRIJ 33   液体   ×   Aldrich   38858   BRIJ 56   固体   ×   Aldrich   435430   聚(乙二醇)-B-聚(丙二醇)-B-聚(乙   二醇)MN2800   液体   ×   Tween 80   非离子性聚乙烯型   液体   ×   Tween 20   非离子性聚乙烯型   液体   ×   FC-4430   100%氟脂肪族聚合物醚   ○   FC-4432   95%氟氟脂肪族聚合物醚,5%NMP   ○

如表1中所示,根据本发明包含光敏酸发生物质单体和氟基表面活性 剂的组合物可包被在固体载体上。

实施例2:

利用本发明的光敏酸发生物质单体组合物制备肽核酸(PNAs)阵列

(1)第一种分子在固体载体上的包被

首先,将玻璃载体在清洗溶液(包含1L的95%乙醇溶液、12mL水和 120g氢氧化钠的)浸没12小时,用水清洗数次并空气干燥。

然后,将干燥的玻璃载体进行表面处理以固定氨基,步骤如下:将干 燥的玻璃载体用95%乙醇水溶液清洗,导入0.1%(v/v)氨丙基三乙氧基甲硅 烷的乙醇溶液中并在室温搅拌5分钟。然后,将载体再用乙醇洗涤三次并 在真空烤箱中在120℃干燥20分钟。然后,将玻璃载体在氩气气体中放置 12小时,浸没在DMF中并用足量的二氯甲烷清洗。

然后,向表面处理过的玻璃载体上加0.5mL的DMF溶液,溶液包含 30mM的6-N-叔丁氧羰基氨基己酸和3g的二环己基二亚胺(DCC)并在搅 动下在80℃反应1小时。然后,通过在乙酸酐/吡啶(1∶3,v/v)溶液中搅拌 下反应1小时,将未反应的氨基用乙酰基封闭(capped)。然后,将其中氨基 用酸敏保护基进行保护的连接分子结合到载体上。

(2)本发明组合物的包被以及肽核酸的合成

将0.05g光敏酸发生物质单体二羟基萘酚二甲基碸甲苯锍盐以及 0.001g的FC-4432表面活性剂(3M Company,U.S.A.)进行混合并且然后以 10%(w/v)浓度溶解在N-甲基吡咯烷酮(NMP)中,得到光敏酸发生物质单体 组合物。然后,将组合物以3,000rpm旋涂到玻璃载体上,已经连接在其上 连接分子,如实施例2(1)中所制备。

包被的玻璃在80℃软焙烧1分钟,用光掩膜对短波长的白光曝光10 秒,并在80℃焙烧2分钟以产生酸并选择性地从曝光部分的第一种分子上 去除保护基。向其中加入3g肽核酸单体,如从Perseptive Biosystems(USA) 中市售途径得到的那些,例如N-(2-叔丁氧羰基-氨基乙基)-N-胸腺嘧啶-1- 基乙酰基)甘氨酸、N-(N-4-(苄氧羰基)胞嘧啶-1-基)乙酰基-N-(2-叔丁氧羰基- 氨基乙基)甘氨酸、N-(N-6-(苄氧羰基)腺嘌呤-9-基)乙酰基-N-(2-叔丁氧羰基- 氨基乙基)甘氨酸、N-(N-4-(苄氧羰基)鸟嘌呤-1-基)乙酰基-N-(2-叔丁氧羰基- 氨基乙基)甘氨酸等,将其溶解在0.5mL的DMF中,以及10mg的HATU, 并且然后搅动下在60℃反应2小时。将肽核酸单体按照使随后得到的核苷 肽具有ID No.1序列的顺序加入。

然后,将未反应的氨基用乙酰基封闭,通过在搅动下将其在乙酸酐/吡 啶(1∶3,v/v)溶液中反应1小时。反应后,将残留的光敏酸发生物质单体组 合物用1%三烷基铵氢氧化物和有机溶剂(DMF、MeOH)去除。

接着,重复包被光敏酸发生物质单体组合物、将载体经光掩膜曝光以 去除保护基、将曝光部分与具有保护氨基的肽核酸反应并封闭的步骤,直 到在载体上合成得到具有需要长度的肽核酸。将玻璃载体上的游离氨基按 下述步骤进行荧光标记:通过与1mM荧光素异硫氰酸酯(Adrich,U.S.A.)的 DMF溶液室温反应1小时,依次乙醇、水和乙醇洗涤,干燥并储藏在暗室 中。用分光荧光计分析载体得到分辨率为10μm级的显微图象。

利用上述同样的方法,在载体上合成与ID No.1的肽核酸碱基序列不 同的ID No.2序列的寡肽核酸探针以制备寡肽核酸探针的微阵列。微阵列 具有10,000个肽核酸点,并具有80μm的长度。将5’端标记Cy3的ID No.3 序列的DNA与微阵列上肽核酸在杂交条件下进行杂交并用扫描仪(Axon扫 描仪)进行扫描。

结果表明斑点具有良好的形状并在各个阵列上没有形成边缘,如图1 中所示。图1中左上部分显示探针和靶标之间完全匹配的杂交结果,图1 的右上部分显示放大的图象。图1的左下部分显示探针和靶标之间有一个 碱基的错配的杂交结果,图1的右下部分显示其放大的图象。两种情形即 完全匹配和错配的杂交荧光强度及其比率显示在下表2中。

表2

  靶标   平均荧光强度   比率(PM/MM)   完全匹配(PM)   3145   6.33   单碱基错配(MM)   497

因此,PNA可在载体上进行合成,通过在在载体上直接包被本发明光 敏酸发生物质单体组合物而不发生聚合、将载体曝光并用合适的PNA单体 进行偶联反应。

本发明的光敏酸发生物质单体组合物可包被在载体上而不发生聚合。

在载体上的化合物的合成方法可通过使本发明光敏酸发生物质单体组 合物包被的载体而简单化了。

常规的合成方法包括包被光刻胶组合物并曝光以及显影,本发明方法 包括包被光敏酸发生物质单体组合物并曝光,从而使方法更为简单。

尽管本发明已经参考示例性的技术方案具体地显示并进行了描述,本 领域普通技术人员应理解为在不偏离下述权利要求定义的本发明实质和范 围的基础上,可以进行多种形式和细节上的变化。

发明背景

序列表
<110>三星电子株式会社(SAMSUNG ELECTRONICS CO.LTD.)
<120>包含光敏酸发生物质单体的组合物及用其包被的载体及其应用
<130>PN0505175
<160>3
<170>KopatentIn 1.71
<210>1
<211>10
<212>DNA
<213>人工序列
<220>
<223>具有经肽键连接的重复N-(2-氨基乙基)-甘氨酸单元的人工肽核酸
<400>1
ggagcagtct
10
<210>2
<211>10
<212>DNA
<213>人工序列
<220>
<223>具有经肽键连接的重复N-(2-氨基乙基)-甘氨酸单元的人工肽核酸
<400>2
ggagtagtct
10
<210>3
<211>10
<212>DNA
<213>人工序列
<220>
<223>5′端Cy3标记的具有经肽键连接的重复N-(2-氨基乙基)-甘氨酸单元的
人工肽核酸
<400>3
cctcgtcaga
10
QQ群二维码
意见反馈