Vectors for expression of prostate-associated antigens

申请号 US14527226 申请日 2014-10-29 公开(公告)号 US09402901B2 公开(公告)日 2016-08-02
申请人 Pfizer Inc.; 发明人 Joseph John Binder;
摘要 The present disclosure provides (a) vectors comprising a multi-antigen construct encoding two, three, or more immunogenic PAA polypeptides; (b) compositions comprising the vectors, (c) methods relating to uses of the vectors and compositions for eliciting an immune response or for treating prostate cancers.
权利要求

The invention claimed is:1. A C68 vector comprising:(a) a C68 nucleotide sequence; and(b) a multi-antigen construct that comprises at least one nucleotide sequence encoding an immunogenic PSA polypeptide, at least one nucleotide sequence encoding an immunogenic PSCA polypeptide, and at least one nucleotide sequence encoding an immunogenic PSMA polypeptide.2. The C68 vector according to claim 1, wherein the C68 nucleotide sequence is the sequence of SEQ ID NO: 57 lacking at least one gene selected from the group consisting of E1A, E1B, E2A, E2B, E3, E4, L1, L2, L3, L4 and L5 genes, wherein the immunogenic PSA polypeptide comprises amino acids 27-263 of SEQ ID NO:15 or amino acids 4-240 of SEQ ID NO:17, wherein the immunogenic PSCA polypeptide comprises an amino acid sequence selected from the group consisting of:(1) the amino acid sequence of SEQ ID NO:21,(2) amino acids 2-125 of SEQ ID NO:21, and(3) amino acids 4-125 Of SEQ ID NO:21,and wherein the immunogenic PSMA polypeptide is selected from the group consisting of:(1) a polypeptide comprising amino acids 15-750 of SEQ ID NO: 1;(2) a polypeptide comprising the amino acid sequence of SEQ ID NO:3;(3) a polypeptide comprising the amino acid sequence of SEQ ID NO:5;(4) a polypeptide comprising the amino acid sequence of SEQ ID NO:7;(5) a polypeptide comprising the amino acids 4-739 of SEQ ID NO:9;(6) a polypeptide comprising the amino acids 4-739 of SEQ ID NO:3;(7) a polypeptide comprising the amino acids 4-739 of SEQ ID NO:5;(8) a polypeptide comprising the amino acids 4-739 of SEQ ID NO:7; and(9) a polypeptide comprising the amino acid sequence of SEQ ID NO: 9.3. The C68 vector according to claim 2, wherein the C68 nucleotide sequence is the sequence of SEQ ID NO: 57 lacking the genes of E1A, E1B, and E3, and wherein the multi-antigen construct further comprises a separator sequence between two nucleotide sequences encoding two different immunogenic polypeptides and has the structure of formula (I):
PAA1-SS1-PAA2-SS2-PAA3  (I)
wherein in formula (I):(i) PAA1, PAA2, and PAA3 each is a nucleotide sequence encoding an immunogenic PSA polypeptide, a nucleotide sequence encoding immunogenic PSCA polypeptide, or a nucleotide sequence encoding immunogenic PSMA polypeptide, provided the PAA1, PAA2, and PAA3 encode different PAA polypeptides, and(ii) SS1 and SS2 are separator sequences and can be the same or different.
4. The C68 vector according to claim 3, wherein the separator sequences are selected from 2A peptide sequences and IRESs.5. The C68 vector according to claim 4, wherein the 2A peptide sequence is selected from the group consisting of the 2A-peptide sequence of FMDV, ERAV, PTV1, EMC-B, EMCV, TME-GD7, ERBV, TaV, DrosC, CrPV, ABPV, IFV, Porcine rotavirus, human rotavirus, T brucei TSR1, and T cruzi AP endonuclease; and wherein the IRES is a EMCV IRES.6. The vector according to claim 5, wherein PAA1 in formula (I) is a nucleotide sequence encoding the immunogenic PSA polypeptide or a nucleotide sequence encoding the immunogenic PSCA polypeptide.7. The vector according to claim 6, wherein:(i) PAA1 is a nucleotide sequence encoding the immunogenic PSA polypeptide;(ii) PAA2 is a nucleotide sequence encoding an immunogenic PSCA or PSMA polypeptide;(iii) SS1 is a 2A-peptide sequence; and(iv) SS2 is a 2A-peptide sequence or an EMCV IRES.8. The C68 vector according to claim 7, wherein the 2A-peptide sequence is the FMDV 2A-peptide sequence or the TAV 2A-peptide sequence.9. The C68 vector according to claim 8, wherein:(1) the nucleotide sequence encoding the immunogenic PSA polypeptide is selected from the group consisting of: (i) the nucleotide sequence of SEQ ID NO: 18; (ii) the nucleotide sequence of SEQ ID NO: 20; (iii) the nucleotide sequence comprising nucleotides 10-720 of SEQ ID NO:18; (iv) the nucleotide sequence comprising nucleotides 1115-1825 of SEQ ID NO:58; and (v) the nucleotide sequence comprising nucleotides 1106-1825 of SEQ ID NO:58;(2) the nucleotide sequence encoding the immunogenic PSCA polypeptide is selected from the group consisting of: (i) the nucleotide sequence of SEQ ID NO:22; (ii) a nucleotide sequence comprising nucleotides 10-372 of SEQ ID NO:22; (iii) a nucleotide sequence comprising nucleotides 1892-2257 of SEQ ID NO:58; and (iv) a nucleotide sequence comprising nucleotides 1886-2257 of SEQ ID NO:58; and(3) the nucleotide sequence encoding the immunogenic PSMA polypeptide is selected from the group consisting of: (i) the nucleotide sequence comprising nucleotides 43-2250 of SEQ ID NO:2; (ii) the nucleotide sequence of SEQ ID NO:4; (iii) the nucleotide sequence of SEQ ID NO:6; (iv) the nucleotide sequence of SEQ ID NO:8; (v) the nucleotide sequence of SEQ ID NO:10; (vi) a nucleotide sequence comprising nucleotides 10-2217 of SEQ ID NO:4; (vii) a nucleotide sequence comprising nucleotides 10-2217 of SEQ ID NO:6; (viii) a nucleotide sequence comprising nucleotides 10-2217 of SEQ ID NO:8; (ix) a nucleotide sequence comprising nucleotides 10-2217 of SEQ ID NO:10; (x) a nucleotide sequence comprising nucleotides 2333-4543 of SEQ ID NO:58; and (xi) a nucleotide sequence comprising nucleotides 2324-4543 of SEQ ID NO:58.10. The C68 vector according to claim 3, wherein in formula (I):(1) PAA1 is a nucleotide sequence encoding an immunogenic PSA polypeptide and comprises nucleotides 1115-1825 of SEQ ID NO: 58 or comprises 1106-1114 of SEQ ID NO: 58;(2) PAA2 is a nucleotide sequence encoding an immunogenic PSCA polypeptide and comprises nucleotides 1892-2257 of SEQ ID NO: 58 or comprises 1886-2257 of SEQ ID NO: 58;(3) PAA3 is a nucleotide sequence encoding an immunogenic PSMA polypeptide and comprises nucleotides 2333-4543 of SEQ ID NO: 58 or comprises 2324-4543 of SEQ ID NO: 58;(4) SS1 is a nucleotide sequence encoding T2A; and(5) SS2 is a nucleotide sequence encoding F2A.11. The C68 vector according to claim 1, wherein the multi-antigen construct comprises a nucleotide sequence encoding the amino acid sequence of SEQ ID NO:60 or SEQ ID NO:64.12. The C68 vector according to claim 1, wherein the multi-antigen construct comprises a nucleotide sequence of SEQ ID NO:61, SEQ ID NO:65, SEQ ID NO:66, or a degenerate variant of the nucleotide sequence of SEQ ID NO:61, SEQ ID NO:65, SEQ ID NO:66.13. The C68 vector according to claim 11 or claim 12, further comprising a CMV promoter.14. The C68 vector according to claim 1, which comprises the nucleotide sequence of SEQ ID NO:58, nucleotides 9-34811 of SEQ ID NO:58, or the nucleotide sequence of SEQ ID NO:63.15. A composition comprising a C68 vector according to claim 1.16. A cell comprising a C68 vector according to claim 1.17. A pharmaceutical composition comprising a C68 vector according to claim 1 and a pharmaceutically acceptable excipient.18. A method of treating prostate cancer in a human, comprising administering to the human an effective amount of the pharmaceutical composition according to claim 17.19. The method according to claim 18, further comprising administering to the human an effective amount of an immune modulator.20. The method according to claim 18, further comprising administering to the human (a) an effective amount of at least one immune-suppressive-cell inhibitor and (b) an effective amount of at least one immune-effector-cell enhancer.21. The method according to claim 20, wherein the immune-suppressive-cell inhibitor is selected from the group consisting of a protein kinase inhibitor, a COX-2 inhibitor, and a PDE5 inhibitor, and wherein the immune-effector-cell enhancer is selected from the group consisting of a CTLA-4 inhibitor, a CD40 agonist, a TLR agonist, a 4-1 BB agonist, a OX40 agonist, a GITR agonist, a PD-1 antagonist, and a PD-L1 antagonist.22. The method according to claim 21, wherein:(1) the protein kinase inhibitor is selected from the group consisting of imatinib, sorafenib, lapatinib, zactima MP-412, dasatinib, lestaurtinib, sunitinib malate, axitinib, erlotinib, gefitinib, bosutinib, temsirolismus, and nilotinib;(2) the CTLA-4 inhibitor is selected from the group consisting of ipilimumab and tremelimumab;(3) the CD40 agonist is an anti-CD40 antibody selected from the group consisting of G28-5, mAb89, EA-5, S2C6, CP870893, and dacetuzumab; and(4) the TLR agonist is a CpG oligonucleotide selected from the group consisting of CpG 24555, CpG 10103, CpG7909, and CpG1018.23. The method according to claim 22, wherein the immune-suppressive-cell inhibitor is a protein kinase inhibitor selected from the group consisting of sorafenib, dasatinib, imatinib, axitinib, and sunitinib malate, and wherein the immune-effector-cell enhancer is tremelimumab.24. The method according to claim 22, wherein the immune-suppressive-cell inhibitor is a protein kinase inhibitor selected from the group consisting of sorafenib, dasatinib, imatinib, axitinib, and sunitinib malate, and wherein the immune-effector-cell enhancer is a CpG oligonucleotide selected from the group consisting of CpG24555, CpG10103, CpG7909, and CpG1018.

说明书全文

REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/898,966 filed Nov. 1, 2013, which is incorporated herein by reference in its entirety.

REFERENCE TO SEQUENCE LISTING

This application is being filed along with a sequence listing in electronic format. The sequence listing is provided as a file in .txt format entitled “PC72055A_UPDATED_SEQListing_ST25.txt”, created on Feb. 2, 2016 and having a size of 492 KB. The sequence listing contained in the .txt file is part of the specification and is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to immunotherapy and specifically to vaccines and methods for treating or preventing neoplastic disorders.

BACKGROUND OF THE INVENTION

Prostate cancer is the second most commonly diagnosed cancer and the fourth leading cause of cancer-related death in men in the developed countries worldwide. Various prostate-associated antigens (PAA), such as prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) have been shown to be overexpressed by prostate cancer cells as compared to normal counterparts. These antigens, therefore, represent possible targets for inducing specific immune responses against cancers expressing the antigens via the use of vaccine-based immunotherapy. (See e.g. Marrari, A., M. Iero, et al. (2007). “Vaccination therapy in prostate cancer.” Cancer Immunol Immunother 56(4): 429-45)

PSCA is a 123-amino acid membrane protein. The native full length human PSCA consists of amino adds 1 and 4-125 of SEQ ED NO:21 (without the alanine and serine residues at the second and third position respectively). PSCA has high tissue specificity and is expressed on more than 85% of prostate cancer specimens, with expression levels increasing with higher Gleason scores and androgen independence. It is expressed in 80-100% of bone metastasis of prostate cancer patients.

PSA is a kallikrein-like serine protease that is produced exclusively by the columnar epithelial cells lining the acini and ducts of the prostate gland. PSA mRNA is translated as an inactive 261-amino acid preproPSA precursor. PreproPSA has 24 additional residues that constitute the pre-region (the signal polypeptide) and the propolypeptide. Release of the propolypeptide results in the 237-amino acid, mature extracellular form, which is enzymatically active. The full length sequence of the native human PSA consists of amino acids 4-263 of SEQ ID NO: 15. PSA is organ-specific and, as a result, it is produced by the epithelial cells of benign prostatic hyperplastic (BPH) tissue, primary prostate cancer tissue, and metastatic prostate cancer tissue.

PSMA, also known as Folate hydrolase 1 (FOLH1), is composed of 750 amino acids. The amino acid sequence of the full length human PSMA is provided in SEQ ID NO:1. PSMA includes a cytoplasmic domain (amino acids 1-19), a transmembrane domain (amino acids 20-43), and an extracellular domain (amino acids 44-750). PSMA was found to be expressed in prostate cancer cells it at 1000-fold higher levels than normal tissues. It is abundantly expressed on neovasculature of a variety of other solid tumors such as colon, breast, liver, bladder, pancreas, lung, renal cancers as well as melanoma and sarcomas. Thus, PSMA is considered a target not only specific for prostate cancer cells but also a pan-carcinoma target for other cancers.

While a large number of tumor-associated antigens have been identified and many of these antigens have been explored as protein-based or DNA-based vaccines for the treatment or prevention of cancers, most clinical trials so far have failed to produce a therapeutic product. One of the challenges in developing cancer vaccines resides in the fact that the cancer antigens are usually self-derived and, therefore, poorly immunogenic because the immune system is self-regulated not to recognize self-proteins. Accordingly, a need exists for a method to enhance the immunogenicity or therapeutic effect of cancer vaccines.

Numerous approaches have been explored for enhancing the immunogenicity or enhancing anti-tumor efficacy of cancer vaccines. One of such approach involves the use of various immune modulators, such as TLR agonists, TNFR agonists, CTLA-4 inhibitors, and protein kinase inhibitors.

Toll-like receptors (TLRs) are type 1 membrane receptors that are expressed on hematopoietic and non-hematopoietic cells. At least 11 members have been identified in the TLR family. These receptors are characterized by their capacity to recognize pathogen-associated molecular patterns (PAMP) expressed by pathogenic organisms. These receptors in the innate immune systems exert control over the polarity of the ensuing acquired immune response. Among the TLRs, TLR9 has been extensively investigated for its functions in immune responses. Stimulation of the TLR9 receptor directs antigen-presenting cells (APCs) towards priming potent, TH1-dominated T-cell responses, by increasing the production of pro-inflammatory cytokines and the presentation of co-stimulatory molecules to T cells. CpG oligonucleotides, ligands for TLR9, were found to be a class of potent immunostimulatory factors. CpG therapy has been tested against a wide variety of tumor models in mice, and has consistently been shown to promote tumor inhibition or regression.

Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) is a member of the immunoglobulin superfamily and is expressed on the surface of Helper T cells. CTLA-4 is a negative regulator of CD28 dependent T cell activation, and acts as an inhibitory checkpoint for the adaptive immune response. Similar to the T-cell costimulatory protein CD28, CTLA-4 binds to CD80 and CD86 on antigen-presenting cells. CTLA-4 transmits an inhibitory signal to T cells, whereas CD28 transmits a stimulatory signal. Human antibodies against human CTLA-4 have been described as immunostimulation modulators in a number of disease conditions, such as treating or preventing viral and bacterial infection and for treating cancer (WO 01/14424 and WO 00/37504). Various preclinical studies have shown that CTLA-4 blockade by monoclonal antibodies enhances the host immune response against immunogenic tumors, and can even reject established tumors. Two fully human anti-human CTLA-4 monoclonal antibodies (mAbs), ipilimumab (MDX-010) and Tremelimumab (also known as CP-675206), have been investigated in clinical trials in the treatment of various types of solid tumors.

The tumor necrosis factor (TNF) superfamily is a group of cytokines that engage specific cognate cell surface receptors, the TNF receptor (TNFR) superfamily. Members of the tumor necrosis factor superfamily act through ligand-mediated trimerization, causing recruitment of several intracellular adaptors to activate multiple signal transduction pathways, such as apoptosis, NF-kB pathway, JNK pathway, as well as immune and inflammatory responses. Examples of the TNF superfamily include CD40 ligands, OX40 ligands, 4-1BB ligands, CD27, CD30 ligand (CD153), TNF-alpha, TNF-beta, RANK ligands, LT-alpha, LT-beta, GITR ligands, and LIGHT. The TNFR superfamily includes, for example, CD40, OX40, 4-1BB, CD70 (CD27 ligand), CD30, TNFR2, RANK, LT-beta R, HVEM, GITR, TROY, and RELT. Among the TNF members, CD40 agonists, including various CD40 agonistic antibodies, such as the fully human agonist CD40 monoclonal antibody CP870893, have been extensively explored for usage in therapies.

Protein kinases are a family of enzymes that catalyze the phosphorylation of specific residues in proteins. A number of kinase inhibitors have been investigated in clinical investigation for use in anti-cancer therapies, which includes, for example, MK0457, VX-680, ZD6474, MLN8054, AZD2171, SNS-032, PTK787/ZK222584, Sorafenib (BAY43-9006), SU5416, SU6668 AMG706, Zactima (ZD6474), MP-412, Dasatinib, CEP-701, (Lestaurtinib), XL647, XL999, Tykerb, (Lapatinib), MLN518, (formerly known as CT53518), PKC412, ST1571, AMN107, AEE 788, OSI-930, OSI-817, Sunitinib malate (Sutent; SU11248), Vatalanib (PTK787/ZK 222584), SNS-032, SNS-314 and Axitinib (AG-013736). Gefitinib and Erlotinib are two orally available EGFR-TKIs.

SUMMARY OF THE INVENTION

The present disclosure relates to vectors constructed from chimpanzee adenovirus ChAd68 genomic sequences for expression of two or more immunogenic PAA polypeptides. The vector comprises (1) a C68 DNA sequence, (2) a multi-antigen construct for expression of two or more immunogenic PAA polypeptides, and (3) regulatory sequences that control the transcription and translation of the antigen products (i.e., the immunogenic PAA polypeptides). The C68 DNA sequence included in the vector is derived from C68 genomic sequence by functional deletion of one or more viral genes but is sufficient for production of an infectious viral particle. In a particular embodiment, the C68 DNA sequence used in the vector is the entire C68 genome with only functional deletions in the E1 and E3 regions.

The multi-antigen construct carried by the vector comprises nucleotide sequences encoding two or more immunogenic PAA polypeptides selected from immunogenic PSMA polypeptide, immunogenic PSA polypeptide, and immunogenic PSCA polypeptide. In some embodiments, the multi-antigen construct carried by the vector comprises (1) a nucleotide sequence encoding at least one immunogenic PSMA polypeptide, (2) a nucleotide sequence encoding at least one immunogenic PSA polypeptide, and (3) a nucleotide sequence encoding at least one immunogenic PSCA polypeptide. The multi-antigen constructs may also include separator sequences that enable expression of separate PAA polypeptides encoded by the construct. Examples of separator sequences include 2A peptide sequences and IRESs. In some embodiments, the vector comprises a multi-antigen construct having one of the following structures:

(1) PSA-F2A-PSMA-mIRES-PSCA,

(2) PSA-F2A-PSMA-T2A-PSCA;

(3) PSA-T2A-PSCA-F2A-PSMA; and

(4) PSCA-F2A-PSMA-mIRES-PSA.

In some embodiments, the nucleotide sequence encoding the immunogenic PSA polypeptide comprises nucleotides 1115-1825 of SEQ ID NO:58 or comprises nucleotides 1106-1825 of SEQ ID NO:58, the nucleotide sequence encoding the immunogenic PSCA polypeptide comprises nucleotides 1892-2257 of SEQ ID NO:58 or comprises nucleotides 1886-2257 of SEQ ID NO:58, and the nucleotide sequence encoding the immunogenic PSMA polypeptide comprises nucleotides 2333-4543 of SEQ ID NO:58 or comprises nucleotides 2324-4543 of SEQ ID NO:58. In some specific embodiments, the multi-antigen construct comprises nucleotide sequence selected from the group consisting of SEQ ID NOs:33, 34, 35, and 36. In a particular embodiment, the multi-antigen construct comprises a nucleotide sequence that encodes a polypeptide sequence of SEQ ID NO:60. In another particular embodiment, the multi-antigen construct comprises a nucleotide sequence of SEQ ID NO:61.

The present disclosure also provides compositions comprising the vectors. In some embodiments, the composition is an immunogenic composition useful for eliciting an immune response against a PAA in a mammal, such as a mouse, dog, monkey, or human. In some embodiments, the composition is a vaccine composition useful for immunization of a mammal, such as a human, for inhibiting abnormal cell proliferation, for providing protection against the development of cancer (used as a prophylactic), or for treatment of disorders (used as a therapeutic) associated with PAA over-expression, such as cancer, particularly prostate cancer.

The present disclosure further relates to methods of using the vectors or compositions for eliciting an immune response against a PAA, or for treating cancers, such as prostate cancers, in a mammal, particularly a human. In some embodiments, the vectors or compositions, including vaccine compositions, are administered to the mammal, particularly human, in combination with one or more immune modulators that enhance the immunogenicity or effect of the vectors or compositions. In some particular embodiments, the method involves co-administration of a vaccine provided by the present invention in combination with at least one immune-suppressive-cell inhibitor and at least one immune-effector-cell enhancer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Schematic illustration of PJV7563 vector.

FIG. 2. Amino acid alignment of five viral 2A cassettes (FMDV 2A, ERAV 2A, PTV 2A, EMCV 2A, and TAV 2A). The skipped glycine-proline bonds are indicated by asterisks. The amino acid sequence of FMDV 2A, ERAV 2A, PTV 2A, EMCV 2A, and TAV 2A is set forth in SEQ ID NOs: 67, 68, 69, 70, and 74, respectively.

FIG. 3. Sequence of the preferred EMCV IRES (SEQ ID NO:290). The translation initiation site is indicated by the asterisk. The minimal IRES element excludes the underlined first 5 codons of the EMCV L protein.

FIG. 4. Graph showing the Kaplan-Meier survival curves of the groups of mice from a representative study evaluating the effect of sunitinib malate (Sutent) and an anti-murine CTLA-4 monoclonal antibody (clone 9D9) on the anti-tumor efficacy of a cancer vaccine (vaccine) in subcutaneous TUBO tumor bearing BALB/neuT mice.

FIG. 5. Graph depicting the IFNγ ELISPOT results from a representative study evaluating the effect of CpG7909 and an anti-CD40 antibody (Bioxcell #BE0016-2) on the antigen specific T cell responses induced by a cancer vaccine (rHER2).

FIG. 6. Graphs depicting results of a representative study that evaluates the immunomodulatory activity of CpG7909 on the quality of the immune responses induced by a cancer vaccine (PMED) using intracellular cytokine staining assay, in which cytokine positive CD8 T cells were measured. (*indicates P<0.05 by Student's T-test).

FIG. 7. Graphs depicting results of a representative study that evaluates the immunomodulatory activity of CpG7909 on the quality of the immune responses induced by a cancer vaccine (PMED) using intracellular cytokine staining assay, in which cytokine positive CD4 T cells (FIG. 7) were measured. (*indicates P<0.05 by Student's T-test).

FIG. 8. Graphs depicting results of a representative study that evaluates the immunomodulatory activity of an agonistic anti-murine CD40 monoclonal antibody on the quality of the immune responses induced by a cancer vaccine (PMED) using intracellular cytokine staining assay, in which cytokine positive CD8 T cells were measured. (*indicates P<0.05 by Student's T-test)

FIG. 9. Graphs depicting results of a representative study that evaluates the immunomodulatory activity of an agonistic anti-murine CD40 monoclonal antibody on the quality of the immune responses induced by a cancer vaccine (PMED) using intracellular cytokine staining assay, in which cytokine positive CD4 T cells were measured. (*indicates P<0.05 by Student's T-test)

FIG. 10. Graph showing the Kaplan-Meier survival curves of the groups of mice from a representative study that evaluates the effect of low dose sunitinib malate (Sutent) on the anti-tumor efficacy of a cancer vaccine in spontaneous mammary tumor bearing BALB/neuT mice.

FIG. 11. Graph showing the genomic organization of the AdC68-734 vector. CMV Enh/pro=human cytomegalovirus immediate early enhancer and promoter; tet op=tetracycline operator; T2A=Thosea asigna virus 2A; F2A=Foot and Mouth Disease Virus 2A; SV40 pA=Simian Virus 40 polyadenylation signal; LITR=left inverted terminal repeat; RITR=right inverted terminal repeat.

FIG. 12. Dot plots showing expression of PSMA and PSCA on the surface of A549 cells transduced with triple antigen expressing AdC68 vectors by flow cytometry.

FIG. 13. Western blot from lysates of A549 infected by AdC68 vectors.

DETAILED DESCRIPTION OF THE INVENTION

A. Definitions

The term “adjuvant” refers to a substance that is capable of enhancing, accelerating, or prolonging an immune response elicited by a vaccine immunogen.

The term “agonist” refers to a substance which promotes (induces, causes, enhances or increases) the activity of another molecule or a receptor. The term agonist encompasses substances which bind receptor (e.g., an antibody, a homolog of a natural ligand from another species) and substances which promote receptor function without binding thereto (e.g., by activating an associated protein).

The term “antagonist” or “inhibitor” refers to a substance that partially or fully blocks, inhibits, or neutralizes a biological activity of another molecule or receptor.

The term “co-administration” refers to administration of two or more agents to the same subject during a treatment period. The two or more agents may be encompassed in a single formulation and thus be administered simultaneously. Alternatively, the two or more agents may be in separate physical formulations and administered separately, either sequentially or simultaneously, to the subject. The term “administered simultaneously” or “simultaneous administration” means that the administration of the first agent and that of a second agent overlap in time with each other, while the term “administered sequentially” or “sequential administration” means that the administration of the first agent and that of a second agent does not overlap in time with each other.

The term “cytosolic” means that, after a nucleotide sequence encoding a particular polypeptide is expressed by a host cell, the expressed polypeptide is retained inside the host cell.

The terms “degenerate variant” refers to a nucleotide sequence that has substitutions of bases as compared to a reference nucleotide sequence but, due to degeneracy of the genetic code, encodes the same amino add sequence as the reference nucleotide sequence.

The term “effective amount” refers to an amount administered to a mammal that is sufficient to cause a desired effect in the mammal.

The term “fragment” of a given polypeptide refers to a polypeptide that is shorter than the given polypeptide and shares 100% identity with the sequence of the given polypeptide.

The term “identical” or percent “identity,” in the context of two or more nucleic acid or polypeptide sequences, refers to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same, when compared and aligned for maximum correspondence.

The term “immune-effector-cell enhancer” or “IEC enhancer” refers to a substance capable of increasing or enhancing the number, quality, or function of one or more types of immune effector cells of a mammal. Examples of immune effector cells include cytolytic CD8 T cells, CD40 T cells, NK cells, and B cells.

The term “immune modulator” refers to a substance capable of altering (e.g., inhibiting, decreasing, increasing, enhancing or stimulating) the working of any component of the innate, humoral or cellular immune system of a mammal. Thus, the term “immune modulator” encompasses the “immune-effector-cell enhancer” as defined herein and the “immune-suppressive-cell inhibitor” as defined herein, as well as substance that affects other components of the immune system of a mammal.

The term “immune response” refers to any detectable response to a particular substance (such as an antigen or immunogen) by the immune system of a host vertebrate animal, including, but not limited to, innate immune responses (e.g., activation of Toll receptor signaling cascade), cell-mediated immune responses (e.g., responses mediated by T cells, such as antigen-specific T cells, and non-specific cells of the immune system), and humoral immune responses (e.g., responses mediated by B cells, such as generation and secretion of antibodies into the plasma, lymph, and/or tissue fluids). Examples of immune responses include an alteration (e.g., increase) in Toll-like receptor activation, lymphokine (e.g., cytokine (e.g., Th1, Th2 or Th17 type cytokines) or chemokine) expression or secretion, macrophage activation, dendritic cell activation, T cell (e.g., CD4+ or CD8+ T cell) activation, NK cell activation, B cell activation (e.g., antibody generation and/or secretion), binding of an immunogen (e.g., antigen (e.g., immunogenic polypolypeptide)) to an MHC molecule, induction of a cytotoxic T lymphocyte (“CTL”) response, induction of a B cell response (e.g., antibody production), and, expansion (e.g., growth of a population of cells) of cells of the immune system (e.g., T cells and B cells), and increased processing and presentation of antigen by antigen presenting cells. The term “immune response” also encompasses any detectable response to a particular substance (such as an antigen or immunogen) by one or more components of the immune system of a vertebrate animal in vitro.

The term “immunogenic” refers to the ability of a substance to cause, elicit, stimulate, or induce an immune response, or to improve, enhance, increase or prolong a pre-existing immune response, against a particular antigen, whether alone or when linked to a carrier, in the presence or absence of an adjuvant.

The term “immunogenic PSA polypeptide” refers to a polypeptide that is immunogenic against human PSA protein or against cells expressing human PSA protein.

The term “immunogenic PSCA polypeptide” refers to a polypeptide that is immunogenic against human PSCA protein or against cells expressing human PSCA protein.

The term “immunogenic PSMA polypeptide” refers to a polypeptide that is immunogenic against human PSMA protein or against cells expressing human PSMA protein.

The term “immunogenic PAA polypeptide” refers to an “immunogenic PSA polypeptide,” an “immunogenic PSCA polypeptide,” or an “immunogenic PSMA polypeptide” as defined herein above.

The term “immune-suppressive-cell inhibitor” or “ISC inhibitor” refers to a substance capable of reducing or suppressing the number or function of immune suppressive cells of a mammal. Examples of immune suppressive cells include regulatory T cells (“T regs”), myeloid-derived suppressor cells, and tumor-associated macrophages.

The term “intradermal administration,” or “administered intradermally,” in the context of administering a substance, such as a therapeutic agent or an immune modulator, to a mammal including a human, refers to the delivery of the substance into the dermis layer of the skin of the mammal. The skin of a mammal is composed of three layers—the epidermis, dermis, and subcutaneous layer. The epidermis is the relatively thin, tough, outer layer of the skin. Most of the cells in the epidermis are keratinocytes. The dermis, the skin's next layer, is a thick layer of fibrous and elastic tissue (made mostly of collagen, elastin, and fibrillin) that gives the skin its flexibility and strength. The dermis contains nerve endings, sweat glands and oil (sebaceous) glands, hair follicles, and blood vessels. The dermis varies in thickness depending on the location of the skin. In humans it is about 0.3 mm on the eyelid and about 3.0 mm on the back. The subcutaneous layer is made up of fat and connective tissue that houses larger blood vessels and nerves. The thickness of this layer varies throughout the body and from person to person. The term “intradermal administration” refers to delivery of a substance to the inside of the dermis layer. In contrast, “subcutaneous administration” refers to the administration of a substance into the subcutaneous layer and “topical administration” refers to the administration of a substance onto the surface of the skin.

The term “local administration” or “administered locally” encompasses “topical administration,” “intradermal administration,” and “subcutaneous administration,” each as defined herein above. This term also encompasses “intratumoral administration,” which refers to administration of a substance to the inside of a tumor. Local administration is intended to allow for high local concentrations around the site of administration for a period of time until systemic biodistribution has been achieved with of the administered substance, while “systemic administration” is intended for the administered substance to be absorbed into the blood and attain systemic exposure rapidly by being distributed through the circulatory system to organs or tissues throughout the body.

The term “mammal” refers to any animal species of the Mammalia class. Examples of mammals include: humans; non-human primates such as monkeys; laboratory animals such as rats, mice, guinea pigs; domestic animals such as cats, dogs, rabbits, cattle, sheep, goats, horses, and pigs; and captive wild animals such as lions, tigers, elephants, and the like.

The term “membrane-bound” means that after a nucleotide sequence encoding a particular polypeptide is expressed by a host cell, the expressed polypeptide is bound to, attached to, or otherwise associated with, the membrane of the cell.

The term “neoplastic disorder” refers to a condition in which cells proliferate at an abnormally high and uncontrolled rate, the rate exceeding and uncoordinated with that of the surrounding normal tissues. It usually results in a solid lesion or lump known as “tumor.” This term encompasses benign and malignant neoplastic disorders. The term “malignant neoplastic disorder”, which is used interchangeably with the term “cancer” in the present disclosure, refers to a neoplastic disorder characterized by the ability of the tumor cells to spread to other locations in the body (known as “metastasis”). The term “benign neoplastic disorder” refers to a neoplastic disorder in which the tumor cells lack the ability to metastasize.

The term “operably linked” refers to a juxtaposition wherein the components so described are in a relationship permitting them to function in their intended manner. A control sequence “operably linked” to a transgene is ligated in such a way that expression of the transgene is achieved under conditions compatible with the control sequences.

The term “pharmaceutically acceptable excipient” refers to a substance in an immunogenic or vaccine composition, other than the active ingredients (e.g., the antigen, antigen-coding nucleic acid, immune modulator, or adjuvant) that is compatible with the active ingredients and does not cause significant untoward effect in subjects to whom it is administered.

The terms “peptide,” “polypeptide,” and “protein” are used interchangeably herein, and refer to a polymeric form of amino acids of any length, which can include coded and non-coded amino acids, chemically, or biochemically modified or derivatized amino acids, and polypeptides having modified polypeptide backbones.

The term “preventing” or “prevent” refers to (a) keeping a disorder from occurring or (b) delaying the onset of a disorder or onset of symptoms of a disorder.

The term “prostate-associated-antigen” (or PAA) refers to the TAA (as defined herein) that is specifically expressed on prostate tumor cells or expressed at a higher frequency or density by tumor cells than by non-tumor cells of the same tissue type. Examples of PAA include PSA, PSCA, and PSMA.

The term “secreted” in the context of a polypeptide means that after a nucleotide sequence encoding the polypeptide is expressed by a host cell, the expressed polypeptide is secreted outside of the host cell.

The term “suboptimal dose” when used to describe the amount of an immune modulator, such as a protein kinase inhibitor, refers to a dose of the immune modulator that is below the minimum amount required to produce the desired therapeutic effect for the disease being treated when the immune modulator is administered alone to a patient.

The term “treating,” “treatment,” or “treat” refers to abrogating a disorder, reducing the severity of a disorder, or reducing the severity or occurrence frequency of a symptom of a disorder.

The term “tumor-associated antigen” or “TAA” refers to an antigen which is specifically expressed by tumor cells or expressed at a higher frequency or density by tumor cells than by non-tumor cells of the same tissue type. Tumor-associated antigens may be antigens not normally expressed by the host; they may be mutated, truncated, misfolded, or otherwise abnormal manifestations of molecules normally expressed by the host; they may be identical to molecules normally expressed but expressed at abnormally high levels; or they may be expressed in a context or milieu that is abnormal. Tumor-associated antigens may be, for example, proteins or protein fragments, complex carbohydrates, gangliosides, haptens, nucleic acids, or any combination of these or other biological molecules.

The term “vaccine” refers to an immunogenic composition for administration to a mammal for eliciting an immune response against a particular antigen.

The term “vector” refers to a nucleic acid molecule capable of transporting or transferring a foreign nucleic acid molecule. The foreign nucleic acid molecule is referred to as “insert” or “transgene.” A vector generally consists of an insert and a larger sequence that serves as the backbone of the vector. The term “vector” encompasses both expression vectors and transcription vectors. The term “expression vector” refers to a vector capable of expressing the insert in the target cell. It generally contains control sequences, such as enhancer, promoter, and terminator sequences, that drive expression of the insert. The term “transcription vector” refers to a vector capable of being transcribed but not translated. Transcription vectors are used to amplify their insert. Based on the structure or origin of vectors, major types of vectors include plasmid vectors, cosmid vectors, phage vectors such as lambda phage, viral vectors such as adenovirus (Ad) vectors, and artificial chromosomes.

B. Vectors Containing a Multi-Antigen Construct

In one aspect, the present disclosure provides a voral vector constructed from the genome of chimpanzee adenovirus ChAd68 for expression of two or more immunogenic PAA polypeptides. Chimpanzee adenovirus ChAd68 is also referred in the literature as simian adenovirus 25, C68, Chad68, SAdV25, PanAd9, or Pan9. For convenience, the chimpanzee adenovirus ChAd68 may be referred to in this specification as “C68” and the viral vector constructed from the genome of chimpanzee adenovirus ChAd68 is referred to as “C68 vector.” The full length genomic sequence of C68 is available from Genbank (Accession Number AC_000011.1) and is provided in SEQ ID NO:57. In addition, the full length genomic sequence of C68 and location of the adenovirus genes E1a, E1b, E2a, E2b, E3, E4, 11, 12, L3, L4, and L5 are also provided in U.S. Pat. No. 6,083,716.

The C68 vector provided by the present disclosure comprises (1) a C68 DNA sequence, and (2) a multi-antigen construct for expression of two or more immunogenic PAA polypeptides. The vector may also contain non-native regulatory sequences that control the transcription and translation of the antigen products. The non-native regulatory sequences refer to sequences that are not part of the C68 genome. The C68 DNA sequence, multi-antigen construct, and regulatory sequences are operably linked to each other.

The C68 vector can be replication-competent, conditionally replication-competent, or replication-deficient. A replication-competent C68 vector can replicate in typical host cells, i.e., cells typically capable of being infected by an adenovirus. A replication-competent viral vector can have one or more mutations as compared to the wild-type adenovirus (e.g., one or more deletions, insertions, and/or substitutions) in the adenoviral genome that do not inhibit viral replication in host cells. A conditionally-replicating C68 vector is viral vector that has been engineered to replicate under pre-determined conditions. For example, replication-essential gene functions, e.g., gene functions encoded by the adenoviral early regions, can be operably linked to an inducible, repressible, or tissue-specific transcription control sequence, e.g., promoter. A replication-deficient C68 vector is a viral vector that requires complementation of one or more gene functions or regions of the viral genome that are required for replication, as a result of, for example, a deficiency in one or more replication-essential gene function or regions, such that the vector does not replicate in typical host cells, especially those in a human to be infected by the vector.

The vectors are useful for cloning or expressing the immunogenic PAA polypeptides, or for delivering the multi-antigen construct in a composition, such as a vaccine, to a host cell or to a host animal, such as a human. In some particular embodiments, the present disclosure provides a vector selected from the group consisting of (i) a vector comprising or consisting of the nucleotide sequence of SEQ ID NO:58; (ii) a vector comprising or consisting of nucleotides 9-34811 of SEQ ID NO:58; and (iii) a vector comprising or consisting of the nucleotide sequence of SEQ ID NO:63.

The C68 vector provided by the present disclosure also encompasses functional variants of the vectors specifically described or exemplified in the present disclosure. A “functional variant” refers a vector that contains mutations (e.g., additions, deletions, or substitutions) relative to the sequence of a vector (“parent vector”) specifically described or exemplified in the present disclosure but retains the function or property of the parent vector. For example, functional variant may comprise codon-optimized sequence corresponding to a parent vector exemplified in the present disclosure.

B1. The C68 DNA Sequence

The term “C68 DNA sequence” refers to a DNA sequence that is part of the C68 genomic sequence. The C68 DNA sequence included in the vector is derived from C68 genomic sequence by functional deletion of one or more viral genes or genomic regions. The term “functional deletion” means that a sufficient amount of the gene region of the virus is removed or otherwise changed, e.g., by mutation or modification, so that the gene region is no longer capable of producing functional products of gene expression or is otherwise performing its normal function. Deletion of an entire gene region often is not required for disruption of a replication-essential gene function. However, for the purpose of providing sufficient space in the C68 genome for one or more transgenes, removal of a majority of one or more gene regions may be desirable. While deletion of genetic material is preferred, mutation of genetic material by addition or substitution also is appropriate for disrupting gene function.

In some embodiments, the C68 DNA sequence of the vector is derived from the C68 genomic sequence by functionally deleting the entire, or a sufficient portion of, the adenoviral immediate early gene E1a and delayed early gene E1b. In other embodiments, in addition to the functional deletion of E1a and E1b, functional deletion may also be made to one or more other genes, such as the delayed early gene E2a, delayed early gene E3, E4, any of the late genes L1 through L5, the intermediate genes IX, and IVa2. Thus, the C68 DNA sequence for use in the construction of the vector of the invention may contain deletions in E1 only. Alternatively, deletions of entire genes or portions thereof effective to destroy their biological activity may be used in any combination. For example, in one exemplary vector, the C68 DNA sequence is derived from the C68 genomic sequence by functional deletions of the E1 genes and the E4 gene, or of the E1, E2a and E3 genes, or of the E1 and E3 genes, or of E1, E2a and E4 genes, with or without deletion of E3, and so on. In addition, such deletions may be used in combination with other mutations, such as temperature-sensitive mutations, to achieve a desired result. In a particular embodiment, the C68 DNA sequence is the entire C68 genome with only functional deletions in the E1 and E3 regions.

In some particular embodiments, the functional deletion of E1 gene is accomplished by deletion of nucleotides 577-3403 of SEQ ID NO:57 or by deletion of nucleotides 456-3012 of SEQ ID NO:57, and the functional deletion of E3 gene is accomplished by deletion of nucleotides 27125-31831 of SEQ ID NO:57 or by deletion of nucleotides 27812-31330 of SEQ ID NO:57. In other particular embodiments, the C68 DNA sequence included in the vector comprises nucleotides 3013-27811 of SEQ ID NO:57. In still other particular embodiments, the C68 DNA sequence included in the vector comprises nucleotides 3013-27811 and 31331-36519 of SEQ ID NO:57.

The multi-antigen construct may be inserted into any deleted region of the adenovirus genome. The multi-antigen construct may also be inserted into an existing gene region to disrupt the function of that region. In some embodiments, the multi-antigen construct is inserted in the place of the deleted E1 gene.

B2. The Multi-Antigen Constructs

The term “multi-antigen construct” refers to a nucleic acid molecule or sequence that encodes two or more PAA polypeptides. Such molecules or sequences may also be referred to as “multi-antigen vaccine” or “multi-antigen plasmid” in the present disclosure. A multi-antigen construct can carry two coding nucleotide sequences wherein each of the coding nucleotide sequences expresses an individual immunogenic PAA polypeptide. Such a construct is also referred to as “dual antigen construct,” “dual antigen vaccine,” or “dual antigen plasmid” in this disclosure. A multi-antigen construct can also carry three coding nucleotide sequences wherein each of the coding nucleotide sequences expresses an individual immunogenic PAA polypeptide. Such a construct is also referred to as “triple antigen construct,” “triple antigen vaccine,” or “triple antigen plasmid” in this disclosure. The individual PAA polypeptides encoded by a multi-antigen construct may be immunogenic against the same antigen, such as PSMA, PSA, or PSCA. For example, a dual antigen construct may express two different PAA antigens that are both immunogenic against PSMA. The individual PAA polypeptides encoded by a multi-antigen construct may be immunogenic against different antigens, for example, a dual antigen construct may express two PAA polypeptides that are immunogenic against PSMA and PSA, respectively. It is preferred that a multi-antigen construct encodes two or more individual PAA polypeptides that are immunogenic against different antigens.

In some embodiments, the multi-antigen construct encodes at least two immunogenic PAA polypeptides in any one of the following combinations:

1) an immunogenic PSMA polypeptide and an immunogenic PSA polypeptide;

2) an immunogenic PSMA polypeptide and an immunogenic PSCA polypeptide; and

3) an immunogenic PSA polypeptide and an immunogenic PSCA polypeptide.

In some particular embodiments, the multi-antigen construct encodes at least one immunogenic PSMA polypeptide, at least one immunogenic PSA polypeptide, and at least one immunogenic PSCA polypeptide.

The immunogenic PSMA polypeptide expressed by a multi-antigen construct may be cytosolic, secreted, or membrane-bound, but preferably membrane-bound. In some embodiments, the immunogenic PSMA polypeptide comprises an amino acid sequence selected from the group consisting of:

1) the amino acid sequence of SEQ ID NO:1,

2) amino acids 15-750 of SEQ ID NO:1;

3) the amino acid sequence of SEQ ID NO:3;

4) the amino acid sequence of SEQ ID NO:5;

5) the amino acid sequence of SEQ ID NO:7;

6) amino acids 4-739 of SEQ ID NO:3;

7) amino acids 4-739 of SEQ ID NO:5;

8) amino acids 4-739 of SEQ ID NO:7;

9) the amino acid sequence of SEQ ID NO:9; and

10) amino acids 4-739 of SEQ ID NO:9.

The immunogenic PSA polypeptide expressed by a multi-antigen construct may be cytosolic, secreted, or membrane-bound, but preferably cytosolic. In some embodiments, the immunogenic PSA polypeptide comprises an amino acid sequence selected from the group consisting of:

1) amino acids 27-263 of SEQ ID NO: 15;

2) the amino acid sequence of SEQ ID NO:17; and

3) amino acids 4-240 of SEQ ID NO:17.

The immunogenic PSCA polypeptide expressed by a multi-antigen construct may be the full length human PSCA protein. In some embodiments, the immunogenic PSCA polypeptide comprises an amino acid sequence selected from the group consisting of:

1) the amino acid sequence of SEQ ID NO:21;

2) amino acids 2-125 of SEQ ID NO; 21, and

    • 3) amino acids 4-125 of SEQ ID NO:21.

In some other embodiments, the multi-antigen construct encodes at least one immunogenic PSA polypeptide, at least one immunogenic PSCA polypeptide, and at least one immunogenic PSMA polypeptide, wherein the immunogenic PSA polypeptide comprises the amino acid sequence of SEQ ID NO:17 or amino acids 4-240 of SEQ ID NO:17, wherein the immunogenic PSCA polypeptide comprises the amino acid sequence of SEQ ID NO:21 or amino acids 2-125 of SEQ ID NO:21, and wherein the immunogenic PSMA polypeptide comprises an amino acid sequence selected from the group consisting of:

1) amino acids 15-750 of SEQ ID NO: 1;

2) amino acids 4-739 of SEQ ID NO:9; and

3) the amino acid sequence of SEQ ID NO: 9.

In some particular embodiments, the multi-antigen construct comprises a nucleotide sequence that encodes the amino acid sequence of SEQ ID NO:60 or 64.

In some particular embodiments, the multi-antigen construct comprises: (i) a nucleotide sequence encoding an immunogenic PSA polypeptide, (ii) a nucleotide sequence encoding an immunogenic PSCA polypeptide, and (iii) a nucleotide sequence encoding an immunogenic PSMA polypeptide, wherein:

(1) the nucleotide sequence encoding the immunogenic PSA polypeptide is selected from the group consisting of: (i) nucleotide sequence of SEQ ID NO:18; (ii) nucleotide sequence of SEQ ID NO:20; (iii) nucleotide sequence comprising nucleotides 10-720 of SEQ ID NO:18; (iv) nucleotide sequence comprising nucleotides 1115-1825 of SEQ ID NO:58 or SEQ ID NO:63; (v) nucleotide sequence comprising nucleotides 1106-1825 of SEQ ID NO:58 or SEQ ID NO:63; and (vi) a degerate variant of any of the nucleotide sequences provided in (i)-(v) above.

(2) the nucleotide sequence encoding the immunogenic PSCA polypeptide is selected from the group consisting of: (i) the nucleotide sequence of SEQ ID NO:22; (ii) a nucleotide sequence comprising nucleotides 10-375 of SEQ ID NO:22; (iii) a nucleotide sequence comprising nucleotides 1892-2257 of SEQ ID NO:58 or SEQ ID NO:63; (iv) a nucleotide sequence comprising nucleotides 1886-2257 of SEQ ID NO:58 or SEQ ID NO:63; and (v) a degerate variant of any of the nucleotide sequences provided in (i)-(iv) above; and

(3) the nucleotide sequence encoding the immunogenic PSMA polypeptide is selected from the group consisting of: (i) the nucleotide sequence comprising nucleotides 43-2250 of SEQ ID NO:2; (ii) the nucleotide sequence of SEQ ID NO:4; (iii) the nucleotide sequence of SEQ ID NO:6; (iv) the nucleotide sequence of SEQ ID NO:8; (v) the nucleotide sequence of SEQ ID NO:10; (vi) a nucleotide sequence comprising nucleotides 10-2217 of SEQ ID NO:4; (vii) a nucleotide sequence comprising nucleotides 10-2217 of SEQ ID NO:6; (viii) a nucleotide sequence comprising nucleotides 10-2217 of SEQ ID NO:8; (ix) a nucleotide sequence comprising nucleotides 10-2217 of SEQ ID NO:10; (x) the nucleotide sequence comprising nucleotides 2333-4543 of SEQ ID NO:58 or SEQ ID NO:63; (xi) the nucleotide sequence comprising nucleotides 2324-4543 of SEQ ID NO:58 or SEQ ID NO:63; and (xii) a degerate variant of any of the nucleotide sequences provided in (i)-(xi) above.

In another specific embodiment, the multi-antigen construct comprises a nucleotide sequence encoding an immunogenic PSA polypeptide, a nucleotide sequence encoding an immunogenic PSCA polypeptide, and a nucleotide sequence encoding an immunogenic PSMA polypeptide, wherein: the nucleotide sequence encoding the immunogenic PSA polypeptide comprises nucleotides 1106-1825 of SEQ ID NO:58 or SEQ ID NO:63; the nucleotide sequence encoding the immunogenic PSCA polypeptide comprises nucleotides 1886-2257 of SEQ ID NO:58 or SEQ ID NO:62; and the nucleotide sequence encoding the immunogenic PSMA polypeptide comprises nucleotides 2324-4543 of SEQ ID NO:58 or SEQ ID NO:63.

In order to enable expression of separate immunogenic PAA polypeptides from a single multi-antigen construct carried by the vector, intervening sequences are included between the sequences that encode the individual immunogenic PAA polypeptides (i.e., PSA, PSCA, and PSMA polypeptides). These intervening sequences enable the separate translation of the downstream immunogenic PAA polypeptide. Such an intervening sequence is referred to as “separator sequence” in the specification. Any sequences that can be used for the co-expression of multiple polypeptides from a single vector may be used as separator sequences in the vector provided by the present disclosure. Examples of useful separator sequences includes internal ribosomal entry sites (IRESs) and 2A peptide sequences.

2A peptide and 2A peptide-like sequences, also referred to as cleavage cassettes or CHYSELs (cis-acting hydrolase elements), are approximately 20 amino acids long with a highly conserved carboxy terminal D-V/I-EXNPGP motif (FIG. 2). The sequences are rare in nature, most commonly found in viruses such as Foot-and-mouth disease virus (FMDV), Equine rhinitis A virus (ERAV), Encephalomyocarditis virus (EMCV), Porcine teschovirus (PTV), and Thosea asigna virus (TAV) (Luke, G. A., P. de Felipe, et al. (2008). “Occurrence, function and evolutionary origins of ‘2A-like’ sequences in virus genomes.” J Gen Virol 89(Pt 4): 1036-1042). With a 2A-based multi-antigen expression strategy, genes encoding multiple target antigens are linked together in a single open reading frame, separated by 2A sequences. The entire open reading frame is cloned into a vector with a single promoter and terminator. Upon delivery of the constructs to a host cell, mRNA encoding the multiple antigens is transcribed and translated as a single polyprotein. During translation of the 2A sequences, ribosomes skip the bond between the C-terminal glycine and proline. The ribosomal skipping acts like a cotranslational autocatalytic “cleavage” that releases upstream from downstream proteins. General information regarding use of various 2A peptide sequences in vectors co-expressing multiple polypeptides may be found in Andrea L. Szymczak & Darrio AA Vignali: Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opinion Biol. Ther. (2005)5(5) 627-638, the disclosure of which is incorporated herein by reference. The incorporation of a 2A sequence between two protein antigens results in the addition of ˜20 amino acids onto the C-terminus of the upstream polypeptide and 1 amino acid (proline) to the N-terminus of downstream protein. In an adaptation of this methodology, protease cleavage sites can be incorporated at the N terminus of the 2A cassette such that ubiquitous proteases will cleave the cassette from the upstream protein (Fang, J., S. Yi, et al. (2007). “An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo.” Mol Ther 15(6): 1153-1159).

Examples of specific 2A-peptide sequences that may be used in the present invention are disclosed in Andrea L. Szymczak & Darrio AA Vignali: Development of 2A peptide-based strategies in the design of multicistronic vectors. Expert Opinion Biol. Ther. (2005)5(5) 627-638, and are provided in Table 1.

TABLE 1

2A-peptide Sequences

Virus

2A-peptide Sequence

SEQ ID NO

Foot and mouse disease virus (FMDV)

VKQTLNFDLLKLAGDVESNPG

67

Equine rhinitis A virus (ERAV)

QCTNYALLKLAGDVESNPG

68

Porcine teschovirus-1 (PTV1)

ATNF-SLLKQAGDVEENPG

69

Encephalomyocarditis virus (EMCV)

HYAGYFADLLIHDIETNPG

70

Encephalomyocarditis B variant (EMC-B)

GIFN-AHYAGYFADLLIHDIETNPG

71

Theiler murine encephalomyelitis GD7

KAVRGYHADYYKQRLIHDVEMNPG

72

(TME-GD7)

Equine rhinitis B virus (ERBV)

GATNF-SLLKLAGDVELNPG

73

Thosea asigna virus (TAV)

EGRGSLLTCGDVEENPG

74

Drosophilia C (DrosC)

AARQMLLLLSGDVETNPG

75

Cricket paralysis virus (CrPV)

FLRKRTQLLMSGDVESNPG

76

Acute bee paralysis virus (ABPV)

GSWTDILLLLSGDVETNPG

77

Infectious flacherie virus (IFV)

TRAEUEDELIRAGIESNPG

78

Porcine rotavirus

AKFQIDKILISGDVELNPG

79

Human rotavirus

SKFQIDKILISGDIELNPG

80

T. brucei TSR1

SSIIRTKMLVSGDVEENPG

81

T. cruzi AP endonuclease

CDAQRQKLLLSGDIEQNPG

82

Internal ribosomal entry sites (IRESs) are RNA elements (FIG. 3) found in the 5′ untranslated regions of certain RNA molecules (Bonnal, S., C. Boutonnet, et al. (2003). “IRESdb: the Internal Ribosome Entry Site database.” Nucleic Acids Res 31(1): 427-428). They attract eukaryotic ribosomes to the RNA to facilitate translation of downstream open reading frames. Unlike normal cellular 7-methylguanosine cap-dependent translation, IRES-mediated translation can initiate at AUG codons far within an RNA molecule. The highly efficient process can be exploited for use in multi-cistronic expression vectors (Bochkov, Y. A. and A. C. Palmenberg (2006). “Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene location.” Biotechniques 41(3): 283-284, 286, 288). The RNA sequence of a preferred EMCV IRES (pIRES) is provided in FIG. 3 and SEQ ID NO:290, which has the corresponding DNA sequence of SEQ ID NO:59. The minimal EMCV IRES (mIRES) excludes the underlined first five codons of the EMCV L protein as shown in FIG. 3. Typically, two transgenes are inserted into a vector between a promoter and transcription terminator as two separate open reading frames separated by an IRES. Upon delivery of the constructs to a host cell, a single long transcript encoding both transgenes will be transcribed. The first ORF will be translated in the traditional cap-dependent manner, terminating at a stop codon upstream of the IRES. The second ORF will be translated in a cap-independent manner using the IRES. In this way, two independent proteins can be produced from a single mRNA transcribed from a vector with a single expression cassette. In some embodiments, the multi-antigen construct comprises a EMCV IRES comprising nucleotides 1-553 of SEQ ID NO:59.

Typically, only one separator sequence is needed between two immunogenic PAA polypeptide-coding sequences on a multi-antigen construct. The order of the separator sequences and the nucleotide sequences encoding the PAA polypeptides on a multi-antigen construct is shown in formula (I):



PAA1-SS1-PAA2-SS2-PAA3  (I)



Wherein: (i) PAA1, PAA2, and PAA3 each is a nucleotide sequence encoding an immunogenic PSA polypeptide, a nucleotide sequence encoding immunogenic PSCA polypeptide, or a nucleotide sequence encoding immunogenic PSMA polypeptide, provided that PAA1, PAA2, and PAA3 encode different PAA polypeptides, and (ii) SS1 and SS2 are separator sequences and can be same or different.

In some embodiments, the vector comprises a multi-antigen construct of formula (I) wherein:

(i) PAA1 is a nucleotide sequence encoding an immunogenic PSA polypeptide;

(ii) PAA2 is a nucleotide sequence encoding an immunogenic PSCA or PSMA polypeptide. (where PAA2 is nucleotide sequence encoding an immunogenic PSCA, then PAA3 is a nucleotide sequence encoding an immunogenic PSMA, or Vice Versa);

(iii) SS1 is a 2A-peptide sequence; and

(iv) SS2 is a 2A-peptide sequence or an IRES.

In some particular embodiments, the multi-antigen construct has a structure selected from the group consisting of:

(1) PSA-F2A-PSMA-mIRES-PSCA,

(2) PSA-F2A-PSMA-T2A-PSCA;

(3) PSA-T2A-PSCA-F2A-PSMA; and

(4) PSCA-F2A-PSMA-mIRES-PSA

In a specific embodiment, the vector comprises a multi-antigen construct having a structure of formula (I):



PAA1-SS1-PAA2-SS2-PAA3  (I)



wherein:

(i) PAA1 is a nucleotide sequence encoding an immunogenic PSA polypeptide and comprises nucleotides 1115-1825 SEQ ID NO: 58 or comprises 1106-1114 of SEQ ID NO: 58 or 63;

(ii) PAA2 is a nucleotide sequence encoding an immunogenic PSCA polypeptide and comprises nucleotides 1892-2257 of SEQ ID NO: 58 or comprises 1886-2257 of SEQ ID NO: 58 or 63;

(iii) PAA3 is a nucleotide sequence encoding an immunogenic PSMA polypeptide and comprises nucleotides 2333-4543 SEQ ID NO: 58 or comprises 2324-4543 of SEQ ID NO: 58 or 63;

(iv) SS1 is a nucleotide sequence encoding T2A; and

(v) SS2 is a nucleotide sequence encoding F2A.

The multi-antigen construct may also include a linker sequence positioned between a nucleotide sequence encoding an immunogenic PAA polypeptide (i.e, an immunogenic PSA, PSCA, or PSMA polypeptide) and a down-stream separator sequence. One example of such a linker sequence is a nucleotide sequence encoding glycine-serine.

In some particular embodiments, the multi-antigen construct comprises a nucleotide sequence that encodes an amino acid sequence of SEQ ID NO:60 or encodes an amino acid sequence of SEQ ID NO:61. In a particular embodiment, the multi-antigen construct comprises a nucleotide sequence selected from the groups consisting of nucleotide sequence of SEQ ID NO:61, nucleotide sequence of SEQ ID NO:65, nucleotide sequence of SEQ ID NO:66, and degenerate variant of any of the nucleotide sequences.

B3. Regulatory Sequences

In addition to the separator sequences and linker sequences described herein above, the vector may comprise other non-native regulatory sequences to drive the efficient expression of the encoded PAA polypeptides. Examples of the regulatory sequences includes (1) transcription initiation, termination, promoter, and enhancer sequences; (2) efficient RNA processing signals such as splicing and polyadenylation signals; (3) sequences that stabilize cytoplasmic mRNA; (4) sequences that enhance translation efficiency (i.e., Kozak consensus sequence); (5) sequences that enhance protein stability; and (6) sequences that enhance protein secretion. Examples of promoter systems that can be used in the vectors provided by the present disclosure to drive efficient expression in mammalian cells include SV40 promoter, chicken B actin promoter, human elongation factor promoter, human cytomegalovirus (CMV) promoter, simian CMV promoter, murine CMV promoter, psudorabies promoter, Rous Sarcoma Virus promoter, phosphoglycerate kinase promoter, murine leukemia virus LTR promoter, avian leukosis virus LTR promoter, mouse mammary tumor virus LTR promoter, moloney murine leukemia virus LTR promoter, plasminogen activator inhibitor promoter, CYR61, adenovirus major late promoter, mouse metallothionein promoter, mouse phosphoenol-pyruvate carboxykinase promoter, bovine B-lactoglobulin promoter, bovine prolactin promoter, ubiquitin C promoter, and herpes simplex virus thymidine kinase promoter. Examples of transcription termination signals include SV40 polyadenylation (polyA); bovine growth hormone polyA; rabbit B globin polyA; HSV thymidine kinase, glycoprotein B, and glycoprotein HPV E and L, and synthetic terminators.

In some embodiments, the C68 vectors comprise a human cytomegalovirus (CMV) promoter, optionally with the CMV enhancer, and a SV40 polyA.

C. Compositions Comprising a Vector Carrying a Multi-Antigen Construct (Vector Compositions)

The present disclosure also provides a composition comprising a vector provided by the present disclosure (herein “vector composition’). The vector compositions are useful for eliciting an immune response against a PAA protein in vitro or in vivo in a mammal, including a human. The vector composition may comprise the vectors alone, or may further comprise an excipient.

In some embodiments, the vector composition is a pharmaceutical composition, which comprises a vector provided by the present disclosure and a pharmaceutically acceptable excipient. Suitable excipients for pharmaceutical compositions are known in the arts. The excipients may include aqueous solutions, non aqueous solutions, suspensions, and emulsions. Examples of non-aqueous excipients include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Examples of aqueous excipient include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Suitable excipients also include agents that assist in cellular uptake of the vector.

In some embodiments, the pharmaceutical composition is a vaccine composition for administration to humans for inhibiting abnormal cell proliferation, providing protection against the development of cancer (used as a prophylactic), or for treatment of cancer (used as a therapeutic) associated with a PAA over-expression, or for eliciting an immune response to a particular human PAA, such as PSMA, PSA, and PSCA. The vaccine composition may further comprise one or more adjuvants. Examples of adjuvants that may be included in the vaccine compositions are provided herein below.

D. Uses of the Vectors and Vector Compositions

In other aspects, the present disclosure provides methods of using the vector or composition comprising the vectors described herein above.

In one aspect, the present disclosure provides a method of eliciting an immune response against a PAA in a mammal, particularly a human, comprising administering to the mammal an effective amount of (1) a vector containing a multi-antigen construct, or (2) a composition comprising such vectors.

In another aspect, the present disclosure provides a method of inhibiting abnormal cell proliferation in a human, wherein the abnormal cell proliferation is associated with over-expression of a PAA. The method comprises administering to the mammal an effective amount of (1) a vector containing a multi-antigen construct encoding two or more immunogenic PAA polypeptides, or (2) a composition comprising such vectors. In some embodiments, the method is for inhibiting abnormal cell proliferation in prostate in a human. In a particular embodiment, the present disclosure provides a method of inhibiting abnormal cell proliferation in prostate over-expressing PSMA. In some embodiments, the disclosure provides a method of treating prostate cancer in a human, comprising administering to the human an effective amount of a (1) a vector containing a multi-antigen construct or (2) a composition comprising such vectors. In a preferred embodiment, the multi-antigen construct is a triple antigen construct that encodes an immunogenic PSMA polypeptide, an immunogenic PSA polypeptide, and an immunogenic PSCA polypeptide.

The vectors or vector compositions can be administered to an animal, including human, by a number of methods known in the art. Examples of suitable methods include: (1) intramuscular, intradermal, intraepidermal, intravenous, intraarterial, subcutaneous, or intraperitoneal administration, (2) oral administration, and (3) topical application (such as ocular, intranasal, and intravaginal application). One particular method of intradermal or intraepidermal administration of a nucleic acid vaccine composition involves the use of gene gun delivery technology, such the Particle Mediated Epidermal Delivery (PMED™) vaccine delivery device marketed by PowderMed. Another particular method for intramuscular administration of a nucleic acid vaccine is injection followed by electroporation.

The effective amount of the vector or vector composition to be administered in a given method can be readily determined by a person skilled in the art and will depend on a number of factors. In a method of treating cancer, such as prostate cancer, factors that may be considered in determining the effective amount include, but not limited: (1) the subject to be treated, including the subject's immune status and health, (2) the severity or stage of the cancer to be treated, (3) the specific immunogenic PAA polypeptides expressed, (4) the degree of protection or treatment desired, (5) the administration method and schedule, (6) formulations used, and (7) co-administration of other therapeutic agents (such as adjuvants or immune modulators). For example, the effective amounts of the vector may be in the range of 2 μg/dose-10 mg/dose when the nucleic acid vaccine composition is formulated as an aqueous solution and administered by hypodermic needle injection or pneumatic injection, whereas only 16 ng/dose-16 μg/dose may be required when the nucleic acid is prepared as coated gold beads and delivered using a gene gun technology.

The vectors or vector compositions, including vaccine compositions, provided by the present disclosure may be used together with one or more adjuvants. Examples of suitable adjuvants include: (1) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl polypeptides or bacterial cell wall components), such as MF59™ (containing 5% Squalene, 0.5% Tween 80, and 0.5% sorbitan trioleate) and SAF (containing 10% Squalene, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP); (2) saponin adjuvants, such as QS21, STIMULON™ (Cambridge Bioscience, Worcester, Mass.), Abisco® (Isconova, Sweden), or Iscomatrix® (Commonwealth Serum Laboratories, Australia); (3) complete Freund's Adjuvant (CFA) and incomplete Freund's Adjuvant (IFA); (4) oligonucleotides comprising CpG motifs, i.e. containing at least one CG dinucleotide, where the cytosine is unmethylated (e.g., Krieg, Vaccine (2000) 19:618-622; Krieg, Curr Opin Mol Ther (2001) 3:15-24; WO 98/40100, WO 98/55495, WO 98/37919 and WO 98/52581); and (5) metal salt including aluminum salts (such as alum, aluminum phosphate, aluminum hydroxide); (12) a saponin and an oil-in-water emulsion (e.g. WO 99/11241).

The vectors or vector compositions provided by the present disclosure may be used together with one or more immune modulators. In a further aspect, the present disclosure provides a method of treating prostate cancer in a mammal, particularly a human, the method comprising administering to the mammal: (1) an effective amount of a vector, vector composition, or vaccine provided by the present invention; (2) an effective amount of at least one immune-suppressive-cell inhibitor (ISC inhibitor); and (3) an effective amount of at least one immune-effector-cell enhancer (IEC enhancer). This method is also referred to as “vaccine-based immunotherapy regimen” (or “VBIR”) in the present disclosure.

The IEC enhancers and ISC inhibitors may be administered by any suitable methods and routes, including (1) systemic administration such as intravenous, intramuscular, or oral administration, and (2) local administration such intradermal and subcutaneous administration. Where appropriate or suitable, local administration is generally preferred over systemic administration. Local administration of any IEC enhancer and ISC inhibitor can be carried out at any location of the body of the mammal that is suitable for local administration of pharmaceuticals; however, it is more preferable that these immune modulators are administered locally at close proximity to the vaccine draining lymph node.

Two or more specific IEC enhancers from a single class of IEC enhancers (for examples, two CTLA-antagonists) may be administered in combination with the ISC inhibitors. In addition, two or more specific IEC enhancers from two or more different classes of IEC enhancers (for example, one CTLA-4 antagonist and one TLR agonist, or one CTLA-4 antagonist and one PD-1 antagonist) may be administered together. Similarly, two or more specific ISC inhibitors from a single class of ISC inhibitors (for examples, two or more protein kinase inhibitors) may be administered in combination with the IEC enhancers. In addition, two or more specific ISC inhibitors from two or more different classes of ISC inhibitors (for example, one protein kinase inhibitor and one COX-2 inhibitor) may be administered together.

The vectors or vector compositions may be administered simultaneously or sequentially with any or all of the immune modulators (i.e., ISC inhibitors and IEC enhancers) used. Similarly, when two or more immune modulators are used, they may be administered simultaneously or sequentially with respect to each other. In some embodiments, a vector or vector composition is administered simultaneously (e.g., in a mixture) with respect to one immune modulator, but sequentially with respect to one or more additional immune modulators. Co-administration of the vector or vector composition and the immune modulators can include cases in which the vaccine and at least one immune modulator are administered so that each is present at the administration site, such as vaccine draining lymph node, at the same time, even though the antigen and the immune modulators are not administered simultaneously. Co-administration of the vaccine and the immune modulators also can include cases in which the vaccine or the immune modulator is cleared from the administration site, but at least one cellular effect of the cleared vaccine or immune modulator persists at the administration site, such as vaccine draining lymph node, at least until one or more additional immune modulators are administered to the administration site. In cases where a nucleic acid vaccine is administered in combination with a CpG, the vaccine and CpG may be contained in a single formulation and administered together by any suitable method. In some embodiments, the nucleic acid vaccine and CpG in a co-formulation (mixture) is administered by intramuscular injection in combination with electroporation.

Any ISC inhibitors may be used in combination with the vectors or vector compositions provided by the present invention. Examples of classes of ISC inhibitors include PD-1/PD-L1 antagonists, protein kinase inhibitors, cyclooxygenase-2 (COX-2) inhibitors, phosphodiesterase type 5 (PDE5) inhibitors, and DNA crosslinkers. Examples PD-1/PD-L1 antagonists include anti-PD-1 and PD-L1 monoclonal antibodies Examples of COX-2 inhibitors include celecoxib and rofecoxib. Examples of PDE5 inhibitors include avanafil, lodenafil, mirodenafil, sildenafil, tadalafil, vardenafil, udenafil, and zaprinast. An example of DNA crosslinkers is cyclophosphamide. Examples of specific protein kinase inhibitors are described in details below.

The term “protein kinase inhibitor” refers to any substance that acts as a selective or non-selective inhibitor of a protein kinase. The term “protein kinases” refers to the enzymes that catalyze the transfer of the terminal phosphate of adenosine triphosphate to tyrosine, serine or threonine residues in protein substrates. Protein kinases include receptor tyrosine kinases and non-receptor tyrosine kinases. Examples of receptor tyrosine kinases include EGFR (e.g., EGFR/HER1/ErbB1, HER2/Neu/ErbB2, HER3/ErbB3, HER4/ErbB4), INSR (insulin receptor), IGF-IR, IGF-II1R, IRR (insulin receptor-related receptor), PDGFR (e.g., PDGFRA, PDGFRB), c-KIT/SCFR, VEGFR-1/FLT-1, VEGFR-2/FLK-1/KDR, VEGFR-3/FLT-4, FLT-3/FLK-2, CSF-1R, FGFR 1-4, CCK4, TRK A-C, MET, RON, EPHA 1-8, EPHB 1-6, AXL, MER, TYRO3, TIE, TEK, RYK, DDR 1-2, RET, c-ROS, LTK (leukocyte tyrosine kinase), ALK (anaplastic lymphoma kinase), ROR 1-2, MUSK, AATYK 1-3, and RTK 106. Examples of non-receptor tyrosine kinases include BCR-ABL, Src, Frk, Btk, Csk, Abl, Zap70, Fes/Fps, Fak, Jak, Ack, and LIMK. In the vaccine-based immunotherapy regimen provided by the present disclosure, the protein kinase inhibitors are administered to the mammal at a suboptimal dose. The term “suboptimal dose” refers to the dose amount that is below the minimum effective dose when the tyrosine kinase inhibitor is administered in a monotherapy (i.e., where the protein kinase inhibitor is administered alone without any other therapeutic agents) for the target neoplastic disorder.

Examples of specific protein kinase inhibitors suitable for use in the vaccine-based immunotherapy regimen include lapatinib, AZD 2171, ET180CH 3, indirubin-3′-oxime, NSC-154020, PD 169316, quercetin, roscovitine, triciribine, ZD1839, 5-lodotubercidin, adaphostin, aloisine, alsterpaullone, aminogenistein, API-2, apigenin, arctigenin, ARRY-334543, axitinib, AY-22989, AZD 2171, Bisindolylmaleimide IX, CCI-779, chelerythrine, DMPQ, DRB, edelfosine, ENMD-981693, erbstatin analog, erlotinib, fasudil, gefitinib (ZD1839), H-7, H-8, H-89, HA-100, HA-1004, HA-1077, HA-1100, hydroxyfasudil, kenpaullone, KN-62, KY12420, LFM-A13, luteolin, LY294002, LY-294002, mallotoxin, ML-9, MLN608, NSC-226080, NSC-231634, NSC-664704, NSC-680410, NU6102, olomoucine, oxindole I, PD 153035, PD 98059, phloridzin, piceatannol, picropodophyllin, PKI, PP1, PP2, PTK787/ZK222584, PTK787/ZK-222584, purvalanol A, rapamune, rapamycin, Ro 31-8220, rottlerin, SB202190, SB203580, sirolimus, SL327, SP600125, staurosporine, STI-571, SU1498, SU4312, SU5416, semaxanib, SU6656, SU6668, syk inhibitor, TBB, TCN, tyrphostin AG 1024, tyrphostin AG 490, tyrphostin AG 825, tyrphostin AG 957, U0126, W-7, wortmannin, Y-27632, zactima, ZM 252868, gefitinib, sunitinib malate, erlotinib, lapatinib, canertinib, semaxinib, vatalanib, sorafenib, imatinib, dasatinib, leflunomide, vandetanib, and nilotinib.

In some embodiments, the protein kinase inhibitor is a multi-kinase inhibitor, which is an inhibitor that acts on more than one specific kinase. Examples of multi-kinase inhibitors include imatinib, sorafenib, lapatinib, BIRB-796, and AZD-1152, AMG706, zactima, MP-412, sorafenib, dasatinib, lestaurtinib, XL647, XL999, lapatinib, MLN518, (also known as CT53518), PKC412, ST1571, AEE 788, OSI-930, OSI-817, sunitinib malate, erlotinib, gefitinib, axitinib, bosutinib, temsirolismus and nilotinib. In some particular embodiments, the tyrosine kinase inhibitor is sunitinib, sorafenib, or a pharmaceutically acceptable salt or derivative (such as a malate or a tosylate) of sunitinib or sorafenib.

Sunitinib malate, which is marketed by Pfizer Inc. under the trade name SUTENT, is described chemically as butanedioic acid, hydroxy-, (2S)-, compound with N-[2-(diethylamino)ethyl]-5-[(Z)-(5-fluoro-1,2-dihydro-2-oxo-3H-indol-3-ylidine)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide (1:1). The compound, its synthesis, and particular polymorphs are described in U.S. Pat. No. 6,573,293, U.S. Patent Publication Nos. 2003-0229229, 2003-0069298 and 2005-0059824, and in J. M. Manley, M. J. Kalman, B. G. Conway, C. C. Ball, J. L Havens and R. Vaidyanathan, “Early Amidation Approach to 3-[(4-amido)pyrrol-2-yl]-2-indolinones,” J. Org. Chew. 68, 6447-6450 (2003). Formulations of sunitinib and its L-malate salt are described in PCT Publication No. WO 2004/024127. Sunitinib malate has been approved in the U.S. for the treatment of gastrointestinal stromal tumor, advanced renal cell carcinoma, and progressive, well-differentiated pancreatic neuroendocrine tumors in patients with unresectable locally advanced or metastatic disease. The recommended dose of sunitinib malate for gastrointestinal stromal tumor (GIST) and advanced renal cell carcinoma (RCC) for humans is 50 mg taken orally once daily, on a schedule of 4 weeks on treatment followed by 2 weeks off (Schedule 4/2). The recommended dose of sunitinib malate for pancreatic neuroendocrine tumors (pNET) is 37.5 mg taken orally once daily.

In the vaccine-based immunotherapy regimen, sunitinib malate may be administered orally in a single dose or multiple doses. Typically, sunitinib malate is delivered for two, three, four or more consecutive weekly doses followed by a “off” period of about 1 or 2 weeks, or more where no sunitinib malate is delivered. In one embodiment, the doses are delivered for about 4 weeks, with 2 weeks off. In another embodiment, the sunitinib malate is delivered for two weeks, with 1 week off. However, it may also be delivered without a “off’ period for the entire treatment period. The effective amount of sunitinib malate administered orally to a human in the vaccine-based immunotherapy regimen is typically below 40 mg per person per dose. For example, it may be administered orally at 37.5, 31.25, 25, 18.75, 12.5, 6.25 mg per person per day. In some embodiments, sunitinib malate is administered orally in the range of 1-25 mg per person per dose. In some other embodiments, sunitinib malate is administered orally in the range of 6.25, 12.5, or 18.75 mg per person per dose. Other dosage regimens and variations are foreseeable, and will be determined through physician guidance.

Sorafenib tosylate, which is marketed under the trade name NEXAVAR, is also a multi-kinase inhibitor. Its chemical name is 4-(4-{3-[4-Chloro-3-(trifluoromethyl) phenyl]ureido}phenoxy)-N-methylpyrid-ine-2-carboxamide. It is approved in the U.S. for the treatment of primary kidney cancer (advanced renal cell carcinoma) and advanced primary liver cancer (hepatocellular carcinoma). The recommended daily dose is 400 mg taken orally twice daily. In the vaccine-based immunotherapy regimen provided by the present disclosure, the effective amount of sorafenib tosylate administered orally is typically below 400 mg per person per day. In some embodiments, the effective amount of sorafenib tosylate administered orally is in the range of 10-300 mg per person per day. In some other embodiments, the effective amount of sorafenib tosylate administered orally is between 10-200 mg per person per day, such as 10, 20, 60, 80, 100, 120, 140, 160, 180, or 200 mg per person per day.

Axitinib, which is marketed under the trade name INLYTA, is a selective inhibitor of VEGF receptors 1, 2, and 3. Its chemical name is (N-Methyl-2-[3-((E)-2-pyridin-2-yl-vinyl)-1H-indazol-6-ylsulfanyl]-benzamide. It is approved for the treatment of advanced renal cell carcinoma after failure of one prior systemic therapy. The starting dose is 5 mg orally twice daily. Dose adjustments can be made based on individual safety and tolerability. In the vaccine-based immunotherapy regimen provided by the present disclosure, the effective amount of axitinib administered orally is typically below 5 mg twice daily. In some other embodiments, the effective amount of axitinib administered orally is between 1-5 mg twice daily. In some other embodiments, the effective amount of axitinib administered orally is between 1, 2, 3, 4, or 5 mg twice daily.

In the vaccine-based immunotherapy regimens any IEC enhancers may be used. They may be small molecules or large molecules (such as protein, polypeptide, DNA, RNA, and antibody). Examples of IEC enhancers that may be used include TNFR agonists, CTLA-4 antagonists, TLR agonists, programmed cell death protein 1 (PD-1) antagonists (such as anti-PD-1 antibody CT-011), and programmed cell death protein 1 ligand 1 (PD-L1) antagonists (such as BMS-936559), lymphocyte-activation gene 3 (LAG3) antagonists, and T cell Immunoglobulin- and mucin-domain-containing molecule-3 (TIM-3) antagonists. Examples of specific TNFR agonists, CTLA-4 antagonists, and TLR agonists are provided in details herein below.

TNFR Agonists.

Examples of TNFR agonists include agonists of OX40, 4-1BB (such as BMS-663513), GITR (such as TRX518), and CD40. Examples of specific CD40 agonists are described in details herein below.

CD40 agonists are substances that bind to a CD40 receptor on a cell and are capable of increasing one or more CD40 or CD40L associated activities. Thus, CD40 “agonists” encompass CD40 “ligands”.

Examples of CD40 agonists include CD40 agonistic antibodies, fragments CD40 agonistic antibodies, CD40 ligands (CD40L), and fragments and derivatives of CD40L such as oligomeric (e.g., bivalent, trimeric CD40L), fusion proteins containing and variants thereof.

CD40 ligands for use in the present invention include any peptide, polypeptide or protein, or a nucleic acid encoding a peptide, polypeptide or protein that can bind to and activate one or more CD40 receptors on a cell. Suitable CD40 ligands are described, for example, in U.S. Pat. No. 6,482,411; U.S. Pat. No. 6,410,711; U.S. Pat. No. 6,391,637; and U.S. Pat. No. 5,981,724, all of which patents and application and the CD40L sequences disclosed therein are incorporated by reference in their entirety herein. Although human CD40 ligands will be preferred for use in human therapy, CD40 ligands from any species may be used in the invention. For use in other animal species, such as in veterinary embodiments, a species of CD40 ligand matched to the animal being treated will be preferred. In certain embodiments, the CD40 ligand is a gp39 peptide or protein oligomer, including naturally forming gp39 peptide, polypeptide or protein oligomers, as well as gp39 peptides, polypeptides, proteins (and encoding nucleic acids) that comprise an oligomerization sequence. While oligomers such as dimers, trimers and tetramers are preferred in certain aspects of the invention, in other aspects of the invention larger oligomeric structures are contemplated for use, so long as the oligomeric structure retains the ability to bind to and activate one or more CD40 receptor(s).

In certain other embodiments, the CD40 agonist is an anti-CD40 antibody, or antigen-binding fragment thereof. The antibody can be a human, humanized or part-human chimeric anti-CD40 antibody. Examples of specific anti-CD40 monoclonal antibodies include the G28-5, mAb89, EA-5 or S2C6 monoclonal antibody, and CP870893. In a particular embodiment, the anti-CD40 agonist antibody is CP870893 or dacetuzumab (SGN-40).

CP-870,893 is a fully human agonistic CD40 monoclonal antibody (mAb) that has been investigated clinically as an anti-tumor therapy. The structure and preparation of CP870,893 is disclosed in WO2003041070 (where the antibody is identified by the internal identified “21.4.1”). The amino acid sequences of the heavy chain and light chain of CP-870,893 are set forth in SEQ ID NO: 40 and SEQ ID NO: 41, respectively. In clinical trials, CP870,893 was administered by intravenous infusion at doses generally in the ranges of 0.05-0.25 mg/kg per infusion. In a phase I clinical study, the maximum tolerated dose (MTD) of CP-870893 was estimated to be 0.2 mg/kg and the dose-limiting toxicities included grade 3 CRS and grade 3 urticaria. [Jens Ruter et al.: Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. [Cancer Biology & Therapy 10:10, 983-993; Nov. 15, 2010.]. In the vaccine-based immunotherapy regimen provided by the present disclosure, CP-870,893 can be administered intradermally, subcutaneously, or topically. It is preferred that it is administered intradermally. The effective amount of CP870893 to be administered in the regimen is generally below 0.2 mg/kg, typically in the range of 0.01 mg-0.15 mg/kg, or 0.05-0.1 mg/kg.

Dacetuzumab (also known as SGN-40 or huS2C6; CAS number 88-486-59-9) is another anti-CD40 agonist antibody that has been investigated in clinical trials for indolent lymphomas, diffuse large B cell lymphomas and Multiple Myeloma. In the clinical trials, dacetuzumab was administered intravenously at weekly doses ranging from 2 mg/kg to 16 mg/kg. In the vaccine-based immunotherapy regimen provided by the present disclosure, dacetuzumab can be administered intradermally, subcutaneously, or topically. It is preferred that it is administered intradermally. The effective amount of dacetuzumab to be administered in the vaccine-based immunotherapy regimen is generally below 16 mg/kg, typically in the range of 0.2 mg-14 mg/kg, or 0.5-8 mg/kg, or 1-5 mg/kg.

CTLA-4 Inhibitors.

Suitable anti-CTLA-4 antagonist agents for use in the vaccine-based immunotherapy regimen provided by the disclosure include, without limitation, anti-CTLA-4 antibodies (such as human anti-CTLA-4 antibodies, mouse anti-CTLA-4 antibodies, mammalian anti-CTLA-4 antibodies, humanized anti-CTLA-4 antibodies, monoclonal anti-CTLA-4 antibodies, polyclonal anti-CTLA-4 antibodies, chimeric anti-CTLA-4 antibodies, anti-CTLA-4 domain antibodies), fragments of anti-CTLA-4 antibodies (such as (single chain anti-CTLA-4 fragments, heavy chain anti-CTLA-4 fragments, and light chain anti-CTLA-4 fragments), and inhibitors of CTLA-4 that agonize the co-stimulatory pathway. In some embodiments, the CTLA-4 inhibitor is Ipilimumab or Tremelimumab.

Ipilimumab (also known as MEX-010 or MDX-101), marketed as YERVOY, is a human anti-human CTLA-4 antibody. Ipilimumab can also be referred to by its CAS Registry No. 477202-00-9, and is disclosed as antibody 10DI in PCT Publication No. WO01/14424, which is incorporated herein by reference in its entirety. Examples of pharmaceutical composition comprising Ipilimumab are provided in PCT Publication No. WO2007/67959. Ipilimumab is approved in the U.S. for the treatment of unresectable or metastatic melanoma. The recommended dose of Ipilimumab as monotherapy is 3 mg/kg by intravenous administration every 3 weeks for a total of 4 doses. In the methods provided by the present invention, Ipilimumab is administered locally, particularly intradermally or subcutaneously. The effective amount of Ipilimumab administered locally is typically in the range of 5-200 mg/dose per person. In some embodiments, the effective amount of Ipilimumab is in the range of 10-150 mg/dose per person per dose. In some particular embodiments, the effective amount of Ipilimumab is about 10, 25, 50, 75, 100, 125, 150, 175, or 200 mg/dose per person.

Tremelimumab (also known as CP-675,206) is a fully human IgG2 monoclonal antibody and has the CAS number 745013-59-6. Tremelimumab is disclosed as antibody 11.2.1 in U.S. Pat. No. 6,682,736, incorporated herein by reference in its entirety and for all purposes. The amino acid sequences of the heavy chain and light chain of Tremelimumab are set forth in SEQ IND NOs:42 and 43, respectively. Tremelimumab has been investigated in clinical trials for the treatment of various tumors, including melanoma and breast cancer; in which Tremelimumab was administered intravenously either as single dose or multiple doses every 4 or 12 weeks at the dose range of 0.01 and 15 mg/kg. In the regimens provided by the present invention, Tremelimumab is administered locally, particularly intradermally or subcutaneously. The effective amount of Tremelimumab administered intradermally or subcutaneously is typically in the range of 5-200 mg/dose per person. In some embodiments, the effective amount of Tremelimumab is in the range of 10-150 mg/dose per person per dose. In some particular embodiments, the effective amount of Tremelimumab is about 10, 25, 37.5, 40, 50, 75, 100, 125, 150, 175, or 200 mg/dose per person.

Toll-Like Receptor (TLR) Agonists.

The term “toll-like receptor agonist” or “TLR agonist” refers to a compound that acts as an agonist of a toll-like receptor (TLR). This includes agonists of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, and TLR11 or a combination thereof. Unless otherwise indicated, reference to a TLR agonist compound can include the compound in any pharmaceutically acceptable form, including any isomer (e.g., diastereomer or enantiomer), salt, solvate, polymorph, and the like. In particular, if a compound is optically active, reference to the compound can include each of the compound's enantiomers as well as racemic mixtures of the enantiomers. Also, a compound may be identified as an agonist of one or more particular TLRs (e.g., a TLR7 agonist, a TLR8 agonist, or a TLR7/8 agonist).

In some embodiments, the TLR agonists are TLR9 agonists, particularly CpG oligonucleotides (or CpG.ODN). A CpG oligonucleotide is a short nucleic acid molecule containing a cytosine followed by a guanine linked by a phosphate bond in which the pyrimidine ring of the cytosine is unmethylated. A CpG motif is a pattern of bases that include an unmethylated central CpG surrounded by at least one base flanking (on the 3′ and the 5′ side of) the central CpG. CpG oligonucleotides include both D and K oligonucleotides. The entire CpG oligonucleotide can be unmethylated or portions may be unmethylated. Examples of CpG oligonucleotides useful in the methods provided by the present disclosure include those disclosed in U.S. Pat. Nos. 6,194,388, 6,207,646, 6,214,806, 6,283,71, 6,239,116, and 6,339,068.

Examples of particular CpG oligonucleotides useful in the methods provided by the present disclosure include:

5′ TCGTCGTTTTGTCGTTTTGTCGTT3′ (CpG 7909);

5′ TCGTCGTTTTTCGGTGCTTTT3′ (CpG 24555);

and

5′ TCGTCGTTTTTCGGTCGTTTT3′ (CpG 10103).

CpG7909, a synthetic 24mer single stranded oligonucleotide, has been extensively investigated for the treatment of cancer as a monotherapy and in combination with chemotherapeutic agents, as well as an adjuvant for vaccines against cancer and infectious diseases. It was reported that a single intravenous dose of CpG 7909 was well tolerated with no clinical effects and no significant toxicity up to 1.05 mg/kg, while a single dose subcutaneous CpG 7909 had a maximum tolerated dose (MTD) of 0.45 mg/kg with dose limiting toxicity of myalgia and constitutional effects. [See Zent, Clive S, et al: Phase I clinical trial of CpG 7909 (PF-03512676) in patients with previously treated chronic lymphocytic leukemia. Leukemia and Lymphoma, 53(2):211-217(7)(2012)]. In the regimens provided by the present disclosure, CpG7909 may be administered by injection into the muscle or by any other suitable methods. It is preferred that it is administered locally in proximity to the vaccine draining lymph node, particularly by intradermal or subcutaneous administration. For use with a nucleic acid vaccine, such as a DNA vaccine, a CpG may be preferably co-formulated with the vaccine in a single formulation and administered by intramuscular injection coupled with electroporation. The effective amount of CpG7909 by intramuscular, intradermal, or subcutaneous administration is typically in the range of 10 μg/dose-10 mg/dose. In some embodiments, the effective amount of CpG7909 is in the range of 0.05 mg-14 mg/dose. In some particular embodiments, the effective amount of CpG7909 is about 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 05 1 mg/dose. Other CpG oligonucleotides, including CpG 24555 and CpG 10103, may be administered in similar manner and dose levels.

In some particular embodiments, the present disclosure provides a method of enhancing the immunogenicity or therapeutic effect of a vaccine for the treatment of a neoplastic disorder in a human, comprising administering the human (1) an effective amount of at least one ISC inhibitor and (2) an effective amount of at least one IEC enhancer, wherein the at least one ISC inhibitor is protein kinase inhibitor selected from sorafenib tosylate, sunitinib malate, axitinib, erlotinib, gefitinib, axitinib, bosutinib, temsirolismus, or nilotinib and wherein the at least one IEC enhancer is selected from a CTLA-4 inhibitor, a TLR agonist, or a CD40 agonist. In some preferred embodiments, regimen comprises administering to the human (1) an effective amount of at least one ISC inhibitor and (2) effective amount of at least one IEC enhancer, wherein the at least one ISC inhibitor is a protein kinase inhibitor selected from axitinib, sorafenib tosylate, or sunitinib malate and wherein the at least one IEC enhancer is a CTLA-4 inhibitor selected from Ipilimumab or Tremelimumab. In some further preferred embodiments, the regimen comprises administering to the human (1) an effective amount of at least one ISC inhibitor and (2) an effective amount of at least two IEC enhancers, wherein the at least one ISC inhibitor is a protein kinase inhibitor selected from sunitinib or axitinib and wherein the at least two IEC enhancers are Tremelimumab and a TLR agonist selected from CpG7909, CpG2455, or CpG10103.

In some other embodiments, the present disclosure provides a method of treating prostate cancer in a human, comprising administering to the human (1) an effective amount of a vaccine capable of eliciting an immune response against a human PAA, (2) an effective amount of at least one ISC inhibitor, and (3) an effective amount of at least one IEC enhancer, wherein the at least one ISC inhibitor is a protein kinase inhibitor selected from sorafenib tosylate, sunitinib malate, axitinib, erlotinib, gefitinib, axitinib, bosutinib, temsirolismus, or nilotinib, and wherein the at least one IEC enhancer is selected from a CTLA-4 inhibitor, a TLR agonist, or a CD40 agonist. In some preferred embodiments, the method comprises administering to the human (1) an effective amount of a vaccine capable of eliciting an immune response against a human PAA, (2) an effective amount of at least one ISC inhibitor, and (3) an effective amount of at least one IEC enhancer, wherein the at least one ISC inhibitor is a protein kinase inhibitor selected from sorafenib tosylate, sunitinib malate, or axitinib and wherein the at least one IEC enhancer is a CTLA-4 inhibitor selected from Ipilimumab or Tremelimumab.

In some further specific embodiments, the method comprises administering to the human (1) an effective amount of at least one ISC inhibitor and (2) an effective amount of at least two IEC enhancers, wherein the at least one ISC inhibitor is a protein kinase inhibitor selected from sunitinib or axitinib and wherein the at least two IEC enhancers are Tremelimumab and a TLR agonist selected from CpG7909, CpG2455, or CpG10103.

Additional Therapeutic Agents.

The vaccine-based immunotherapy regimen provided by the present disclosure may further comprise an additional therapeutic agent. A wide variety of cancer therapeutic agents may be used, including chemotherapeutic agents and hormone therapeutic agents. The term “chemotherapeutic agent” refers to a chemical or biological substance that can cause death of cancer cells, or interfere with growth, division, repair, and/or function of cancer cells. Examples of particular chemotherapeutic agents include: abiraterone acetate, cabazitaxel, degarelix, denosumab, docetaxel, enzalutamide, leuprolide acetate, prednisone, sipuleucel-T, and radium 223 dichloride. The term “hormone therapeutic agent” refers to a chemical or biological substance that inhibits or eliminates the production of a hormone, or inhibits or counteracts the effect of a hormone on the growth and/or survival of cancer cells. Examples of particular hormone therapeutic agents include leuprolide, goserelin, triptorelin, histrelin, bicalutamide, flutamide, and nilutamide. The VBIR provided by this disclosure may also be used in combination with other therapies, including (1) surgical methods that remove all or part of the organs or glands which participate in the production of the hormone, such as the ovaries, the testicles, the adrenal gland, and the pituitary gland, and (2) radiation treatment, in which the organs or glands of the patient are subjected to radiation in an amount sufficient to inhibit or eliminate the production of the targeted hormone.

E. Examples

The following examples are provided to illustrate certain embodiments of the invention. They should not be construed to limit the scope of the invention in any way. From the above discussion and these examples, one skilled in the art can ascertain the essential characteristics of the invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usage and conditions.

Example 1

Antigens in Cytosolic, Secreted, and Membrane-Bound Formats Derived from the Human PSMA Protein

1A. Design of Immunogenic PSMA Polypeptides

DNA constructs encoding immunogenic PSMA polypeptides in cytosolic, secreted, and modified formats were constructed based on the native human PSMA protein sequence and tested for their ability to induce anti-tumor effector immune responses. The structure and preparation of each of the human PSMA antigen formats are provided as follows.

1A1. Human PSMA Cytosolic Antigen.

An immunogenic PSMA polypeptide in cytosolic form was designed to retain the immunogenic polypeptide inside the cell once it is expressed. The cytoplasmic domain (amino acids 1-19) and the transmembrane domain (amino acids 20-43) of the human PSMA were removed, resulting in a cytosolic PSMA polypeptide that consists of amino acids 44-750 (extracellular domain or ECD) of the human PSMA of SEQ ID NO: 1. The optimal Kozak sequence “MAS” may be added to the N-terminus of the polypeptide for enhancing the expression or to facilitate cloning.

1A2. Human PSMA Secreted Antigen.

An immunogenic PSMA polypeptide in secreted form was designed to secret the polypeptide outside of the cell once it is expressed. The secreted polypeptide is made with amino acids 44-750 (ECD) of the human PSMA of SEQ ID NO:1 and the Ig Kappa secretory element that has the amino acid sequence ETDTLLLWVLLLWVPGSTGD and a two-amino acid linker (AA) in the N-terminal in order to maximize the secretion of the PSMA antigen once it is expressed.

1A3. Human PSMA Membrane-Bound Antigen.

An immunogenic PSMA membrane-bound polypeptide was designed to stabilize the polypeptide on the cell surface. The first 14 amino adds of the human PSMA protein were removed and the resultant immunogenic polypeptide consists of amino adds 15-750 of the human PSMA protein of SEQ ID NO:1. The immunogenic polypeptide that consists of amino adds 15-750 of the native human PSMA protein of SES ID NO: 1 and share 100% sequence identity with the native human PSMA protein is also referred to as “human PSMA modified,” “hPSMA modified,” or “hPSMAmod” antigen in the present disclosure. The following three immunogenic PSMA polypeptides (referred to as “shuffled PSMA modified antigens”) that are variants of the human PSMA modified antigen (SEQ ID NO:9) were also generated:

(1) shuffled PSMA modified antigen 1 having the amino acid sequence of SEQ ID NO:3;

(2) shuffled PSMA modified antigen 2 having the amino acid sequence of SEQ ID NO:5; and

(3) shuffled PSMA modified antigen 3 having the amino acid sequence of SEQ ID NO:7.

The nucleodie sequences encoding the shuffled PSMA modified antigens 1, 2, and 3 are set forth in SEQ ID NOs: 4, 6, and 8, respectively.

1B. Preparation of DNA Plasmids for Expressing the PSMA Antigens

DNA constructs encoding the PSMA cytosolic, PSMA secreted, and PSMA modified antigens were cloned individually into PJV7563 vector that was suitable for in vivo testing in animals (FIG. 1). Both strands of the DNA in the PJV7563 vectors were sequenced to confirm the design integrity.

A large scale plasmid DNA preparation (Qiagen/CsCl) was produced from a sequence confirmed clone. The quality of the plasmid DNA was confirmed by high 260/280 ratio, high super coiled/nicked DNA ratio, low endotoxin levels (<10 U/mg DNA) and negative bio burden.

1C. Expression of PSMA Constructs in Mammalian Cells

The expression of the PSMA cytosolic, secreted, and modified antigens was determined by FACS. Mammalian 293 cells were transfected with the PJV7563 PMED vectors encoding the various immunogenic PSMA polypeptides. Three days later, the 293 cells were stained with mouse anti-PSMA antibody, followed with a fluorescent conjugated (FITC) rat anti-mouse secondary antibody. The results are presented tin Table 2. The data were reported as mean fluorescent intensity (MFI) over negative controls, confirmed that human PSMA modified antigen is expressed on the cell surface.

TABLE 2

Expression of Human PSMA Modified antigen on Cell Surface

Average mean fluorescent

Samples

intensity

Untransfected 293 cells

231

293 cells transfected with full length

6425

human PSMA (SEQ ID NO: 1)

293 cells transfected with human PSMA

12270

modified antigen (SEQ ID NO: 9)

Example 2

Design of Various Immunogenic PSA Polypeptides

3A. Construction of Immunogenic PSA Polypeptides

Similar to what was described in Example 1 for the three different immunogenic PSMA polypeptide forms (e.g., the cytosolic, membrane-bound, and secreted forms), immunogenic PSA polypeptides in the three forms were also designed based on the human PSA sequence. An immunogenic PSA polypeptide in cytosolic form, which consists of amino acids 25-261 of the native human PSA, is constructed by deleting the secretory signal and the pro domain (amino acids 1-24). The amino acid sequence of this cytosolic immunogenic PSA polypeptide is provided in SEQ ID NO: 17. The secreted form of the PSA polypeptide is the native full length human PSA (amino acids 1-261). An immunogenic PSA polypeptide in membrane-bound form is constructed by linking the immunogenic PSA polypeptide cytosolic form (amino acids 25-261 of the native human PSA) to the human PSMA transmembrane domain (amino acids 15-54 of the human PSMA).

38. Immune Responses in Pasteur and HLA A24 Mice

Study Design.

Eight to 10 week old HLA A2 Pasteur mice or HLA A24 mice were immunized with DNA expressing the various PSA antigens using PMED provided in Example 3A in a prime/boost/boost regimen with two week intervals between each vaccination as described in Example 1. The antigen specific T and B cell responses were measured 7 days after the last immunization in an interferon-gamma (IFNγ) ELISPOT assay and sandwich ELISA.

ELISpot data shown in Table 3 indicates that immunogenic PSA polypeptides in both cytosolic and membrane-bound forms are capable of inducing T cells that recognize human tumor cells transduced with adenovirus to express the cytosolic PSA antigen (SKmel5-Ad-PSA) but not cells transduced with adenovirus to express eGFP (SKmel5-Ad-eGFP). These two antigens also elicited response to PSA protein. The PSA secreted antigen failed to induce T cells to both SKmel5-Ad-PSA or PSA protein. SFC>50 is considered positive.

TABLE 3

The induction of T cell responses by PSA antigens in Pasteur mice

to PSA + HLA A2.1 + SKmel5 human cancer cells

HLA A2.1 + human

IFN-γ SFC/1 × 106 splenocytes (SD)

cancer cells or

PSA membrane-

protein

PSA cytosolic

bound

PSA secreted

SKmel5-Ad-eGFP

7.7 (9.6)

1.2 (1.4)

2.9 (2.7)

SKmel5-Ad-PSA

112.0 (169.3)

546.1 (379.6)

18.7 (18.5)

PSA protein

108.8 (161.0)

536.9 (380.9)

20.6 (21)

TABLE 4

The induction of anti-PSA antibody response

as measured by a sandwich ELISA assay

ELISA (OD = 1.0)

Antigen Forms

Average (SD)

# of positive

PSA cytosolic

99 (0)

0/6

PSA membrane-bound

4838 (835)

6/6

PSA secreted

 1151 2410)

2/6

Data in Table 4 demonstrates that immunogenic PSA polypeptides in both secreted and membrane-bound forms are capable of inducing anti-PSA antibody responses.

Example 3

Construction of Multi-Antigen Vaccine Constructs

In this Example, constructions of plasmids comprising a multi-antigen construct using different strategies are described. These plasmids share the same general plasmid backbone as pPJV7563. Unless otherwise specified, the genes included in the multi-antigen constructs encode (1) an immunogenic PSMA polypeptide of SEQ ID NO:9, (2) an immunogenic PSCA polypeptide comprising amino acids 2-125 of SEQ ID NO:21, and (3) an immunogenic PSA polypeptide of SEQ ID NO:17.

Example 3A

Plasmids Comprising a Dual Antigen Construct

3a 1. Construction of Plasmid Utilizing Multiple Promoters

Plasmid 460 (PSMA/PSCA Dual Promoter).

Plasmid 460 was constructed using the techniques of site-directed mutagenesis, PCR, and restriction fragment insertion. First, a Kpn I restriction site was introduced upstream of the CMV promoter in plasmid 5259 using site-directed mutagenesis with MD5 and MD6 primers according to manufacturer's protocol (Quickchange kit, Agilent Technologies, Santa Clara, Calif.). Second, an expression cassette consisting of a minimal CMV promoter, human PSMA, and rabbit B globulin transcription terminator was amplified by PCR from plasmid 5166 using primers that carried Kpn I restriction sites (MD7 and MD8). The PCR amplicon was digested with Kpn I and inserted into the newly introduced Kpn I site of calf intestinal alkaline phosphatase (CIP)-treated plasmid 5259.

3A2. Construction of Dual Antigen Constructs Utilizing 2A Peptides

Plasmid 451 (PSMA-T2A-PSCA).

Plasmid 451 was constructed using the techniques of overlapping PCR and restriction fragment exchange. First, the gene encoding human PSMA amino acids 15-750 was amplified by PCR using plasmid 5166 as a template with primers 119 and 117. The gene encoding full-length human PSCA was amplified by PCR using plasmid 5259 as a template with primers 118 and 120. PCR resulted in the addition of overlapping TAV 2A (T2A) sequences at the 3′ end of PSMA and 5′ end of PSCA. The amplicons were mixed together and amplified by PCR with primers 119 and 120. The PSMA-T2A-PSCA amplicon was digested with Nhe I and Bgl II and inserted into similarly digested plasmid 5166. A glycine-serine linker was included between PSMA and the T2A cassette to promote high cleavage efficiency.

Plasmid 454 (PSCA-F2A-PSMA).

Plasmid 454 was created using the techniques of PCR and restriction fragment exchange. First, the gene encoding full-length human PSCA was amplified by PCR using plasmid 5259 as a template with primers 42 and 132. The amplicon was digested with BamH I and inserted into similarly digested, CIP-treated plasmid 5300. A glycine-serine linker was included between PSCA and the FMDV 2A (F2A) cassette to promote high cleavage efficiency.

Plasmid 5300 (PSA-F2A-PSMA)

Plasmid 5300 was constructed using the techniques of overlapping PCR and restriction fragment exchange. First, the gene encoding PSA amino acids 25-261 was amplified by PCR from plasmid 5297 with primers MD1 and MD2. The gene encoding human PSMA amino acids 15-750 was amplified by PCR from plasmid 5166 with primers MD3 and MD4. PCR resulted in the addition of overlapping F2A sequences at the 3′ end of PSA and 5′ end of PSMA. The amplicons were mixed together and extended by PCR. The PSA-F2A-PSMA amplicon was digested with Nhe I and Bgl II and inserted into similarly digested plasmid pPJV7563.

3A3. Dual Antigen Constructs Utilizing Internal Ribosomal Entry Sites

Plasmid 449 (PSMA-mIRES-PSCA).

Plasmid 449 was constructed using the techniques of overlapping PCR and restriction fragment exchange. First, the gene encoding full length human PSCA was amplified by PCR from plasmid 5259 with primers 124 and 123. The minimal EMCV IRES was amplified by PCR from pShuttle-IRES with primers 101 and 125. The overlapping amplicons were mixed together and amplified by PCR with primers 101 and 123. The IRES-PSCA amplicon was digested with Bgl II and BamH I and inserted into Bgl II-digested, CIP-treated plasmid 5166. In order to fix a spontaneous mutation within the IRES, the IRES containing Avr II to Kpn I sequence was replaced with an equivalent fragment from pShuttle-IRES.

Plasmid 603 (PSCA-pIRES-PSMA).

Plasmid 603 was constructed using the techniques of PCR and seamless cloning. The gene encoding full length human PSCA attached at its 3′end to a preferred EMCV IRES was amplified from plasmid 455 by PCR with primers SD546 and SD547. The gene encoding human PSMA amino acids 15-750 was amplified by PCR from plasmid 5166 using primers SD548 and SD550. The two overlapping PCR amplicons were inserted into Nhe I and Bgl II-digested pPJV7563 by seamless cloning according to manufacturer's instructions (Invitrogen, Carlsbad, Calif.).

Plasmid 455 (PSCA-mIRES-PSA).

Plasmid 455 was constructed using the techniques of overlapping PCR and restriction fragment exchange. First, the gene encoding human PSA amino acids 25-261 was amplified by PCR from plasmid 5297 with primers 115 and 114. The minimal EMCV IRES was amplified by PCR from pShuttle-IRES with primers 101 and 116. The overlapping amplicons were mixed together and amplified by PCR with primers 101 and 114. The IRES-PSA amplicon was digested with Bgl II and BamH I and inserted into Bgl II-digested, CIP-treated plasmid 5259. In order to fix a spontaneous mutation within this clone, the Bgl II to BstE II sequence was replaced with an equivalent fragment from a fresh overlapping PCR reaction.

Example 3B

Plasmids Comprising a Triple Antigen Construct

General Strategy.

A number of dual antigen plasmids, including PSA-F2A-PSMA, PSMA-mIRES-PSCA, PSMA-T2A-PSCA, PSA-T2A-PSCA, PSCA-F2A-PSMA, PSCA-pIRES-PSMA, and PSMA-mIRES-PSA, were selected for incorporation in various combinations into triple antigen plasmid vectors. In all cases, the plasmid vectors were based on the parental pPJV7563 plasmid backbone. Four plasmid vectors (plasmids 456, 457, 458, and 459) utilized a single full CMV promoter with a rabbit B globulin transcription terminator to drive expression of all three antigens. Two other plasmid vectors (plasmids 846 and 850) incorporated a dual promoter strategy in combination with either an IRES or 2A to drive expression of the three antigens. Plasmids with multiple 2A cassettes were engineered to carry different cassettes to minimize the likelihood of recombination between the first and second cassette during plasmid/vector amplification. Antigen expression was demonstrated by flow cytometry (FIGS. 7A and 7B) and western blotting (FIGS. 8A and 8B).

Plasmid 456 (PSA-F2A-PSMA-mIRES-PSCA).

Plasmid 456 was constructed by restriction fragment exchange. Plasmid 5300 was digested with Nhe I and Hpa I and the ˜1.8 kb insert was ligated into similarly digested plasmid 449.

Plasmid 457 (PSA-F2A-PSMA-T2A-PSCA).

Plasmid 457 was constructed by restriction fragment exchange. Plasmid 5300 was digested with Nhe I and Hpa I and the ˜1.8 kb insert was ligated into similarly digested plasmid 451.

Plasmid 458 (PSA-T2A-PSCA-F2A-PSMA).

Plasmid 458 was constructed using the techniques of PCR and restriction fragment exchange. The gene encoding human PSA amino acids 25-261 was amplified by PCR from plasmid 5297 with primers 119 and 139, resulting in the addition of a T2A sequence and Nhe I restriction site at the 3′ end. The amplicon was digested with Nhe I and inserted into similarly digested plasmid 454.

Plasmid 459 (PSCA-F2A-PSMA-mIRES-PSA).

Plasmid 459 was constructed by restriction fragment exchange. Plasmid 454 was digested with Nhe I and Bgl II and the PSCA-F2A-PSMA containing insert was ligated into similarly digested plasmid 455.

Plasmid 846 (CBA-PSA, CMV-PSCA-pIRES-PSMA).

Plasmid 846 was constructed using the techniques of PCR and seamless cloning. First, an expression cassette was synthesized that consisted of 1) the promoter and 5′ untranslated region from the chicken beta actin (CBA) gene, 2) a hybrid chicken beta actin/rabbit beta globin intron, 3) the gene encoding human PSA amino acids 25-261, and 4) the bovine growth hormone terminator. This PSA expression cassette was amplified by PCR from plasmid 796 with primers 3SaIICBA and 5SaIIBGH. The amplicon was cloned into the SaII site of plasmid 603 using a GeneArt Seamless Cloning and Assembly Kit (Invitrogen, Carlsbad, Calif.). Upon delivery of this plasmid into a cell, PSA expression will be driven off the CBA promoter while PSCA and PSMA expression will be driven off the CMV promoter.

Plasmid 850 (CBA-PSA, CMV-PSCA-F2A-PSMA).

Plasmid 850 was constructed using the techniques of PCR and seamless cloning. First, the CBA promoter-driven PSA expression cassette was amplified by PCR from plasmid 796 with primers 3SaIICBA and 5SaIIBGH. The amplicon was cloned into the SaII site of plasmid 454 using GeneArt Seamless Cloning. Upon delivery of this plasmid into a cell, PSA expression will be driven off the CBA promoter while PSCA and PSMA expression will be driven off the CMV promoter.

Plasmid 916 ((PSA-T2A-PSCA-F2A-PSMA).

Plasmid 916 was constructed using the techniques of PCR and Gibson cloning. The genes encoding the three PAA polypeptides were amplified by PCR and ligated into the Nhe I/Bgl II sites of pPJV7563 by Gibson cloning techniques. The complete nucleotide sequence of Plasmid 916 is set forth in SEQ ID NO:62. Plasmid 458 and Plasmid 916 encode the same amino acid sequence that comprises the three immunogenic PAA polypeptides, which amino acid sequence is set forth in SEQ ID NO:60. The nucleotide sequence in Plasmid 916 that encodes the amino acid sequence comprising the three PAA polypeptides is codon-optimized and is also set forth in SEQ ID NO:61.

TABLE 21

List of Primers Used in the Construction of the Multi-antigen Plasmids

Primer

Sequence (5′ to 3′)

Strand

SEQ ID NO

 42

CGTTGACGCAAATGGGCGGTAGG

Sense

 83

101

TCAGAGATCTGACCCCCTAACGTTACTGGC

Sense

 84

114

TATAGGATCCTCAGGGGTTGGCCACGATG

Antisense

 85

115

GAAAAACACGATGATAATATGGCCAGCATTGTGGGAG

Sense

 86

GCTGGGAGTG

116

CCACAATGCTGGCCATATTATCATCGTGTTTTTCAAAG

Antisense

 87

GAAAACCACGTCC

117

CATCTCCACAGGTCAATAATGAACCCCTACCTTCGGAT

Antisense

 88

CCGGCTACTTCACTCAAAGTC

118

GTTCATTATTGACCTGTGGAGATGTCGAAGAAAACCCA

Sense

 89

GGACCCGCAAGCAAGGCTGTGCTGCTTGCCCTG

119

TTGCCTCTCACATCTCGTCAATCTCCGCGAGGAC

Sense

 90

120

GATCTTTTGTACAATATGATCTTGTGGCAATGTCCC

Antisense

 91

123

TATAGGATCCCTATAGCTGGCCGGGTCC

Antisense

 92

124

CACGATGATAATATGGCCAGCAAGGCTGTGCTGCTTG

Sense

 93

CC

125

CACAGCCTTGCTGGCCATATTATCATCGTGTTTTTCAAA

Antisense

 94

GGAAAACCACGTCC

132

TATAGGATCCTAGCTGGCCGGGTCCCCAGAG

Antisense

 95

139

ATATGCTAGCGGGTCCTGGGTTTTCTTCGACATCTCCA

Antisense

 96

CAGGTCAATAATGAACCCCTACCTTCGGATCCGGGG

TTGGCCACGATGGTGTCC

SD546

CTGTGACGAACATGGCTAGCAAGG

Sense

 97

SD547

ATTATCATCGTGTTTTTCAAAGGAAAACC

Antisense

 98

SD548

AAACACGATGATAATATGGCCACAACCATGGCGCGCC

Sense

 99

GCCCGC

SD550

TTTTGTTAGGGCCCAGATCTTTAGGC

Antisense

100

MD1

GACGAACATGGCTAGCATTGTGGGAGGCTG

Sense

101

MD2

CCACATCGCCTGCCAGTTTCAGCAGATCAAAGTTCAGG

Antisense

102

GTCTGGGATCCGGGGTTGGCCACGATGGTGTC

MD3

GATCTGCTGAAACTGGCAGGCGATGTGGAAAGCAACC

Sense

103

CAGGCCCAATGGCAAGCGCGCGCCGCCCGCGCTG

MD4

GTTAGGGCCCAGATCTTTAGGCTACTTCACTCAAAGTC

Antisense

104

MD5

CTTGTATTACTGTTTATGTAAGCAGACAGGGTACCAAT

Sense

105

ATTGGCTATTGGCCATTGCATAC

MD6

GTATGCAATGGCCAATAGCCAATATTGGTACCCTGTCT

Antisense

106

GCTTACATAAACAGTAATACAAG

MD7

CATGCATGGGTACCAATCTTCCGAGTGAGAGACACAAA

Sense

107

AAATTCC

MD8

GATCGATCGGTACCCTGCAGGTCGAGCACCAAAATCA

Antisense

108

ACGGG

5SalIB

GTTTATGTAAGCAGACAGGTCGACCCATAGAGCCCAC

Antisense

109

GH

CGCATCCCCAGC

3SalIC

TGGCCAATAGCCAATATTGTCGACTGGGTCGAGGTGA

Sense

110

BA

GCCCCACGTTCTG

Example 3C

Triple Antigen Adenovirus Vectors

General Strategy.

As with DNA plasmids, viral vectors can be engineered to deliver multiple prostate cancer antigens. The three multi-antigen expression strategies described above for multi-antigen constructs—dual promoters, 2A peptides, and internal ribosome entry sites—were incorporated in various combinations to create triple antigen adenovirus vectors. Briefly, the multi-antigen expression cassettes were cloned into a pShuttle-CMV plasmid modified to carry two copies of the tetracycline operator sequence (TetO2). Recombinant adenovirus serotype 5 vectors were created using the AdEasy Vector System according to manufacturer's protocols (Agilent Technologies, Inc., Santa Clara, Calif.). Viruses were amplified in HEK293 cells and purified by double cesium chloride banding according to standard protocols. Prior to in vivo studies, viral stocks were thoroughly characterized for viral particle concentration, infectivity titer, sterility, endotoxin, genomic and transgene integrity, transgene identity and expression.

Adenovirus-733 (PSA-F2A-PSMA-T2A-PSCA).

Ad-733 is the viral equivalent of plasmid 457. Expression of the three antigens is driven off a single CMV promoter with a tetracycline operator for repressing transgene expression during large scale production in Tet repressor expressing HEK293 lines. Multi-antigen expression strategies include two different 2A sequences.

Adenovirus-734 (PSA-T2A-PSCA-F2A-PSMA).

Ad-734 is the viral equivalent of plasmid 458. Expression of the three antigens is driven off a single CMV promoter with a tetracycline operator for repressing transgene expression during large scale production in Tet repressor expressing HEK293 lines. Multi-antigen expression strategies include two different 2A sequences.

Adenovirus-735 (PSCA-F2A-PSMA-mIRES-PSA).

Ad-735 is the viral equivalent of plasmid 459. Expression of the three antigens is driven off a single CMV promoter with a tetracycline operator for repressing transgene expression during large scale production in Tet repressor expressing HEK293 lines. Multi-antigen expression strategies include a 2A sequence and an IRES.

Adenovirus-796 (CBA-PSA, CMV-PSCA-pIRES-PSMA).

Ad-796 is the viral equivalent of plasmid 846. Expression of PSA is driven off the chicken beta actin promoter while PSCA and PSMA expression is driven off the CMV-TetO2 promoter. Multi-antigen expression strategies include two promoters and an IRES.

Adenovirus-809 (CBA-PSA, CMV-PSCA-F2A-PSMA).

Ad-809 is the viral equivalent of plasmid 850. Expression of PSA is driven off the chicken beta actin promoter while PSCA and PSMA expression is driven off the CMV-TetO2 promoter. Multi-antigen expression strategies include two promoters and a 2A sequence.

Example 4

Anti-Cancer Efficacy of Vaccine in Combination with Sunitinib and Anti-CTLA-4 Antibody

The anti-tumor efficacy of a cancer vaccine in combination with sunitinib and anti-CTLA-4 monoclonal antibody (clone 9D9) was investigated in subcutaneous TUBO tumor bearing BALB/neuT mice.

Study Procedure.

Briefly, ten mice per each group were daily orally dosed with either vehicle or sunitinib malate at 20 mg/kg starting at day 10 post tumor implant until day 64. Vaccination with DNA constructs that either encode no antigen (control vaccine) or a rat Her-2 antigen of SEQ Id NO: 54 (cancer vaccine) as adenovirus vectors initiated on day 13 subsequently followed by two weekly immunizations, two biweekly immunizations, and seven weekly immunizations of respective antigens (HBV antigens or rHer-2) by DNA. The groups of mice (closed circle and open triangle) that were treated with anti-murine CTLA-4 monoclonal antibody were intraperitoneally injected with 250 μg of the antibody on day 20, 27, 41, 55, 62, 69, 76, 83, 90, and 97 right after the PMED injections.

Results.

FIG. 4 shows the Kaplan-Meier survival curve of the groups of mice from a representative study evaluating the anti-tumor efficacy of sunitinib and anti-murine CTLA-4 monoclonal antibody (clone 9D9) in combination with a cancer vaccine. Increased survival time was observed in mice treated with Sutent with control vaccine (open circle), anti-murine CTLA-4 monoclonal antibody (open triangle) or cancer vaccine (closed triangle). A further increase of survival was observed in mice treated with Sutent and cancer vaccine in combination with anti-murine CTLA-4 (closed circle). P values were calculated by log-rank test.

Example 5

Effect of CPG or CD40 Agonist on the Immune Responses Induced by Cancer Vaccine

Immunogenicity Studies in BALB/c Mice

The effect of local administration of immune modulators on the magnitude and quality of antigen specific immune responses induced by a cancer was investigated in BALB/c mice, in which the immune response was assessed by measuring rHER2 specific T cell responses using the IFNγ ELISPOT assay or intracellular cytokine staining assay. Briefly, 4 to 6 female BALB/c mice per group as indicated were immunized with DNA plasmid expression constructs encoding rHER2 antigen sequences (SEQ ID NO:54) by PMED delivery system. The immune modulators, CpG7909 (PF-03512676) and anti-CD40 monoclonal agonistic antibody, were administered locally by intradermal injections in proximity to the vaccine draining inguinal lymph node subsequently after the PMED actuations. Antigen specific T cell responses were measured by IFNγ ELISPOT or intracellular cytokine staining assay according to the procedure described below.

Intracellular Cytokine Staining (ICS) Assay

The rHer-2 specific polyfunctional (multi-cytokine positive) T cell immune responses were measured from splenocytes or PBMCs isolated from individual animals by ICS assay. Typically 1e6 splenocytes were incubated with Brefeldin A at 1 μg/ml and peptide stimulant (rHer-2 specific CD8 p66, rHer-2 specific CD4 p169 or irrelevant HBV p87) at 10 μg/ml for 5 hr at 37° C. in a 5% CO2 incubator. After the stimulation, the splenocytes were washed and blocked with Fc□ block (anti-mouse CD16/CD32) for 10 min. at 4° C. followed by a 20 min staining with Live/dead aqua stain, anti-mouse CD3ePE-Cy7, anti-mouse CD8a Pacific blue, and anti-mouse CD45R/B220 PerCP-Cy5.5. The cells were washed, fixed with 4% paraformaldehyde overnight at 4° C., permeabilized with BD fix/perm solution for 30 min at RT and incubated with anti-mouse IFNγ APC, anti-mouse TNF□ Alexa488 and anti-mouse IL-2 PE for 30 min at RT. The cells were washed and 20,000 CD4 or CD8 T cells were acquired for analysis by flow cytometry. The total number of antigen specific single, double or triple cytokine positive T cells per total spleen of each animal is calculated by subtracting the rHer-2 specific responses to the irrelevant peptide HBV from the vaccine specific responses and normalized to the total number of splenocytes isolated from the spleen.

IFNγ ELISPOT Assay Results

FIG. 5 shows the IFNy ELISPOT results from groups of mice from a representative study evaluating the magnitude of antigen specific T cell responses induced by the rHER2 vaccine when given with the immune modulators as indicated. Briefly, each mouse per treatment group (n=4) was immunized with DNA plasmid expression constructs encoding rHER2 antigen sequences (SEQ ID NO:54) by PMED immediately followed by either 100 ug of control rat IgG monoclonal antibody (Bioxcell #BE0089: control mAb) or 50 □g CpG7909 or 100 ug of anti-CD40 monoclonal antibody (Bioxcell #BE0016-2: a-CD40 mAb) as indicated. The antigen specific immune responses were measured by IFNy ELISPOT assay from 5e5 splenocytes mixed with control or rHer-2 specific p66 peptides at 10 μg/ml concentration, 7 days after the PMED actuation. The number of total IFNy secreting cells from splenocytes containing 1e5 CD8 T cells was calculated from the ELISPOT results from individual animals and the % of CD8 T cells in splenocytes and mean and standard error of mean of each group are plotted. As shown, both CpG7909 and the anti-CD40 monoclonal antibody significantly enhanced the magnitude of antigen specific immune responses induced by rHer-2 DNA compared to mice that received control antibodies.

Intracellular Cytokine Staining (ICS) Assay Results.

FIGS. 6 and 7 show the results of a representative study that evaluates the immunomodulatory activity of CpG 7909 on the quality of the vaccine induced immune responses by intracellular cytokine staining assay. Briefly, each animal was immunized twice with the DNA plasmid expression constructs encoding rHER2 antigen sequences (SEQ ID NO:54) delivered by PMED with a 4-week interval. The mice in each group (n=5) were given intradermal injections of either PBS (PMED group) or 50 □g of CpG 7909 (PMED+CpG group) in proximity to the right side vaccine draining inguinal node immediately following both DNA immunizations by PMED. Seven days after the last immunization by PMED, an ICS assay was performed on the splenocytes isolated from each individual mice to detect antigen specific polyfunctional CD8 or CD4 T cells that secrete IFNy, TNF□ and/or IL-2. A significant increase in rHer-2 specific multi-cytokine positive CD8 and CD4 T cell responses were detected from mice treated with the local delivery of CpG 7909 compared to PBS. An increase in the single cytokine positive CD8 population was observed in the animals that received local delivery of CpG7909 administration compared to PBS.

FIGS. 8 and 9 show the results of a representative study that evaluates the immunomodulatory activity of an agonistic anti-CD40 monoclonal antibody on the quality of the vaccine induced immune responses by intracellular cytokine staining assay. Briefly, each animal was immunized twice by DNA plasmid expression constructs encoding rHER2 antigen sequences (SEQ ID NO:54) delivered by PMED with a 4 week interval. The mice in each group (n=6) were given 100 □g of intradermal injections of either isotype IgG control (PMED with IgG) or anti-CD40 monoclonal antibody (PMED with aCD40) in proximity to the right side vaccine draining inguinal node, one day after the first immunization was administered by PMED. Seven days after the last PMED, an ICS assay was performed on the splenocytes isolated from each individual mice to detect rHer-2 specific polyfunctional CD8 or CD4 T cells that secrete IFN□, TNF□ and/or IL-2. A significant increase in the rHer-2 specific triple-cytokine positive CD8 and CD4 T cell responses were detected from mice treated with the local delivery of anti-CD40 monoclonal antibody compared to isotype IgG control. There were also significant increases in rHer-2 specific single and double cytokine positive CD4 T cells by anti-CD40 monoclonal antibody given locally.

Example 6

Anti-Cancer Efficacy of Cancer Vaccine in Combination with Low Dose Sunitinib

Anti-tumor efficacy of anti-cancer vaccine in combination with low dose sunitinib was investigated in BALB/neuT mice with spontaneous mammary pad tumors.

Animal Treatment.

Briefly, 13-14 weeks old female mice were orally given sunitinib malate (Sutent) at 5 mg/kg for 112 days twice a day. The control vaccine, which delivers no antigen, and cancer vaccine which delivers a rat Her-2 antigen of SEQ ID NO: 54 (rHer-2), were given by adenovirus injections on day 3 as a prime followed by 7 biweekly administrations by PMED of DNA delivering HBV antigens (control vaccine) or rHer-2 (cancer vaccine) respectively. The survival end point was determined when all ten mammary pads became tumor positive or when the volume of any of the mammary tumors reached 2000 mm3.

Results.

The results are presented in FIG. 10. Compared to previously published pharmacokinetic profile of Sutent (Mendel, D., Laird, D., et al.: “In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship”. Clinical Cancer Research, 203, 9:327-337), the CMax of Sutent in mice dosed twice a day at 5 mg/kg is expected to be significantly lower than the minimum blood levels necessary to achieve efficient anti-tumor efficacy in mice and man. The data shows a quick and temporary improvement in the survival of the mice treated with low dose Sutent monotherapy. However when given with the cancer vaccine, a more persistent and significant improvement of survival was observed (P<0.0001 by Log rank test).

Example 7

Enhancement of Vaccine-Induced Immune Responses by Local Administration of CPG

The immune enhancement of local administration of CpG (PF-03512676) on the immune responses induced by a human PSMA nucleic acid provided by the invention was investigated in a monkey study, in which the immune response was assessed by measuring PSMA specific T cell responses using an IFNγ ELISPOT assay.

Animal Treatment and Sample Collection.

Six groups of Chinese cynomolgus macaques, six (#1 to 6) per each test group, were immunized with a plasmid DNA encoding the human PSMA modified antigen (the polypeptide of SEQ ID NO:9) delivered by electroporation. Briefly, all animals received bilateral intramuscular injections of 5 mg of plasmid DNA followed by electroporation (DNA EP) on day 0. Subsequently right after the electroporation, group 2 received bilateral intramuscular injections of 2 mg of CpG mixed with 1 mg Alum in proximity to the DNA injection sites. Groups 3 and 4 received bilateral intramuscular injections of 2 mg of CpG delivered without alum in proximity to the DNA injection sites either on day 0 or day 3, respectively. Group 5 received 2 mg of bilateral intradermal injections of CpG delivered in proximity to the vaccine draining inguinal nodes on day 3. Group 6 received bilateral injections of 200 □g of CpG mixed with the DNA solution which was co-electroporated into the muscle on day 0.

IFNγ ELISPOT Assay Procedure.

Peripheral blood samples were collected from each animal fifteen days after the DNA immunization. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples and were subjected to an IFNγ ELISPOT assay to measure the PSMA specific T cell responses. Briefly, 4e5 PBMCs from individual animals were plated per well with pools of PSMA specific peptides or nonspecific control peptides (human HER2 peptide pool) each at 2 ug/ml in IFNγ ELISPOT plates. The composition of each of the PSMA specific peptide pool is provided in Table 24A. The plates were incubated for 16 hrs at 37° C. and 5% CO2 and washed and developed after incubation as per manufacturer's instruction. The number of IFNγ spot forming cells (SFC) was counted by CTL reader. Each condition was performed in duplicates.

Results.

Table 6 shows the result of a representative IFNγ ELISPOT assay that evaluates and compares the IFNγ T cell responses induced by the vaccine without (group 1) or with CpG (PF-03512676) given locally by intramuscular (groups 2, 3, 4, and 5) or intradermal injections (group 6). The reported PSMA specific response was calculated by subtracting the average number of the SFC to the nonspecific control peptides (human HER2 peptide pool) from the average number of SFC to the PSMA peptide pools and normalized to the SFC observed with 1e6 PBMCs. A indicates that the count is not accurate because the numbers of spots were too numerous to count. ND indicates not determined.

The PSMA specific IFNγ T cell responses were detected to multiple PSMA specific peptide pools in the absence of CpG (PF-03512676) in all six animals (group 1). The total responses to the PSMA peptides measured were modestly higher in a few animals that additionally received CpG (PF-03512676) either by intramuscular (group 4: 3/6) or intradermal (group 5: 2/6) injections 3 days after DNA electroporation. However, when CpG was delivered subsequently right after electroporation on the same day (groups 2 and 3), there were several animals that failed to produce high responses (group 2: 4/6 and group 3: 3/6) whether mixed or not mixed with Alum. However, higher net responses were detected in 4/6 animals when a ten-fold lower dose of CpG was co-electroporated with the DNA solution into the muscle (group 6) with a statistically higher response (P<0.05) to peptide pools H1 and R1 compared to animals that did not receive CpG (group 1). The data shows that low dose of CpG can effectively enhance IFNγ T cell responses induced by a DNA vaccine when co-electroporated into the muscle.

TABLE 6

PSMA specific IFNγ T cell responses induced by

the DNA vaccine without (Group 1) or with CpG (Groups

2, 3, 4, 5 and 6) is measured by IFNγ ELISPOT

assay from PBMCs, 15 days after DNA electroporation

Recall Antigen

Group

Animal ID

P1

P2

P3

H1

H2

R1

R2

1

#1

36

31

1

126

183

5

14

#2

6

3

13

61

524

6

141

#3

11

4

8

108

1049

3

56

#4

10

0

13

20

151

13

10

#5

8

6

11

39

469

14

18

#6

26

5

0

145

356

8

30

2

#1

3

10

0

15

35

0

0

#2

0

0

8

4

6

13

0

#3

3

0

0

0

10

11

0

#4

6

209

4

111

414

23

9

#5

15

5

30

171

104

68

6

#6

0

0

0

9

9

6

8

3

#1

14

19

8

123

1066

10

60

#2

14

16

20

384

393

104

8

#3

0

0

15

0

6

0

0

#4

0

0

0

33

21

0

4

#5

4

91

1

875

{circumflex over ( )}1235

233

109

#6

0

0

0

0

3

0

0

4

#1

0

33

15

1025

{circumflex over ( )}1209

280

90

#2

0

313

3

23

656

6

31

#3

61

120

61

428

1190

143

53

#4

0

0

8

599

870

34

111

#5

0

1

8

19

226

10

36

#6

111

55

39

231

613

121

99

5

#1

21

9

0

355

1131

73

5

#2

0

0

0

118

233

0

0

#3

0

0

0

18

129

0

0

#4

0

28

78

68

294

58

8

#5

25

0

28

329

1125

134

5

#6

0

0

0

23

39

4

0

6

#1

0

0

13

650

1096

270

5

#2

34

1

74

124

474

29

15

#3

0

3

14

684

1074

126

64

#4

8

9

0

136

321

49

1

#5

13

23

35

ND

{circumflex over ( )}1235

333

195

#6

0

0

0

421

{circumflex over ( )}1201

138

29

Example 8

Enhancement of Vaccine-Induced Immune Responses by Local Administration of Anti-CTLA-4 Antibody

The effect of low dose subcutaneous administration of anti-CTLA-4 monoclonal antibody (CP-675, 206) on the immune responses induced by a rhesus PSMA nucleic acid was investigated in a monkey study, in which the immune response was assessed by measuring PSMA specific T cell responses using an IFNγ ELISPOT assay. The rhesus PSMA nucleic acid used in the study has the sequence as set forth in SEQ ID NO: 56) and encodes an immunogenic PSMA polypeptide of SEQ ID NO: 55.

Animal Treatment and Sample Collection.

Five groups of male Indian rhesus macaques, seven (#1 to 7) per each test group, were immunized with an adenovirus encoding a rhesus PSMA modified polypeptide delivered by bilateral intramuscular injections (2×5e10 V.P.). Immediately following the adenovirus injections, group 1 received vehicle, and groups 2 to 4 received bilateral subcutaneous injections of anti-CTLA-4 antibody (CP-675, 206) at doses 2×25 mg, 2×16.7 mg and 2×8.4 mg respectively in proximity to the vaccine draining lymph node.

Nine days after the immunization, peripheral blood mononuclear cells (PBMCs) were isolated from each animal and were subjected to an IFNγ ELISPOT assay to measure the rhesus PSMA specific T cell responses. Briefly, 4e5 PBMCs from individual animals were plated per well with pools of rhesus PSMA specific peptides (P1, P2, P3 or R1+R2 defined in Table 24A) or nonspecific control peptides (human HER2 peptide pool) each at 2 ug/ml in IFN□ ELISPOT plates. The plates were incubated for 16 hrs at 37° C. and 5% CO2 and washed and developed after incubation as per manufacturer's instruction. The number of IFNγ spot forming cells (SFC) was counted by CTL reader. Each condition was performed in duplicates. The average of the duplicates from the background adjusted SFC of the rhesus PSMA specific peptide pools was normalized to the response in 1e6 PBMCs. The individual and sum responses to the peptide pools from each individual animal are presented in Table 29.

IFNγ ELISPOT Assay Procedure.

A capture antibody specific to IFNγ (□BD Bioscience, #51-2525kc) is coated onto a polyvinylidene fluoride (PVDF) membrane in a microplate overnight at 4° C. The plate is blocked with serum/protein to prevent nonspecific binding to the antibody. After blocking, effector cells (such as splenocytes isolated from immunized mice or PBMCs isolated from rhesus macaques) and targets (such as PSMA peptides from peptide library, target cells pulsed with antigen specific peptides or tumor cells expressing the relevant antigens) are added to the wells and incubated overnight at 37° C. in a 5% CO2 incubator. Cytokine secreted by effector cells are captured by the coating antibody on the surface of the PVDF membrane. After removing the cells and culture media, 100 μl of a biotinylated polyclonal anti-humanlFNγ antibody was added to each of the wells for detection. The spots are visualized by adding streptavidin-horseradish peroxidase and the precipitate substrate, 3-amino-9-ethylcarbazole (AEC), to yield a red color spot as per manufacturer's (Mabtech) protocol. Each spot represents a single cytokine producing T cell.

Results.

Table 7 shows the results of a representative IFNγ ELISPOT assay that compares the T cell responses induced by the vaccine without (group 1) or with (groups 2-4) anti-CTLA-4 monoclonal antibody (CP-675,206) given locally by subcutaneous injections in proximity to the vaccine draining lymph node. The vaccine generated an immune response (group 1) that was significantly enhanced by the local administration of the anti-CTLA-4 antibody (CP-675, 206) at a dose of 50 mg (group 2, P=0.001 by Student's T-test using underestimated values). The response was also significantly enhanced by low doses of anti-CTLA-4 antibody at 33.4 mg (group 3: P=0.004 by Student T-test using underestimated values) and 16.7 mg (group 4: P=0.05 by Student T-test) respectively. The data suggests that low doses of anti-CTLA-4 delivered by subcutaneous injection can significantly enhance the vaccine induced immune responses.

TABLE 7

IFNγ T cell responses induced by the vaccine without (Group 1)

or with subcutaneous injections of anti-CTLA-4 antibody (CP-675, 206).

aCTLA4

peptide pool

Group

dose, mg

animal ID

P1

P2

P3

R1 + R2

Sum

1

NA

1

21

0

0

108

129

2

59

480

28

353

920

3

133

29

359

305

826

4

0

28

1

35

64

5

41

6

30

99

176

6

1

0

849

169

1019

7

0

0

0

23

23

2

50.0

1

{circumflex over ( )}1105

704

{circumflex over ( )}1116

{circumflex over ( )}1116

{circumflex over ( )}4041

2

371

26

661

779

1837

3

393

559

216

198

1366

4

{circumflex over ( )}1100

{circumflex over ( )}1100

406

1078

{circumflex over ( )}3684

5

778

325

554

419

2076

6

{circumflex over ( )}1079

{circumflex over ( )}1079

844

{circumflex over ( )}1079

{circumflex over ( )}4081

7

423

103

535

398

1459

3

33.4

1

{circumflex over ( )}425

{circumflex over ( )}425

{circumflex over ( )}425

{circumflex over ( )}425

{circumflex over ( )}1700

2

{circumflex over ( )}580

{circumflex over ( )}580

{circumflex over ( )}580

{circumflex over ( )}580

{circumflex over ( )}2320

3

TNTC

TNTC

TNTC

TNTC

TNTC

4

321

778

370

409

1878

5

331

466

311

446

1554

6

545

121

{circumflex over ( )}631

{circumflex over ( )}1194

{circumflex over ( )}2491

7

446

299

{circumflex over ( )}1078

{circumflex over ( )}1060

{circumflex over ( )}2883

4

16.7

1

{circumflex over ( )}964

296

{circumflex over ( )}964

{circumflex over ( )}964

{circumflex over ( )}3188

2

76

76

76

76

304

3

{circumflex over ( )}984

{circumflex over ( )}984

{circumflex over ( )}984

{circumflex over ( )}984

{circumflex over ( )}3936

4

260

489

648

{circumflex over ( )}1109

{circumflex over ( )}2506

5

119

45

28

140

332

6

55

76

43

198

372

7

146

726

141

400

1413

{circumflex over ( )}indicates that the count is underestimated due to the high spot numbers.

TNTC means too numerous to count.

Example 9

Immunomodulation of Myeloid Derived Suppressor Cells by Low Dose Sunitinib

The following example is provided to illustrate the immunomodulatory effects of low dose sunitinib on Myeloid Derived Suppressor Cells (MDSC) in vivo, in a non-tumor mouse model.

Study Procedures.

To generate MDSC enriched splenocytes, TUBO cells (1×106) were implanted into the flanks of 5 BALB/neuT mice, and left for approx. 20-30 days until tumor volume reached between 1000-1500 mm3. Mice were then sacrificed, spleens removed and the MDSC enriched splenocytes recovered. Splenocytes were labeled for 10 minutes with 5 μM CFSE, washed with PBS and counted. Labeled cells were subsequently resuspended at 5×107 splenocytes/ml in PBS solution and adoptively transferred via an i.v. tail vein injection into naïve BALB/c recipient mice. Three days prior to adoptive transfer, the recipient mice began bi-daily dosing with vehicle or sunitinib malate (Sutent) at 5 mg/kg, 10 mg/kg and 20 mg/kg. Following adoptive transfer, recipient mice continued to receive bi-daily dosing of Vehicle or sunitinib for two further days, after which point the mice were sacrificed, spleens removed, splenocytes recovered and processed for phenotypic analysis.

Splenocytes were counted and resuspended at 5×106 cells/ml in FACS staining buffer (PBS, 0.2% (w/v) bovine serum albumin, and 0.02% (w/v) Sodium Azide). For flow cytometry staining of splenocytes, 2.5×106 cells were first incubated with anti-bodies to CD16/CD32, 10 minutes at 4° C., to block Fc receptors and minimize non-specific binding. Splenocytes were then stained for 20 minutes at 4° C. with appropriate fluorophore conjugated antibodies (Biolegend) to murine cell surface markers. For T cells (anti-CD3 (Pacific Blue), clone 17A2) and for MDSC (anti-GR-1 (APC), clone RB6-8C5 and anti-CD11 b (PerCp Cy5.5), clone M1/70). A live/dead stain was also included. Following antibody incubation, stained splenocytes were washed with 2 mls of FACS buffer, pelleted by centrifugation and resuspended in 0.2 ml of FACS buffer prior to data acquisition on a BD CANTO 11 flow cytometer. To monitor the effect of Sunitinib or Vehicle on the adoptively transferred MDSC survival, we calculated the percentage of CFSE+, CD3−, GR1+, CD11 b+ in the live, singlet gate. We then determined the number of adoptively transferred MDSC per spleen by calculating what actual cell number the percentage represented of total splenocytes count. Data was analyzed by FloJo and Graph pad software.

Results.

The data presented in Table 27 represents the mean number of adoptively transferred CSFE+, CD3−, GR1+, CD11b+ cells recovered per spleen (n=7/group), 2 days post adoptive transfer, from mice bi-daily dosed with either Vehicle or 5 mg/kg, 10 mg/kg and 20 mg/kg Sunitinib. Statistical significance was determined by one-way ANOVA using the Dunnett's multiple comparison test, comparing the Sunitinib dosed groups against the 0 mg/kg (vehicle) group. The data demonstrates that Sunitinib, dosed bi-daily, in vivo, has an immunomodulatory effect on MDSCs, even when dosed as low as 5 mg/kg, resulting in a statistically significant reduction in the numbers recovered when compared to the vehicle treated control group.

TABLE 8

Mean number of CFSE+, CD3−, GR1+, CD11b+

MDSCs recovered from spleen

Sunitinib Dose (mg/kg)

0 (Vehicle)

5

10

20

MDSC #/spleen

17470 +/−

10980 +/−

4207 +/−

4440 +/−

Mean +/− SEM

2017

1082

338

440

Statistical

NA

Yes

Yes

Yes

significance,

p < 0.05

Example 10

Immunogenicity of Triple Antigen Adenovirus and DNA Constructs

The following example is provided to illustrate the capability of triple antigen vaccine constructs (either in the form of adenovirus vector or DNA plasmid) expressing three antigens PSMA, PSCA and PSA provided by the invention to elicit specific T cell responses to all three encoded antigens in nonhuman primates.

In Vivo Study Procedures.

The T cell immunogenicity of five adenovirus vectors each expressing three antigens (PSMA, PSCA and PSA; Ad-733, Ad-734, Ad-735, Ad-796 and Ad-809) provided by the invention were compared to the mix of three adenovirus vectors each only expressing a single antigen (PSMA, PSA or PSCA), 9 days post prime. The response to single adenovirus expressing a single antigen (groups 1-3) was evaluated to demonstrate the specificity. Briefly, Indian rhesus macaques (n=6 for groups 1 and 3, n=7 for group 2 and n=8 for groups 4-9) were intramuscularly injected with a total of 1e11 V.P. followed by intradermal injections of anti-CTLA-4 at 10 mg/kg on the same day. Nine days after the injections, peripheral blood mononuclear cells (PBMCs) were isolated from each animal and were subjected to an IFN□ ELISPOT assay to measure the PSMA, PSA and PSCA specific T cell responses.

Thirteen weeks after the adenovirus and anti-CTLA-4 injections when the T cell responses have contracted, the monkeys received DNA (Group 1: PSMA, plasmid 5166; Group 2: PSA, plasmid 5297; Group 3: PSCA, plasmid 5259; Group 4: mix of PSMA, PSA and PSCA, plasmids 5166, 5259 and 5297; Group 4: plasmid 457; Group 6: plasmid 458; Group 7: plasmid 459; Group 8: plasmid 796 and Group 9: plasmid 809) boost vaccinations delivered by electroporation. In summary, each animal received a total 5 mg of plasmid DNA provided by the invention which delivers the same expression cassette encoded in the adenovirus used in the prime. Nine days after the boost vaccination, peripheral blood mononuclear cells (PBMCs) were isolated from each animal and were subjected to an IFNγ ELISPOT assay.

IFNγ ELISPOT Assay.

Briefly, 4e5 PBMCs from individual animals were plated per well with PSMA specific peptide pools P1, P2, P3 or H1 and H2 (Table 9A), PSA specific pool 1 or 2 (Table 9B), PSCA specific pool (Table 10) or nonspecific control peptides (human HER2 peptide pool) each at 2 ug/ml in IFNγ ELISPOT plates. The plates were incubated for 16 hrs at 37° C. and 5% CO2 and washed and developed after incubation as per manufacturer's instruction. The number of IFNγ spot forming cells (SFC) was counted by CTL reader. Each condition was performed in duplicates. The average of the duplicates from the background adjusted SFC of the antigen specific peptide pools was normalized to the response in 1e6 PBMCs. The antigen specific responses in the tables present the sum of the responses to the corresponding antigen specific peptides or peptide pools.

Results:

Table 11 represents a study that evaluates the T cell immunogenicity of five different adenoviruses each expressing all three antigens in comparison to the mixture of three adenoviruses each expressing a single antigen in Indian rhesus macaques by IFNγ ELISPOT. The majority of animals that only received Ad-PSMA (group 1) injections induced specific responses to PSMA but not to PSA or PSCA (Student's T-test, P<0.03. One animal (#4) that induced responses to PSCA preferentially was removed from the statistical analysis). The animals that only received injections of Ad-PSA (group 2) induced specific responses to PSA but not to PSMA or PSCA (Student's T-test, P<0.02). The animals that only received injections of Ad-PSCA (group 3) induced specific responses to PSCA but not to PSMA or PSA (Student's T-test, P<0.03). All five triple-antigen expressing adenovirus vectors (groups 5-9) induced IFN□ T cell responses to all three antigens which the magnitude varied by animal. The magnitude of the responses to PSCA induced by the triple antigen expressing adenoviruses was similar to the mix of individual vectors (group 4). However the magnitude of responses to PSMA induced by Ad-809 (group 9) and responses to PSA induced by Ad-796 (group 8) were each significantly superior to the mix (Student's T-test, P=0.04 and P=0.02) respectively. These results indicate that vaccinating with an adenovirus expressing triple antigens can elicit equivalent or superior T cell immune responses to vaccinating with the mix of individual adenoviruses in nonhuman primates.

Table 12 shows the IFNγ ELISPOT results represents a study that evaluates the immunogenicity of the five different triple antigen expression cassettes provided in the invention delivered by an adenovirus prime in combination with anti-CTLA-4 followed by an electroporation boost of the corresponding plasmid DNA. The immune responses are compared to the mix of three constructs expressing a single antigen delivered similarly by an adenovirus prime with anti-CTLA-4 and DNA electroporation boost immunizations.

All of the animals that only received Ad-PSMA with anti-CTLA-4 followed by plasmid-PSMA (group 1) immunizations induced specific responses to PSMA but not to PSA or PSCA. Similarly all of the animals that only received Ad-PSA with anti-CTLA-4 followed by plasmid-PSA immunizations (group 2) induced specific responses to PSA but not to PSMA or PSCA and finally all of the animals that only received Ad-PSCA with anti-CTLA-4 followed by plasmid-PSCA (group 3) immunizations induced specific responses to PSCA but not to PSMA or PSA (Student's T-test, P<0.01).

All animals that have been immunized with either the triple-antigen expressing vectors (groups 5-9) or the mix (group 4) induced IFNγ T cell responses to all three antigens. The frequency of PSCA or PSA specific IFγ T cells detected were similar in all of these groups (groups 4-9) respectively. However construct groups 7 and 9 that received triple antigen expression vector vaccinations produced significantly higher frequency of responses to PSMA than the mix of three single antigen expressing constructs (group 4). These results indicate that adenovirus and DNA vaccines expressing triple antigens in one cassette can elicit equivalent or superior IFNγ T cell responses to the mix of adenoviruses and DNAs expressing the single antigens in nonhuman primates.

TABLE 9A

PSMA peptide pools*

P1

P2

P3

H1

H2

R1

R2

h 1-15

h 249-263

h 449-463

h 33-47

h 465-479

r 33-47

r 465-479

h 5-19

h 253-267

h 453-467

h 37-51

h 469-483

r 37-51

r 469-483

h 9-23

h 257-271

h 457-471

h 41-55

h 473-487

r 41-55

r 473-487

h 13-27

h 261-275

h 485-499

h 45-59

h 477-491

r 45-59

r 477-491

h 17-31

h 265-279

h 489-503

h 61-75

h 481-495

r 61-75

r 481-495

h 21-35

h 269-283

h 493-507

h 65-79

h 537-551

r 65-79

r 537-551

h 25-39

h 273-287

h 497-511

h 69-83

h 541-555

r 69-83

r 541-555

h 29-43

h 277-291

h 501-515

h 73-87

h 545-559

r 73-87

r 545-559

h 49-63

h 281-295

h 505-519

h 97-111

h 577-591

r 97-111

r 577-591

h 53-67

h 285-299

h 509-523

h 101-115

h 581-595

r 101-115

r 581-595

h 57-71

h 289-303

h 513-527

h 105-119

h 585-599

r 105-119

r 585-599

h 77-91

h 293-307

h 517-531

h 109-123

h 589-603

r 109-123

r 589-603

h 81-95

h 297-311

h 521-535

h 137-151

h 601-615

r 137-151

r 601-615

h 85-99

h 317-331

h 525-539

h 141-155

h 605-619

r 141-155

r 605-619

h 89-103

h 321-335

h 529-543

h 145-159

h 609-623

r 145-159

r 609-623

h 93-107

h 325-339

h 533-547

h 149-163

h 613-627

r 149-163

r 613-627

h 113-127

h 329-343

h 549-563

h 209-223

h 637-651

r 209-223

r 637-651

h 117-131

h 333-347

h 553-567

h 213-227

h 641-655

r 213-227

r 641-655

h 121-135

h 353-367

h 557-571

h 217-231

h 645-659

r 217-231

r 645-659

h 125-139

h 357-371

h 561-575

h 221-235

h 649-663

r 221-235

r 649-663

h 129-143

h 361-375

h 565-579

h 301-315

h 653-667

r 301-315

r 653-667

h 133-147

h 365-379

h 569-583

h 305-319

h 657-671

r 305-319

r 657-671

h 153-167

h 369-383

h 573-587

h 309-323

h 709-723

r 309-323

r 709-723

h 157-171

h 373-387

h 593-607

h 313-327

h 713-727

r 313-327

r 713-727

h 161-175

h 377-391

h 597-611

h 337-351

h 717-731

r 337-351

r 717-731

h 165-179

h 381-395

h 617-631

h 341-355

h 721-735

r 341-355

r 721-735

h 169-183

h 385-399

h 621-635

h 345-359

h 725-739

r 345-359

r 725-739

h 173-187

h 389-403

h 625-639

h 349-363

h 729-743

r 349-363

r 729-743

h 177-191

h 393-407

h 629-643

h 461-475

h 733-747

r 461-475

r 733-747

h 181-195

h 397-411

h 633-647

h 185-199

h 401-415

h 661-675

h 189-203

h 405-419

h 665-679

h 193-207

h 409-423

h 669-683

h 197-211

h 413-427

h 673-687

h 201-215

h 417-431

h 677-691

h 205-219

h 421-435

h 681-695

h 225-239

h 425-439

h 685-699

h 229-243

h 429-443

h 689-703

h 233-247

h 433-447

h 693-707

h 237-251

h 437-451

h 697-711

h 241-255

h 441-455

h 701-715

h 245-259

h 445-459

h 705-719

h 737-750

TABLE 9B

PSA peptide pools: the amino acid position and

sequence of fifteen amino acid peptides over-

lapping by thirteen amino acids from PSA peptide

library is shown.

PSA peptide pool 1

PSA peptide pool 2

amino

PSA peptide

amino

PSA peptide

acid no.

sequence

SEQ ID NO

acid no.

sequence

SEQ ID NO

  5-19

VVFLTLSVTWIGAAP

111

129-143

PAELTDAVKVMDLPT

172

  9-23

TLSVTWIGAAPLILS

112

131-145

ELTDAVKVMDLPTQE

173

 11-25

SVTWIGAAPLILSRI

113

133-147

TDAVKVMDLPTQEPA

174

 13-27

TWIGAAPLILSRIVG

114

135-149

AVKVMDLPTQEPALG

175

 15-29

IGAAPLILSRIVGGW

115

137-151

KVMDLPTQEPALGTT

176

 17-31

AAPLILSRIVGGWEC

116

139-153

MDLPTQEPALGTTCY

177

 19-33

PLILSRIVGGWECEK

117

141-155

LPTQEPALGTTCYAS

178

 21-35

ILSRIVGGWECEKHS

118

143-157

TQEPALGTTCYASGW

179

 23-37

SRIVGGWECEKHSQP

119

145-159

EPALGTTCYASGWGS

180

 25-39

IVGGWECEKHSQPWQ

120

147-161

ALGTTCYASGWGSIE

181

 27-41

GGWECEKHSQPWQVL

121

149-163

GTTCYASGWGSIEPE

182

 29-43

WECEKHSQPWQVLVA

122

151-165

TCYASGWGSIEPEEF

183

 31-45

CEKHSQPWQVLVASR

123

153-167

YASGWGSIEPEEFLT

184

 33-47

KHSQPWQVLVASRGR

124

155-169

SGWGSIEPEEFLTPK

185

 35-49

SQPWQVLVASRGRAV

125

157-171

WGSIEPEEFLTPKKL

186

 37-51

PWQVLVASRGRAVCG

126

159-173

SIEPEEFLTPKKLQC

187

 39-53

QVLVASRGRAVCGGV

127

161-175

EPEEFLTPKKLQCVD

188

 41-55

LVASRGRAVCGGVLV

128

163-177

EEFLTPKKLQCVDLH

189

 43-57

ASRGRAVCGGVLVHP

129

165-179

FLTPKKLQCVDLHVI

190

 45-59

RGRAVCGGVLVHPQW

130

167-181

TPKKLQCVDLHVISN

191

 47-61

RAVCGGVLVHPQWVL

131

169-183

KKLQCVDLHVISNDV

192

 49-63

VCGGVLVHPQWVLTA

132

171-185

LQCVDLHVISNDVCA

193

 51-65

GGVLVHPQWVLTAAH

133

173-187

CVDLHVISNDVCAQV

194

 53-67

VLVHPQWVLTAAHCI

134

175-189

DLHVISNDVCAQVHP

195

 55-69

VHPQWVLTAAHCIRN

135

177-191

HVISNDVCAQVHPQK

196

 57-71

PQWVLTAAHCIRNKS

136

179-193

ISNDVCAQVHPQKVT

197

 59-73

WVLTAAHCIRNKSVI

137

181-195

NDVCAQVHPQKVTKF

198

 61-75

LTAAHCIRNKSVILL

138

183-197

VCAQVHPQKVTKFML

199

 63-77

AAHCIRNKSVILLGR

139

185-199

AQVHPQKVTKFMLCA

200

 65-79

HCIRNKSVILLGRHS

140

187-201

VHPQKVTKFMLCAGR

201

 67-81

IRNKSVILLGRHSLF

141

189-203

PQKVTKFMLCAGRWT

202

 69-83

NKSVILLGRHSLFHP

142

191-205

KVTKFMLCAGRWTGG

203

 71-85

SVILLGRHSLFHPED

143

193-207

TKFMLCAGRWTGGKS

204

 73-87

ILLGRHSLFHPEDTG

144

195-209

FMLCAGRWTGGKSTC

205

 75-89

LGRHSLFHPEDTGQV

145

197-211

LCAGRWTGGKSTCSG

206

 77-91

RHSLFHPEDTGQVFQ

146

199-213

AGRWTGGKSTCSGDS

207

 79-93

SLFHPEDTGQVFQVS

147

201-215

RWTGGKSTCSGDSGG

208

 81-95

FHPEDTGQVFQVSHS

148

203-217

TGGKSTCSGDSGGPL

209

 83-97

PEDTGQVFQVSHSFP

149

205-219

GKSTCSGDSGGPLVC

210

 85-99

DTGQVFQVSHSFPHP

150

207-221

STCSGDSGGPLVCNG

211

 87-101

GQVFQVSHSFPHPLY

151

209-223

CSGDSGGPLVCNGVL

212

 89-103

VFQVSHSFPHPLYDM

152

211-225

GDSGGPLVCNGVLQG

213

 91-105

QVSHSFPHPLYDMSL

153

213-227

SGGPLVCNGVLQGIT

214

 93-107

SHSFPHPLYDMSLLK

154

215-229

GPLVCNGVLQGITSW

215

 95-109

SFPHPLYDMSLLKNR

155

217-231

LVCNGVLQGITSWGS

216

 97-111

PHPLYDMSLLKNRFL

156

219-233

CNGVLQGITSWGSEP

217

 99-113

PLYDMSLLKNRFLRP

157

221-235

GVLQGITSWGSEPCA

218

101-115

YDMSLLKNRFLRPGD

158

223-237

LQGITSWGSEPCALP

219

103-117

MSLLKNRFLRPGDDS

159

225-239

GITSWGSEPCALPER

220

105-119

LLKNRFLRPGDDSSH

160

227-241

TSWGSEPCALPERPS

221

107-121

KNRFLRPGDDSSHDL

161

229-243

WGSEPCALPERPSLY

222

109-123

RFLRPGDDSSHDLML

162

231-245

SEPCALPERPSLYTK

223

111-125

LRPGDDSSHDLMLLR

163

233-247

PCALPERPSLYTKVV

224

113-127

PGDDSSHDLMLLRLS

164

235-249

ALPERPSLYTKVVHY

225

115-129

DDSSHDLMLLRLSEP

165

237-251

PERPSLYTKVVHYRK

226

117-131

SSHDLMLLRLSEPAE

166

239-253

RPSLYTKVVHYRKWI

227

119-133

HDLMLLRLSEPAELT

167

241-255

SLYTKVVHYRKWIKD

228

121-135

LMLLRLSEPAELTDA

168

243-257

YTKVVHYRKWIKDTI

229

123-137

LLRLSEPAELTDAVK

169

245-259

KVVHYRKWIKDTIVA

230

125-139

RLSEPAELTDAVKVM

170

247-261

VHYRKWIKDTIVANP

231

127-141

SEPAELTDAVKVMDL

171

249-261

YRKWIKDTIVANP

232

251-261

KWIKDTIVANP

233

TABLE 10

PSCA peptide pool: The amino acid position and

sequence of fifteen amino acid peptides over-

lapping by thirteen amino acids from PSCA peptide

library is shown.

amino acid no.

PSCA peptide sequence

SEQ ID NO

  1-15

MKAVLLALLMAGLAL

234

  3-17

AVLLALLMAGLALQP

235

  5-19

LLALLMAGLALQPGT

236

  7-21

ALLMAGLALQPGTAL

237

  9-23

LMAGLALQPGTALLC

238

 11-25

AGLALQPGTALLCYS

239

 13-27

LALQPGTALLCYSCK

240

 15-29

LQPGTALLCYSCKAQ

241

 17-31

PGTALLCYSCKAQVS

242

 19-33

TALLCYSCKAQVSNE

243

 21-35

LLCYSCKAQVSNEDC

244

 23-37

CYSCKAQVSNEDCLQ

245

 25-39

SCKAQVSNEDCLQVE

246

 27-41

KAQVSNEDCLQVENC

247

 29-43

QVSNEDCLQVENCTQ

248

 31-45

SNEDCLQVENCTQLG

249

 33-47

EDCLQVENCTQLGEQ

250

 35-49

CLQVENCTQLGEQCW

251

 37-51

QVENCTQLGEQCWTA

252

 39-53

ENCTQLGEQCWTARI

253

 41-55

CTQLGEQCWTARIRA

254

 43-57

QLGEQCWTARIRAVG

255

 45-59

GEQCWTARIRAVGLL

256

 47-61

QCWTARIRAVGLLTV

257

 49-63

WTARIRAVGLLTVIS

258

 51-65

ARIRAVGLLTVISKG

259

 53-67

IRAVGLLTVISKGCS

260

 55-69

AVGLLTVISKGCSLN

261

 57-71

GLLTVISKGCSLNCV

262

 59-73

LTVISKGCSLNCVDD

263

 61-75

VISKGCSLNCVDDSQ

264

 63-77

SKGCSLNCVDDSQDY

265

 65-79

GCSLNCVDDSQDYYV

266

 67-81

SLNCVDDSQDYYVGK

267

 69-83

NCVDDSQDYYVGKKN

268

 71-85

VDDSQDYYVGKKNIT

269

 73-87

DSQDYYVGKKNITCC

270

 75-89

QDYYVGKKNITCCDT

271

 77-91

YYVGKKNITCCDTDL

272

 79-93

VGKKNITCCDTDLCN

273

 81-95

KKNITCCDTDLCNAS

274

 83-97

NITCCDTDLCNASGA

275

 85-99

TCCDTDLCNASGAHA

276

 87-101

CDTDLCNASGAHALQ

277

 89-103

TDLCNASGAHALQPA

278

 91-105

LCNASGAHALQPAAA

279

 93-107

NASGAHALQPAAAIL

280

 95-109

SGAHALQPAAAILAL

281

 97-111

AHALQPAAAILALLP

282

 99-113

ALQPAAAILALLPAL

283

101-115

QPAAAILALLPALGL

284

103-117

AAAILALLPALGLLL

285

105-119

AILALLPALGLLLWG

286

107-121

LALLPALGLLLWGPG

287

109-123

LLPALGLLLWGPGQL

288

111-125

PALGLLLWGPGQL

289

TABLE 11

IFNγ T cell responses induced by the single antigen (Group

1: Ad-PSMA; Group 2: Ad-PSA; Group 3: Ad-PSCA; Group 4: mix

of Ad-PSMA, Ad-PSA and Ad-PSCA) or triple antigen expressing

adenovirus vectors (Group 4: Ad-733; Group 6: Ad-734; Group

7: Ad-735; Group 8: Ad-796 and Group 9: Ad-809) after adenovirus

prime with anti-CTLA-4 analyzed by ELISPOT assay.

animal ID

1

2

3

4

5

6

7

8

Response to

PSMA peptides

Group

1

2356

988

1505

335

501

2145

NA

NA

No.

2

342

1776

154

329

158

438

321

NA

3

0

1276

40

126

20

0

NA

NA

4

304

1198

774

2007

1277

1310

1159

2774

5

943

2670

2757

780

1082

2251

1566

544

6

472

2092

4248

1369

1760

2964

1447

263

7

2161

2202

939

869

3513

1654

3424

900

8

1166

799

2566

663

1043

497

1334

560

9

1621

3247

2031

980

2942

1882

1918

3805

Response to

PSA peptides

Group

1

0

0

0

48

0

42

NA

NA

No.

2

1419

1426

298

1223

1346

1120

1694

NA

3

6

462

91

0

77

0

NA

NA

4

790

1093

1611

790

186

783

2016

1964

5

101

510

955

665

336

1512

1052

119

6

236

673

2155

724

504

1600

930

83

7

0

1086

494

663

2265

117

1712

84

8

1893

2060

1490

1759

2352

1700

2232

1326

9

1193

1432

207

1738

1886

949

492

1940

Response to

PSCA peptides

Group

1

795

425

874

1069

219

203

NA

NA

No.

2

669

713

391

199

164

560

461

NA

3

510

1234

1099

1115

1194

339

NA

NA

4

778

528

680

1101

165

531

1175

1009

5

378

1061

1161

143

71

756

766

204

6

118

380

1190

403

829

1225

148

261

7

615

1141

794

564

1175

490

856

204

8

968

1136

745

290

550

976

955

841

9

929

434

1150

745

1120

246

1195

970

TABLE 12

IFNγ T cell responses induced by the single antigen (Group

1: PSMA; Group 2: PSA; Group 3: PSCA; Group 4: mix of PSMA,

PSA and PSCA) or triple antigen expressing vectors (Groups

5-9) after adenovirus prime with anti-CTLA-4 and DNA electroporation

boost immunizations analyzed by ELISPOT assay.

animal ID

1

2

3

4

5

6

7

8

Response to

PSMA peptides

Group

1

1327

1535

1643

535

1506

1267

NA

NA

No.

2

15

266

26

191

10

46

1305

NA

3

0

445

5

75

4

6

NA

NA

4

365

675

731

1134

244

714

999

1683

5

270

1623

2254

626

860

2245

1453

1046

6

541

1151

2923

1094

1061

1746

691

489

7

1183

1183

1453

1649

2844

1470

2321

991

8

486

69

399

216

351

758

416

1389

9

1430

2631

2015

475

1368

1826

1851

3141

Response to

PSA peptides

Group

1

0

0

0

1

0

26

NA

NA

No.

2

1883

1236

1574

393

461

941

1565

NA

3

33

30

9

13

8

11

NA

NA

4

571

1129

1180

210

88

274

924

360

5

50

1255

1344

628

210

638

948

1161

6

88

228

1390

489

1006

908

683

51

7

0

211

321

156

1509

56

199

85

8

414

611

85

105

544

1080

331

1883

9

434

821

556

343

1160

510

144

1115

Response to

PSCA peptides

Group

1

615

799

533

74

258

61

NA

NA

No.

2

194

170

133

133

8

66

405

NA

3

819

1071

873

839

1045

724

NA

NA

4

543

506

664

470

70

673

761

1235

5

154

455

1218

109

218

1094

285

569

6

56

293

603

506

745

911

63

165

7

429

298

939

589

1226

263

803

451

8

279

214

871

61

144

511

193

963

9

379

191

1196

73

699

198

616

836

Example 11

Construction of C68 Vectors

11A. Vector AdC68-734 Construction

AdC68-734 is a replication incompetent adenovirus vector based upon the chimpanzee adenovirus C68 that encodes three immunogenic PAA polypeptides—an immunogenic PSA polypeptide, immunogenic PSCA polypeptide, and immunogenic PSMA polypeptide. The vector sequence was designed in silico. First, the baseline full length C68 sequence was obtained from Genbank (Definition: Simian adenovirus 25, complete genome; accession number AC_000011.1). Five point mutations described in the literature were introduced into the sequence. (Roshorm, Y., M. G. Cottingham, et al. (2012). “T cells induced by recombinant chimpanzee adenovirus alone and in prime-boost regimens decrease chimeric EcoHIV/NDK challenge virus load.” Eur J Immunol 42(12): 3243-3255) Next, 2.6 kilobases of the viral early transcription region 1 (E1) were deleted to render the vector replication incompetent, and 3.5 kilobases of the early transcription region 3 (E3) were removed to create space in the vector for the transgene expression cassette. (Tatsis, N., L. Tesema, et al. (2006). Chimpanzee-origin adenovirus vectors as vaccine carriers. Gene Ther. 13: 421-429) A highly efficient eukaryotic expression cassette was then introduced into the E1 region. The expression cassette included the following components: (A) Cytomegalovirus (CMV) immediate early enhancer/promoter, (B) Tet operator (binding site for the tetracycline repressor), (C) the multi-antigen construct comprising (1) nucleotide sequence encoding amino acids 25 through 261 of the human PSA, (2) Cis acting hydrolase element encoding a glycine-serine linker and Thosea asigna virus 2A peptide (T2A), (3) nucleotide sequence encoding amino acids 2 through 123 of the human PSCA, (4) Cis acting hydrolase element encoding a glycine-serine linker and Foot and Mouth Disease Virus 2A peptide (F2A), and (5) nucleotide sequence encoding amino acids 15 through 750 the human PSMA, and (D) SV40 polyA transcription termination signal. Finally, Pacl restriction sites were inserted at each end of the viral genome to facilitate the release of the genome from the parent Bacmid. Nucleotides from the Pacl restriction sites are removed during viral propagation and, therefore, are not incorporated into the genome of the vector product itself. A nucleotid sequence of the entire vector AdC68-734, including the Pacl restriction sites, is set forth in SEQ ID NO:58. The multi-antigen construct (PSA-T2A-PSCA-F2A-PSMA) incorporated in vector AdC68-734 (as well as in Plasmid 458) is also set forth in SEQ ID NO:61. The amino acid sequence encoded by the multi-antigen construct of SEQ ID NO:61 is set forth in SEq ID NO:60. The components of vector AdC68-734 are provided in Table 13.

TABLE 13

Components of Vector AdC68-734

Base Numbers

Feature

1-8

PacI restriction site

 9-463

Bases 1-455 of AC000011.1 (SEQ ID NO: 57)

 464-1096

CMV enhancer/promoter

1031-1070

Tetracycline operator/represser binding site

1106-1825

Sequence encoding amino acids 25 through 261 of the human

PSA and the preceding methionine-alanine-serine linker

1826-1831

Linker encoding glycine - serine

1832-1885

Cis acting hydrolase element encoding a Thosea asigna virus

2A peptide

1886-2257

Sequence encoding amino acids 2 through 123 of the human

PSCA and the preceding alanine-serine linker

2258-2263

Linker encoding glycine - serine

2264-2323

Cis acting hydrolase element encoding a Foot and Mouth

Disease Virus 2A peptide

2324-4543

Sequence encoding amino acids 15 through 750 of the human

PSMA and the preceding methionine-alanine-serine linker

4541-4543

Stop codon

4596-4823

SV40 polyA transcription termination signal

 4824-29622

Bases 3013-27811 of AC000011.1 (SEQ ID NO: 57)

29623-34811

Bases 31331-36519 of AC000011.1 (SEQ ID NO: 57)

10730

C to G substitution at base 89 19 of AC000011.1 (SEQ ID

NO: 57)

17569

G to C substitution at base 15758 of AC000011.1 (SEQ ID

NO: 57)

18967

A to T substitution at base 17156 of AC000011.1 (SEQ ID

NO: 57)

19245

C to A substitution at base 17434 of AC000011.1 (SEQ ID

NO: 57)

33520

G to C substitution at base 35228 of AC000011.1 (SEQ ID

NO: 57)

34812-34819

PacI restriction site

Following in silico design, the 34,819 base-pair sequence was biochemically synthesized in a multi-stage process utilizing in vitro oligo synthesis and subsequent recombination-mediated intermediate assembly in E. coli and yeast. The viral genome was ultimately inserted into a bacterial artificial chromosome (pCC1BAC-LCyeast-TRP Trunc) for propagation. Next generation sequencing (MiSeq technology) was performed at multiple steps in the production process, including the final Bacmid 17.3.3.22 lot that was used to create the viral seed stock. Viral seed stock was generated by digesting Bacmid 17.3.3.22 with Pacl to release the AdC68-734 genome from the BAC backbone. The linearized nucleic acid was transfected into an E1 complimenting adherent HEK293 cell line and upon visible cytopathic effects and adenovirus foci formation, cultures were harvested by multiple rounds of freezing/thawing to release virus from the cells. Viruses were amplified and purified by standard techniques. The genetic organization of Bacmid 17.3.3.22 is provided in FIG. 11.

11B. Constructions of Additional C68 Vectors

Additional triple antigen C68 vectors were constructed in a similar fashion to AdC68-734. Some of the additional vectors involve functional deletions in the C68 genome that are slightly different from those in Vector AdC68-734, while others incorporate different multi-antigen constructs. Based on these examples and other description of the present disclosure, a person skilled in the art would be able construct additional vectors from C68 for expressing various multi-antigen constructs, all of which are within the scope of the present invention.

(1) AdC68X-734 and AdC68W-734

Vector AdC68X-734 was constructed from C68 by functional deletion of the E1 and E3 regions of the C68 genome through deletions of nucleotides 577-3403 (E1 region) and 27125-31831 (E2 region) of the C68 genome of SEQ ID NO:57 and by insertion of the triple antigen construct (PSA-T2A-PSCA-F2A-PSMA) of SEQ ID NO:61 in the deleted E1 region. Vector AdC68W-734 is identical to Vector vector AdC68-734 except that AdC68W-734 contains one or more mutations in the C68 NDA sequence.

(2) AdC68X-733 and AdC68X-735

Vectors AdC68X-733 and AdC68X-735 were created by replacing the triple antigen-construct incorporated in the AdC68X-734 vector with the triple antigen construct of SEQ ID NOs:65 and 66, respectively. The multi-antigen construct incorporated in vector AdC68X-733 (i.e, PSA-F2A-PSMA-T2A-PSCA) is the same as that incorporated in Plasmid 457 and the multi-antigen construct incorporated in vector AdC68X-735 (i.e., PSCA-F2A-PSMA-mIRES-PSA) is the same as that in Plasmid 459.

11C. Research Productivity Characterization

Various research grade lots of AdC68-734 were produced and tested for productivity. Bacmid was digested with Pacl to release the vector genome from the BAC backbone and the linearized nucleic acid was transfected into E1 complimenting adherent HEK293 cell lines. When extensive cytopathic effects and adenovirus foci were visible, cultures were harvested by multiple rounds of freezing/thawing to release virus from the cells. Viruses from these Passage 0 (P0) cultures were amplified at least one additional passage in tissue culture flasks and then used as seed stocks for research scale production runs (˜0.5 to 3e13 total viral particles per lot). In total, 11 production runs were executed (five in HEK293 suspension cells and six in HEK293 adherent cells). The average specific productivity was 15,000+/−6,000 viral particles purified per initial infected cell, with a viral particle:infectious unit ratio of 55. Research scale productivities are summarized in Table 14.

TABLE 14

Specific productivities and infectivities

of research scale production lots

Specific productivity (purified

Viral particle:infectious

Lot

viral particles/cell)

unit ratio

 20039

17000

33

 20424

19000

49

 20542

12000

76

 20609

25000

54

 20626

16000

58

 20671

19000

ND

130502

17000

51

 130718*

3500

52

130820

7400

55

130821

9300

70

130822

19000

54

*Late passage HEK293 suspension cells used in production

11 D. Antigen Expression

The surface expression of PSMA and PSCA was measured by flow cytometry (FIG. 12) and total cellular expression of PSMA, PSCA and PSA was measured by western blot analysis (FIG. 13) from AdC68-vector infected A549 cells at an M01=10,000. Mock and AdC68 infected cells were stained with anti-PSCA (fluorescein isothiocyanate-conjugated monoclonal antibody 1G8 [1:200]) and PSMA antibodies (allophycocyanin-conjugated monoclonal antibody J591 [1:200]) for flow cytometric analysis, 2 days post infection. Surface expression of PSCA and PSMA were detected from majority of the cells infected with the different triple antigen-expressing AdC68 vectors with varying levels. Relatively higher levels of expression of PSCA and PSMA were detected from AdC68X-809 infected cells and lower levels were detected from AdC68X-733 infected cell. Two days after infection, total cellular lysates from approximately 1×105 infected cells were loaded onto each lane of a sodium dodecyl sulfate polyacrylamide gel. The gel was subsequently transferred to a membrane for the detection of PSA, PSMA, and PSCA proteins using primary antibodies specific to PSA, PSMA, and PSCA by western blot analysis. The expressions of all three antigens were detected in the infected cells to varying degrees. While relatively similar levels of PSMA and PSCA were detected from AdC68-734 and AdC68X-735 infected lysates, higher levels of PSA were detected from AdC68-734 lysates compared to those from AdC68X-735

11E. Immunogenicity

A head-to head comparison of the CD8 IFNγ responses induced by various triple antigen AdC68 vectors was performed. Each group of mice (n=5 per group) was immunized with AdC68-734, AdC68X-735, AdC68X-809, or Ad5-734 at 1e9 or 1e10 VP in the quadriceps. IFNγ CD8+ T cell responses in the mice were measured by collecting the spleens from each animal on day 13 post immunization. Splenocytes were isolated and subjected to an IFNγ ELISPOT assay to measure the PSMA, PSCA, and PSA-specific T cell responses. Briefly, 2.5 to 5×105 splenocytes from immunized animals were cultured in the presence of individual human PSMA, PSCA, or PSA-specific peptides at 10 μg/ml. The 15-mer peptides were previously defined to contain CD8+ T cell epitopes to each prostate antigen. Splenocytes cultured with medium alone served as a control. Each condition was performed in triplicate. The plates were incubated for 20 h at 37° C. and 5% CO2, washed, and developed after incubation as per the manufacturer's instructions. The number of IFNγ SFC was counted by a CTL reader. The results show the average number of PSMA, PSCA, and PSA-specific SFCs with the medium alone background values subtracted, and normalized to 1×106 splenocytes.

In summary, all triple antigen expressing AdC68 vectors induced immune responses to all three antigens but to different magnitude. At 1e9 VP, the response to PSMA by the AdC68 vectors was similar to Ad5. The response to PSCA by the three AdC68 vectors was similar or lower than the response induced by Ad5 while the response to PSA was lower with Ad68-735 compared to all of the vectors tested. However at 1e10VP, AdC68-809 induced similar or better responses to all three antigens compared to AdC68-734, AdC68-735 or Ad5. Results are presented in Table 15.

TABLE 15

IFNγ T cellular Immunogenicity by AdC68 vectors co-expressing

PSMA, PSA and PSCA in C57BL6 mice by IFNγ ELISPOT assay

Construct

Ad5-734

AdC68-734

AdC68-809

AdC68-735

Titer, vp

1e9

1e10

1e9

1e10

1e9

1e10

1e9

1e10

PSMA

473

1221

699

296

489

684

288

503

491

831

143

513

221

687

203

261

435

740

149

607

315

809

256

745

248

596

224

116

347

317

317

1197

709

711

269

681

296

536

320

368

PSA

1299

1472

1180

1741

1973

1979

533

695

939

1025

1327

1985

841

1532

313

1615

1096

797

672

780

1869

1979

277

1420

989

933

904

635

1009

1669

535

616

1971

1047

1309

1901

907

1920

824

403

PSCA

104

64

228

61

115

197

148

92

160

80

11

41

59

92

80

897

163

52

15

116

25

235

47

39

119

223

32

57

24

96

107

33

207

100

8

53

17

35

32

16

Select Raw Sequences

SEQ ID NO: 1. AMINO ACID SEQUENCE OF THE FULL LENGTH HUMAN

PSMA

MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNM

KAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLS

YPNKTHPNYISIINEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVN

YARTEDFFKLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAP

GVKSYPDGWNLPGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPV

HPIGYYDAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTNE

VTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGAAWHEIVRSFGTLKKEGW

RPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYINADSSIEGNYTLRVDCTPL

MYSLVHNLTKELKSPDEGFEGKSLYESWTKKSPSPEFSGMPRISKLGSGNDFEVFFQR

LGIASGRARYTKNWETNKFSGYPLYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVF

ELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASK

FSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFYRHVIYAPSSHNKYAGES

FPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEVA

SEQ ID NO: 2. NUCLEOTIDE SEQUENCE ENCODING THE FULL LENGTH

HUMAN PSMA OF SEQ ID NO: 1

atgtggaatctccttcacgaaaccgactcggctgtggccaccgcgcgccgcccgcgctggctgtgcgctggggcgctggt

gctggcgggtggcttctttctcctcggcttcctcttcgggtggtttataaaatcctccaatgaagctactaacattactccaaagc

ataatatgaaagcatttttggatgaattgaaagctgagaacatcaagaagttcttatataattttacacagataccacatttag

caggaacagaacaaaactttcagcttgcaaagcaaattcaatcccagtggaaagaatttggcctggattctgttgagctag

cacattatgatgtcctgttgtcctacccaaataagactcatcccaactacatctcaataattaatgaagatggaaatgagatttt

caacacatcattatttgaaccacctcctccaggatatgaaaatgtttcggatattgtaccacctttcagtgctttctctcctcaag

gaatgccagagggcgatctagtgtatgttaactatgcacgaactgaagacttctttaaattggaacgggacatgaaaatca

attgctctgggaaaattgtaattgccagatatgggaaagttttcagaggaaataaggttaaaaatgcccagctggcagggg

ccaaaggagtcattctctactccgaccctgctgactactttgctcctggggtgaagtcctatccagatggttggaatcttcctgg

aggtggtgtccagcgtggaaatatcctaaatctgaatggtgcaggagaccctctcacaccaggttacccagcaaatgaat

atgcttataggcgtggaattgcagaggctgttggtcttccaagtattcctgttcatccaattggatactatgatgcacagaagct

cctagaaaaaatgggtggctcagcaccaccagatagcagctggagaggaagtctcaaagtgccctacaatgttggacct

ggctttactggaaacttttctacacaaaaagtcaagatgcacatccactctaccaatgaagtgacaagaatttacaatgtgat

aggtactctcagaggagcagtggaaccagacagatatgtcattctgggaggtcaccgggactcatgggtgtttggtggtatt

gaccctcagagtggagcagctgttgttcatgaaattgtgaggagctttggaacactgaaaaaggaagggtggagacctag

aagaacaattttgtttgcaagctgggatgcagaagaatttggtcttcttggttctactgagtgggcagaggagaattcaagac

tccttcaagagcgtggcgtggcttatattaatgctgactcatctatagaaggaaactacactctgagagttgattgtacaccgc

tgatgtacagcttggtacacaacctaacaaaagagctgaaaagccctgatgaaggctttgaaggcaaatctctttatgaaa

gttggactaaaaaaagtccttccccagagttcagtggcatgcccaggataagcaaattgggatctggaaatgattttgaggt

gttcttccaacgacttggaattgcttcaggcagagcacggtatactaaaaattgggaaacaaacaaattcagcggctatcc

actgtatcacagtgtctatgaaacatatgagttggtggaaaagttttatgatccaatgtttaaatatcacctcactgtggcccag

gttcgaggagggatggtgtttgagctagccaattccatagtgctcccttttgattgtcgagattatgctgtagttttaagaaagtat

gctgacaaaatctacagtatttctatgaaacatccacaggaaatgaagacatacagtgtatcatttgattcacttttttctgcag

taaagaattttacagaaattgcttccaagttcagtgagagactccaggactttgacaaaagcaacccaatagtattaagaat

gatgaatgatcaactcatgtttctggaaagagcatttattgatccattagggttaccagacaggcctttttataggcatgtcatct

atgctccaagcagccacaacaagtatgcaggggagtcattcccaggaatttatgatgctctgtttgatattgaaagcaaagt

ggacccttccaaggcctggggagaagtgaagagacagatttatgttgcagccttcacagtgcaggcagctgcagagactt

tgagtgaagtagcc

SEQ ID NO: 3. AMINO ACID SEQUENCE OF PSMA SHUFFLED ANTIGEN 1

SEQ ID NO: 4. NUCLEOTIDE SEQUENCE ENCODING AMINO ACID

SEQUENCE OF PSMA SHUFFLED ANTIGEN 1 OF SEQ ID NO: 3

SEQ ID NO: 5. AMINO ACID SEQUENCE OF PSMA SHUFFLED ANTIGEN 2

SEQ ID NO: 6. NUCLEOTIDE SEQUENCE ENCODING AMINO ACID

SEQUENCE OF PSMA SHUFFLED ANTIGEN 2 OF SEQ ID NO:5

SEQ ID NO: 7. AMINO ACID SEQUENCE OF PSMA SHUFFLED ANTIGEN 3

SEQ ID NO: 8. NUCLEOTIDE SEQEUNCE ENCODING AMINO ACID

SEQUENCE OF PSMA SHUFFLED ANTIGEN 3 OF SEQ ID NO:7

SEQ ID NO: 9. AMINO ACID SEQUENCE OF A MEMBRANE-BOUND PSMA

ANTIGEN

MASARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFLDELKAENI

KKFLYNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTHPNYISI

INEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLE

RDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDGWN

LPGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLL

EKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRG

AVEPDRYVILGGHRDSWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWD

AEEFGLLGSTEWAEENSRLLQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNLTKEL

KSPDEGFEGKSLYESWTKKSPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRARYTK

NWETNKFSGYPLYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDC

RDYAVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFSERLQDFDKS

NPIVLRMMNDQLMFLERAFIDPLGLPDRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIE

SKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEVA

SEQ ID NO: 10. NUCLEOTIDE SEQEUNCE ENCODING AMINO ACID

SEQUENCE OF THE MEMBRANE-BOUND PSMA ANTIGEN OF SEQ ID NO: 9

atggctagcgcgcgccgcccgcgctggctgtgcgctggggcgctggtgctggcgggtggcttctttctcctcggcttcctcttc

gggtggtttataaaatcctccaatgaagctactaacattactccaaagcataatatgaaagcatttttggatgaattgaaagct

gagaacatcaagaagttcttatataattttacacagataccacatttagcaggaacagaacaaaactttcagcttgcaaag

caaattcaatcccagtggaaagaatttggcctggattctgttgagctggcacattatgatgtcctgttgtcctacccaaataag

actcatcccaactacatctcaataattaatgaagatggaaatgagattttcaacacatcattatttgaaccacctcctccagg

atatgaaaatgtttcggatattgtaccacctttcagtgctttctctcctcaaggaatgccagagggcgatctagtgtatgttaact

atgcacgaactgaagacttctttaaattggaacgggacatgaaaatcaattgctctgggaaaattgtaattgccagatatgg

gaaagttttcagaggaaataaggttaaaaatgcccagctggcaggggccaaaggagtcattctctactccgaccctgctg

actactttgctcctggggtgaagtcctatccagatggttggaatcttcctggaggtggtgtccagcgtggaaatatcctaaatct

gaatggtgcaggagaccctctcacaccaggttacccagcaaatgaatatgcttataggcgtggaattgcagaggctgttgg

tcttccaagtattcctgttcatccaattggatactatgatgcacagaagctcctagaaaaaatgggtggctcagcaccacca

gatagcagctggagaggaagtctcaaagtgccctacaatgttggacctggctttactggaaacttttctacacaaaaagtca

agatgcacatccactctaccaatgaagtgacaagaatttacaatgtgataggtactctcagaggagcagtggaaccagac

agatatgtcattctgggaggtcaccgggactcatgggtgtttggtggtattgaccctcagagtggagcagctgttgttcatgaa

attgtgaggagctttggaacactgaaaaaggaagggtggagacctagaagaacaattttgtttgcaagctgggatgcaga

agaatttggtcttcttggttctactgagtgggcagaggagaattcaagactccttcaagagcgtggcgtggcttatattaatgct

gactcatctatagaaggaaactacactctgagagttgattgtacaccgctgatgtacagcttggtacacaacctaacaaaa

gagctgaaaagccctgatgaaggctttgaaggcaaatctctttatgaaagttggactaaaaaaagtccttccccagagttc

agtggcatgcccaggataagcaaattgggatctggaaatgattttgaggtgttcttccaacgacttggaattgcttcaggcag

agcacggtatactaaaaattgggaaacaaacaaattcagcggctatccactgtatcacagtgtctatgaaacatatgagtt

ggtggaaaagttttatgatccaatgtttaaatatcacctcactgtggcccaggttcgaggagggatggtgtttgagctggcca

attccatagtgctcccttttgattgtcgagattatgctgtagttttaagaaagtatgctgacaaaatctacagtatttctatgaaac

atccacaggaaatgaagacatacagtgtatcatttgattcacttttttctgcagtaaagaattttacagaaattgcttccaagttc

agtgagagactccaggactttgacaaaagcaacccaatagtattaagaatgatgaatgatcaactcatgtttctggaaaga

gcatttattgatccattagggttaccagacaggcctttttataggcatgtcatctatgctccaagcagccacaacaagtatgca

ggggagtcattcccaggaatttatgatgctctgtttgatattgaaagcaaagtggacccttccaaggcctggggagaagtga

agagacagatttatgttgcagccttcacagtgcaggcagctgcagagactttgagtgaagtagcc

SEQ ID NO: 11. AMINO ACID SEQUENCE OF A CYTOSOLIC PSMA

ANTIGEN

SEQ ID NO: 12. NUCLEOTIDE SEQEUNCE ENCODING AMINO ACID

SEQUENCE OF THE CYTOSOLIC PSMA ANTIGEN OF SEQ ID NO: 11

SEQ ID NO: 13. AMINO ACID SEQUENCE OF A SECRETED PSMA ANTIGEN

SEQ ID NO: 14. NUCLEOTIDE SEQUENCE ENCODING AMINO ACID

SEQUENCE OF THE SECRETED PSMA ANTIGEN OF SEQ ID NO:13

SEQ ID NO: 15. AMINO ACID SEQUENCE OF THE FULL LENGTH HUMAN

PSA

MASWVPVVFLTLSVTWIGAAPLILSRIVGGWECEKHSQPWQVLVASRGRAVCGGVLV

HPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSHSFPHPLYDMSLLKNRFLRP

GDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGTTCYASGWGSIEPEEFLTPKKL

QCVDLHVISNDVCAQVHPQKVTKFMLCAGRWTGGKSTCSGDSGGPLVCNGVLQG ITS

WGSEPCALPERPSLYTKVVHYRKWIKDTIVANP

SEQ ID NO: 16. NUCLEOTIDE SEQUENCE ENCODING AMINO ACID

SEQUENCE OF THE FULL LENGTH HUMAN PSA OF SEQ ID NO: 15

atggctagctgggtcccggttgtcttcctcaccctgtccgtgacgtggattggcgctgcgcccctcatcctgtctcggattgtgg

gaggctgggagtgcgagaagcattcccaaccctggcaggtgcttgtggcctctcgtggcagggcagtctgcggcggtgtt

ctggtgcacccccagtgggtcctcacagctgcccactgcatcaggaacaaaagcgtgatcttgctgggtcggcacagctt

gtttcatcctgaagacacaggccaggtatttcaggtcagccacagcttcccacacccgctctacgatatgagcctcctgaag

aatcgattcctcaggccaggtgatgactccagccacgacctcatgctgctccgcctgtcagagcctgccgagctcacggat

gctgtgaaggtcatggacctgcccacccaggagccagcactggggaccacctgctacgcctcaggctggggcagcatt

gaaccagaggagttcttgaccccaaagaaacttcagtgtgtggacctccatgttatttccaatgacgtgtgtgcgcaagttca

ccctcagaaggtgaccaagttcatgctgtgtgctggacgctggacagggggcaaaagcacctgctcgggtgattctgggg

gcccacttgtctgtaatggtgtgcttcaaggtatcacgtcatggggcagtgaaccatgtgccctgcccgaaaggccttccctg

tacaccaaggtggtgcattaccggaagtggatcaaggacaccatcgtggccaacccc

SEQ ID NO: 17. AMINO ACID SEQUENCE OF A CYTOSOLIC PSA ANTIGEN

MASIVGGWECEKHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRNKSVILLGRH

SLFHPEDTGQVFQVSHSFPHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAV

KVMDLPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTK

FMLCAGRWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYR

KWIKDTIVANP

SEQ ID NO: 18. NUCLEOTIDE SEQEUNCE ENCODING AMINO ACID

SEQUENCE OF THE CYTOSOLIC PSA ANTIGEN OF SEQ ID NO: 17

atggctagcattgtgggaggctgggagtgcgagaagcattcccaaccctggcaggtgcttgtggcctctcgtggcagggc

agtctgcggcggtgttctggtgcacccccagtgggtcctcacagctgcccactgcatcaggaacaaaagcgtgatcttgct

gggtcggcacagcttgtttcatcctgaagacacaggccaggtatttcaggtcagccacagcttcccacacccgctctacgat

atgagcctcctgaagaatcgattcctcaggccaggtgatgactccagccacgacctcatgctgctccgcctgtcagagcct

gccgagctcacggatgctgtgaaggtcatggacctgcccacccaggagccagcactggggaccacctgctacgcctca

ggctggggcagcattgaaccagaggagttcttgaccccaaagaaacttcagtgtgtggacctccatgttatttccaatgacg

tgtgtgcgcaagttcaccctcagaaggtgaccaagttcatgctgtgtgctggacgctggacagggggcaaaagcacctgc

tcgggtgattctgggggcccacttgtctgtaatggtgtgcttcaaggtatcacgtcatggggcagtgaaccatgtgccctgcc

cgaaaggccttccctgtacaccaaggtggtgcattaccggaagtggatcaaggacaccatcgtggccaacccc

SEQ ID NO: 19. AMINO ACID SEQUENCE OF A MEMBRANE-BOUND PSA

ANTIGEN

MASARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPGIVGGWECEKHSQP

WQVLVASRGRAVCGGVLVHPQWVLTAAHCIRNKSVILLGRHSLFHPEDTGQVFQVSH

SFPHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPALGTTC

YASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTKFMLCAGRWTGGKSTC

SGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYRKWIKDTIVANP

SEQ ID NO: 20. NUCLEOTIDE SEQUENCE ENCODING AMINO ACID

SEQUENCE OF THE MEMBRANE-BOUND PSA ANTIGEN OF SEQ ID NO:19

atggctagcgcgcgccgcccgcgctggctgtgcgctggggcgctggtgctggcgggtggcttctttctcctcggcttcctcttc

gggtggtttataaaatcctccaatgaagctactaacattactccaggaattgtgggaggctgggagtgcgagaagcattcc

caaccctggcaggtgcttgtggcctctcgtggcagggcagtctgcggcggtgttctggtgcacccccagtgggtcctcaca

gctgcccactgcatcaggaacaaaagcgtgatcttgctgggtcggcacagcttgtttcatcctgaagacacaggccaggta

tttcaggtcagccacagcttcccacacccgctctacgatatgagcctcctgaagaatcgattcctcaggccaggtgatgact

ccagccacgacctcatgctgctccgcctgtcagagcctgccgagctcacggatgctgtgaaggtcatggacctgcccacc

caggagccagcactggggaccacctgctacgcctcaggctggggcagcattgaaccagaggagttcttgaccccaaag

aaacttcagtgtgtggacctccatgttatttccaatgacgtgtgtgcgcaagttcaccctcagaaggtgaccaagttcatgctg

tgtgctggacgctggacagggggcaaaagcacctgctcgggtgattctgggggcccacttgtctgtaatggtgtgcttcaag

gtatcacgtcatggggcagtgaaccatgtgccctgcccgaaaggccttccctgtacaccaaggtggtgcattaccggaagt

ggatcaaggacaccatcgtggccaacccctga

SEQ ID NO: 21. AMINO ACID SEQUENCE OF THE FULL LENGTH HUMAN

PSCA

MASKAVLLALLMAGLALQPGTALLCYSCKAQVSNEDCLQVENCTQLGEQCWTARIRAV

GLLTVISKGCSLNCVDDSQDYYVGKKNITCCDTDLCNASGAHALQPAAAILALLPALGLL

LWGPGQL

SEQ ID NO: 22. NUCLEOTIDE SEQUENCE ENCODING AMINO ACID

SEQUENCE OF THE FULL LENGTH HUMAN PSCA OF SEQ ID NO: 21

atggctagcaaggctgtgctgcttgccctgttgatggcaggcttggccctgcagccaggcactgccctgctgtgctactcctg

caaagcccaggtgagcaacgaggactgcctgcaggtggagaactgcacccagctgggggagcagtgctggaccgcg

cgcatccgcgcagttggcctcctgaccgtcatcagcaaaggctgcagcttgaactgcgtggatgactcacaggactacta

cgtgggcaagaagaacatcacgtgctgtgacaccgacttgtgcaacgccagcggggcccatgccctgcagccggctgc

cgccatccttgcgctgctccctgcactcggcctgctgctctggggacccggccagcta

SEQ ID NO: 23. NUCLEOTIDE SEQUENCE OF PLASMID 5166

SEQ ID NO: 24. NUCLEOTIDE SEQUENCE OF PLASMID 5259

SEQ ID NO: 25. NUCLEOTIDE SEQUENCE OF PLASMID 5297

SEQ ID NO: 26. NUCLEOTIDE SEQUENCE OF PLASMID 460

SEQ ID NO: 27. NUCLEOTIDE SEQUENCE OF PLASMID 451

SEQ ID NO: 28. NUCLEOTIDE SEQUENCE OF PLASMID 454

SEQ ID NO: 29. NUCLEOTIDE SEQUENCE OF PLASMID 5300

SEQ ID NO: 30. NUCLEOTIDE SEQUENCE OF PLASMID 449

SEQ ID NO: 31. NUCLEOTIDE SEQUENCE OF PLASMID 603

SEQ ID NO: 32. NUCLEOTIDE SEQUENCE OF PLASMID 455

SEQ ID NO: 33. NUCLEOTIDE SEQUENCE OF PLASMID 456

SEQ ID NO: 34. NUCLEOTIDE SEQUENCE OF PLASMID 457

SEQ ID NO: 35. NUCLEOTIDE SEQUENCE OF PLASMID 458

GGCGTAATGCTCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAACTCA

TCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTT

GAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATG

GCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTAT

TAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGAC

TGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACAGG

CCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCG

TGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAA

CAGGAATCAAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCA

CCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGT

GGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAG

GCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAA

CGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAAT

CGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATA

TAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTCGAGCAAGACGTTTCCCGTT

GAATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGGTCGACAA

TATTGGCTATTGGCCATTGCATACGTTGTATCTATATCATAATATGTACATTTATATT

GGCTCATGTCCAATATGACCGCCATGTTGACATTGATTATTGACTAGTTATTAATAG

TAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAA

CTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGT

CAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAAT

GGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATG

CCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATG

CCCAGTACATGACCTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCA

TCGCTATTACCATGGTGATGCGGTTTTGGCAGTACACCAATGGGCGTGGATAGCG

GTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGT

TTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAATAACCCCGCCCCGTTG

ACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTT

TAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGA

AGACACCGGGACCGATCCAGCCTCCGCGGCCGGGAACGGTGCATTGGAACGCGG

ATTCCCCGTGCCAAGAGTGACTCACCGTCCGGATCTCAGCAAGCAGGTATGTACTC

TCCAGGGTGGGCCTGGCTTCCCCAGTCAAGACTCCAGGGATTTGAGGGACGCTGT

GGGCTCTTCTCTTACATGTACCTTTTGCTTGCCTCAACCCTGACTATCTTCCAGGTC

AGGATCCCAGAGTCAGGGGTCTGTATTTTCCTGCTGGTGGCTCCAGTTCAGGAACA

GTAAACCCTGCTCCGAATATTGCCTCTCACATCTCGTCAATCTCCGCGAGGACTGG

GGACCCTGTGACGAACATGGCTAGCATTGTGGGAGGCTGGGAGTGCGAGAAGCAT

TCCCAACCCTGGCAGGTGCTTGTGGCCTCTCGTGGCAGGGCAGTCTGCGGCGGT

GTTCTGGTGCACCCCCAGTGGGTCCTCACAGCTGCCCACTGCATCAGGAACAAAA

GCGTGATCTTGCTGGGTCGGCACAGCTTGTTTCATCCTGAAGACACAGGCCAGGT

ATTTCAGGTCAGCCACAGCTTCCCACACCCGCTCTACGATATGAGCCTCCTGAAGA

ATCGATTCCTCAGGCCAGGTGATGACTCCAGCCACGACCTCATGCTGCTCCGCCT

GTCAGAGCCTGCCGAGCTCACGGATGCTGTGAAGGTCATGGACCTGCCCACCCAG

GAGCCAGCACTGGGGACCACCTGCTACGCCTCAGGCTGGGGCAGCATTGAACCA

GAGGAGTTCTTGACCCCAAAGAAACTTCAGTGTGTGGACCTCCATGTTATTTCCAAT

GACGTGTGTGCGCAAGTTCACCCTCAGAAGGTGACCAAGTTCATGCTGTGTGCTG

GACGCTGGACAGGGGGCAAAAGCACCTGCTCGGGTGATTCTGGGGGCCCACTTG

TCTGTAATGGTGTGCTTCAAGGTATCACGTCATGGGGCAGTGAACCATGTGCCCTG

CCCGAAAGGCCTTCCCTGTACACCAAGGTGGTGCATTACCGGAAGTGGATCAAGG

ACACCATCGTGGCCAACCCCGGATCCGAAGGTAGGGGTTCATTATTGACCTGTGG

AGATGTCGAAGAAAACCCAGGACCCGCTAGCAAGGCTGTGCTGCTTGCCCTGTTG

ATGGCAGGCTTGGCCCTGCAGCCAGGCACTGCCCTGCTGTGCTACTCCTGCAAAG

CCCAGGTGAGCAACGAGGACTGCCTGCAGGTGGAGAACTGCACCCAGCTGGGGG

AGCAGTGCTGGACCGCGCGCATCCGCGCAGTTGGCCTCCTGACCGTCATCAGCAA

AGGCTGCAGCTTGAACTGCGTGGATGACTCACAGGACTACTACGTGGGCAAGAAG

AACATCACGTGCTGTGACACCGACTTGTGCAACGCCAGCGGGGCCCATGCCCTGC

AGCCGGCTGCCGCCATCCTTGCGCTGCTCCCTGCACTCGGCCTGCTGCTCTGGG

GACCCGGCCAGCTAGGATCCCAGACCCTGAACTTTGATCTGCTGAAACTGGCAGG

CGATGTGGAAAGCAACCCAGGCCCAATGGCAAGCGCGCGCCGCCCGCGCTGGCT

GTGCGCTGGGGCGCTGGTGCTGGCGGGTGGCTTCTTTCTCCTCGGCTTCCTCTTC

GGGTGGTTTATAAAATCCTCCAATGAAGCTACTAACATTACTCCAAAGCATAATATG

AAAGCATTTTTGGATGAATTGAAAGCTGAGAACATCAAGAAGTTCTTATATAATTTTA

CACAGATACCACATTTAGCAGGAACAGAACAAAACTTTCAGCTTGCAAAGCAAATTC

AATCCCAGTGGAAAGAATTTGGCCTGGATTCTGTTGAGCTGGCACATTATGATGTC

CTGTTGTCCTACCCAAATAAGACTCATCCCAACTACATCTCAATAATTAATGAAGAT

GGAAATGAGATTTTCAACACATCATTATTTGAACCACCTCCTCCAGGATATGAAAAT

GTTTCGGATATTGTACCACCTTTCAGTGCTTTCTCTCCTCAAGGAATGCCAGAGGG

CGATCTAGTGTATGTTAACTATGCACGAACTGAAGACTTCTTTAAATTGGAACGGGA

CATGAAAATCAATTGCTCTGGGAAAATTGTAATTGCCAGATATGGGAAAGTTTTCAG

AGGAAATAAGGTTAAAAATGCCCAGCTGGCAGGGGCCAAAGGAGTCATTCTCTACT

CCGACCCTGCTGACTACTTTGCTCCTGGGGTGAAGTCCTATCCAGATGGTTGGAAT

CTTCCTGGAGGTGGTGTCCAGCGTGGAAATATCCTAAATCTGAATGGTGCAGGAGA

CCCTCTCACACCAGGTTACCCAGCAAATGAATATGCTTATAGGCGTGGAATTGCAG

AGGCTGTTGGTCTTCCAAGTATTCCTGTTCATCCAATTGGATACTATGATGCACAGA

AGCTCCTAGAAAAAATGGGTGGCTCAGCACCACCAGATAGCAGCTGGAGAGGAAG

TCTCAAAGTGCCCTACAATGTTGGACCTGGCTTTACTGGAAACTTTTCTACACAAAA

AGTCAAGATGCACATCCACTCTACCAATGAAGTGACAAGAATTTACAATGTGATAGG

TACTCTCAGAGGAGCAGTGGAACCAGACAGATATGTCATTCTGGGAGGTCACCGG

GACTCATGGGTGTTTGGTGGTATTGACCCTCAGAGTGGAGCAGCTGTTGTTCATGA

AATTGTGAGGAGCTTTGGAACACTGAAAAAGGAAGGGTGGAGACCTAGAAGAACA

ATTTTGTTTGCAAGCTGGGATGCAGAAGAATTTGGTCTTCTTGGTTCTACTGAGTGG

GCAGAGGAGAATTCAAGACTCCTTCAAGAGCGTGGCGTGGCTTATATTAATGCTGA

CTCATCTATAGAAGGAAACTACACTCTGAGAGTTGATTGTACACCGCTGATGTACA

GCTTGGTACACAACCTAACAAAAGAGCTGAAAAGCCCTGATGAAGGCTTTGAAGGC

AAATCTCTTTATGAAAGTTGGACTAAAAAAAGTCCTTCCCCAGAGTTCAGTGGCATG

CCCAGGATAAGCAAATTGGGATCTGGAAATGATTTTGAGGTGTTCTTCCAACGACT

TGGAATTGCTTCAGGCAGAGCACGGTATACTAAAAATTGGGAAACAAACAAATTCA

GCGGCTATCCACTGTATCACAGTGTCTATGAAACATATGAGTTGGTGGAAAAGTTTT

ATGATCCAATGTTTAAATATCACCTCACTGTGGCCCAGGTTCGAGGAGGGATGGTG

TTTGAGCTGGCCAATTCCATAGTGCTCCCTTTTGATTGTCGAGATTATGCTGTAGTT

TTAAGAAAGTATGCTGACAAAATCTACAGTATTTCTATGAAACATCCACAGGAAATG

AAGACATACAGTGTATCATTTGATTCACTTTTTTCTGCAGTAAAGAATTTTACAGAAA

TTGCTTCCAAGTTCAGTGAGAGACTCCAGGACTTTGACAAAAGCAACCCAATAGTA

TTAAGAATGATGAATGATCAACTCATGTTTCTGGAAAGAGCATTTATTGATCCATTA

GGGTTACCAGACAGGCCTTTTTATAGGCATGTCATCTATGCTCCAAGCAGCCACAA

CAAGTATGCAGGGGAGTCATTCCCAGGAATTTATGATGCTCTGTTTGATATTGAAAG

CAAAGTGGACCCTTCCAAGGCCTGGGGAGAAGTGAAGAGACAGATTTATGTTGCA

GCCTTCACAGTGCAGGCAGCTGCAGAGACTTTGAGTGAAGTAGCCTAAAGATCTG

GGCCCTAACAAAACAAAAAGATGGGGTTATTCCCTAAACTTCATGGGTTACGTAATT

GGAAGTTGGGGGACATTGCCACAAGATCATATTGTACAAAAGATCAAACACTGTTTT

AGAAAACTTCCTGTAAACAGGCCTATTGATTGGAAAGTATGTCAAAGGATTGTGGG

TCTTTTGGGCTTTGCTGCTCCATTTACACAATGTGGATATCCTGCCTTAATGCCTTT

GTATGCATGTATACAAGCTAAACAGGCTTTCACTTTCTCGCCAACTTACAAGGCCTT

TCTAAGTAAACAGTACATGAACCTTTACCCCGTTGCTCGGCAACGGCCTGGTCTGT

GCCAAGTGTTTGCTGACGCAACCCCCACTGGCTGGGGCTTGGCCATAGGCCATCA

GCGCATGCGTGGAACCTTTGTGGCTCCTCTGCCGATCCATACTGCGGAACTCCTA

GCCGCTTGTTTTGCTCGCAGCCGGTCTGGAGCAAAGCTCATAGGAACTGACAATTC

TGTCGTCCTCTCGCGGAAATATACATCGTTTCGATCTACGTATGATCTTTTTCCCTC

TGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAAT

AAAGGAAATTTATTTTCATTGCAATAGTGTGTTGGAATTTTTTGTGTCTCTCACTCGG

AAGGAATTCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTAT

TGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTG

CGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAG

GGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCG

TAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT

CACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA

CCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCG

CTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAG

CTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGT

GTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTC

TTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAA

CAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGG

CCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCC

AGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTG

GTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCT

CAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTC

ACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTT

AAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGAC

AGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCA

TCCATAGTTGCCTGACTC

SEQ ID NO: 36. NUCLEOTIDE SEQUENCE OF PLASMID 459

SEQ ID NO: 37. NUCLEOTIDE SEQUENCE OF PSHUTTLE IRES

SEQ ID NO: 38. Amino acid sequence of Her-2 antigen:

SEQ ID NO: 39. Nucleic acid sequence encoding the Her-2 antigen amino

acid sequence of SEQ ID NO: 38

SEQ ID NO: 40. Amino acid sequence of heavy chain of the anti-CD40

antibody CP870,893:

MDWTWRILFLVAAATGAHSQVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWV

RQAPGQGLEWMGWINPDSGGTNYAQKFQGRVTMTRDTSISTAYMELNRLRSDDTAV

YYCARDQPLGYCTNGVCSYFDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAA

LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYT

CNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTC

VVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGK

EYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD

IAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALH

NHYTQKSLSLSPGK.

SEQ ID NO: 41. Acid sequence of the light chain of the anti-CD40 antibody

CP870,893:

MRLPAQLLGLLLLWFPGSRCDIQMTQSPSSVSASVGDRVTITCRASQGIYSWLAWYQQ

KPGKAPNLLIYTASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANIFPLTF

GGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS

GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC.

SEQ ID NO: 42. Acid sequence of the heavy chain of the anti-CTLA-4

antibody Tremelimumab

QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGS

NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPRGATLYYYYYGMD

VWGQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGA

LTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCC

VECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGV

EVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTK

GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPM

LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

SEQ ID NO: 43. Acid sequence of the light chain of the anti-CTLA-4

antibody Tremelimumab

DIQMTQSPSSLSASVGDRVTITCRASQSINSYLDWYQQKPGKAPKLLIYAASSLQSGVP

SRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYSTPFTFGPGTKVEIKRTVAAPSVFIFP

PSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS

STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

SEQ ID NO: 44. Nucleotide sequence of CpG 7909

5′ TCGTCGTTTTGTCGTTTTGTCGTT3′

SEQ ID NO: 45. Nucleotide sequence of CpG 24555

5′ TCGTCGTTTTTCGGTGCTTTT3′

SEQ ID NO: 46. Nucleotide sequence of CpG 10103

5′ TCGTCGTTTTTCGGTCGTTTT3′

SEQ ID NO: 47. Amino acid sequence of eGFP

SEQ ID NO: 48. Amino acid sequence of HBV core antigen

SEQ ID NO: 49. Amino acid sequence of HBV surface antigen

SEQ ID NO: 50. Amino acid sequence of Rhesus PSMA ECD protein:

SEQ ID NO: 51. Amino acid sequence of rat Her-2 p66 peptide (H-2d T cell

epitope)

SEQ ID NO: 52. Amino acid sequence of rat Her-2 p169 peptide (H-2d T cell

epitope)

SEQ ID NO: 53. Amino acid sequence of HBV core antigen p87 peptide

SEQ ID NO: 54. Amino acid sequence of a Rat Her-2 Antigen (rHer-2):

SEQ ID NO: 55. Amino Acid Sequence of Rhesus PSMA antigen:

SEQ ID NO: 56. Nucleotide sequence encoding the rhesus PSMA antigen of

SEQ ID NO: 55″

SEQ ID NO: 57. Complete Genome of Simian Adenovirus 25 (C68)

ccatcttcaataatatacctcaaactttttgtgcgcgttaatatgcaaatgaggcgtttgaatttggggaggaagggcggtgatt

ggtcgagggatgagcgaccgttaggggcggggcgagtgacgttttgatgacgtggttgcgaggaggagccagtttgcaa

gttctcgtgggaaaagtgacgtcaaacgaggtgtggtttgaacacggaaatactcaattttcccgcgctctctgacaggaaa

tgaggtgtttctgggcggatgcaagtgaaaacgggccattttcgcgcgaaaactgaatgaggaagtgaaaatctgagtaa

tttcgcgtttatggcagggaggagtatttgccgagggccgagtagactttgaccgattacgtgggggtttcgattaccgtgttttt

cacctaaatttccgcgtacggtgtcaaagtccggtgtttttacgtaggtgtcagctgatcgccagggtatttaaacctgcgctct

ccagtcaagaggccactcttgagtgccagcgagaagagttttctcctccgcgccgcgagtcagatctacactttgaaagat

gaggcacctgagagacctgcccgatgagaaaatcatcatcgcttccgggaacgagattctggaactggtggtaaatgcc

atgatgggcgacgaccctccggagccccccaccccatttgagacaccttcgctgcacgatttgtatgatctggaggtggat

gtgcccgaggacgatcccaatgaggaggcggtaaatgatttttttagcgatgccgcgctgctagctgccgaggaggcttcg

agctctagctcagacagcgactcttcactgcatacccctagacccggcagaggtgagaaaaagatccccgagcttaaag

gggaagagatggacttgcgctgctatgaggaatgcttgcccccgagcgatgatgaggacgagcaggcgatccagaacg

cagcgagccagggagtgcaagccgccagcgagagctttgcgctggactgcccgcctctgcccggacacggctgtaagt

cttgtgaatttcatcgcatgaatactggagataaagctgtgttgtgtgcactttgctatatgagagcttacaaccattgtgtttaca

gtaagtgtgattaagttgaactttagagggaggcagagagcagggtgactgggcgatgactggtttatttatgtatatatgttct

ttatataggtcccgtctctgacgcagatgatgagacccccactacaaagtccacttcgtcacccccagaaattggcacatct

ccacctgagaatattgttagaccagttcctgttagagccactgggaggagagcagctgtggaatgtttggatgacttgctac

agggtggggttgaacctttggacttgtgtacccggaaacgccccaggcactaagtgccacacatgtgtgtttacttgaggtg

atgtcagtatttatagggtgtggagtgcaataaaaaatgtgttgactttaagtgcgtggtttatgactcaggggtggggactgtg

agtatataagcaggtgcagacctgtgtggttagctcagagcggcatggagatttggacggtcttggaagactttcacaaga

ctagacagctgctagagaacgcctcgaacggagtctcttacctgtggagattctgcttcggtggcgacctagctaggctagt

ctacagggccaaacaggattatagtgaacaatttgaggttattttgagagagtgttctggtctttttgacgctcttaacttgggcc

atcagtctcactttaaccagaggatttcgagagcccttgattttactactcctggcagaaccactgcagcagtagccttttttgct

tttattcttgacaaatggagtcaagaaacccatttcagcagggattaccagctggatttcttagcagtagctttgtggagaaca

tggaagtgccagcgcctgaatgcaatctccggctacttgccggtacagccgctagacactctgaggatcctgaatctccag

gagagtcccagggcacgccaacgtcgccagcagcagcagcaggaggaggatcaagaagagaacccgagagccg

gcctggaccctccggcggaggaggaggagtagctgacctgtttcctgaactgcgccgggtgctgactaggtcttcgagtg

gtcgggagagggggattaagcgggagaggcatgatgagactaatcacagaactgaactgactgtgggtctgatgagtc

gcaagcgcccagaaacagtgtggtggcatgaggtgcagtcgactggcacagatgaggtgtcggtgatgcatgagaggtt

ttctctagaacaagtcaagacttgttggttagagcctgaggatgattgggaggtagccatcaggaattatgccaagctggct

ctgaggccagacaagaagtacaagattactaagctgataaatatcagaaatgcctgctacatctcagggaatggggctg

aagtggagatctgtctccaggaaagggtggctttcagatgctgcatgatgaatatgtacccgggagtggtgggcatggatg

gggttacctttatgaacatgaggttcaggggagatgggtataatggcacggtctttatggccaataccaagctgacagtcca

tggctgctccttctttgggtttaataacacctgcatcgaggcctggggtcaggtcggtgtgaggggctgcagtttttcagccaa

ctggatgggggtcgtgggcaggaccaagagtatgctgtccgtgaagaaatgcttgtttgagaggtgccacctgggggtgat

gagcgagggcgaagccagaatccgccactgcgcctctaccgagacgggctgctttgtgctgtgcaagggcaatgctaag

atcaagcataatatgatctgtggagcctcggacgagcgcggctaccagatgctgacctgcgccggcgggaacagccata

tgctggccaccgtacatgtggcttcccatgctcgcaagccctggcccgagttcgagcacaatgtcatgaccaggtgcaata

tgcatctggggtcccgccgaggcatgttcatgccctaccagtgcaacctgaattatgtgaaggtgctgctggagcccgatgc

catgtccagagtgagcctgacgggggtgtttgacatgaatgtggaggtgtggaagattctgagatatgatgaatccaagac

caggtgccgagcctgcgagtgcggagggaagcatgccaggttccagcccgtgtgtgtggatgtgacggaggacctgcg

acccgatcatttggtgttgccctgcaccgggacggagttcggttccagcggggaagaatctgactagagtgagtagtgttct

ggggcgggggaggacctgcatgagggccagaataactgaaatctgtgcttttctgtgtgttgcagcagcatgagcggaag

cggctcctttgagggaggggtattcagcccttatctgacggggcgtctcccctcctgggcgggagtgcgtcagaatgtgatg

ggatccacggtggacggccggcccgtgcagcccgcgaactcttcaaccctgacctatgcaaccctgagctcttcgtcgttg

gacgcagctgccgccgcagctgctgcatctgccgccagcgccgtgcgcggaatggccatgggcgccggctactacggc

actctggtggccaactcgagttccaccaataatcccgccagcctgaacgaggagaagctgttgctgctgatggcccagct

cgaggccttgacccagcgcctgggcgagctgacccagcaggtggctcagctgcaggagcagacgcgggccgcggttg

ccacggtgaaatccaaataaaaaatgaatcaataaataaacggagacggttgttgattttaacacagagtctgaatctttatt

tgatttttcgcgcgcggtaggccctggaccaccggtctcgatcattgagcacccggtggatcttttccaggacccggtagag

gtgggcttggatgttgaggtacatgggcatgagcccgtcccgggggtggaggtagctccattgcagggcctcgtgctcggg

ggtggtgttgtaaatcacccagtcatagcaggggcgcagggcatggtgttgcacaatatctttgaggaggagactgatggc

cacgggcagccctttggtgtaggtgtttacaaatctgttgagctgggagggatgcatgcggggggagatgaggtgcatcttg

gcctggatcttgagattggcgatgttaccgcccagatcccgcctggggttcatgttgtgcaggaccaccagcacggtgtatc

cggtgcacttggggaatttatcatgcaacttggaagggaaggcgtgaaagaatttggcgacgcctttgtgcccgcccaggtt

ttccatgcactcatccatgatgatggcgatgggcccgtgggcggcggcctgggcaaagacgtttcgggggtcggacacat

catagttgtggtcctgggtgaggtcatcataggccattttaatgaatttggggcggagggtgccggactgggggacaaaggt

accctcgatcccgggggcgtagttcccctcacagatctgcatctcccaggctttgagctcggagggggggatcatgtccac

ctgcggggcgataaagaacacggtttccggggcgggggagatgagctgggccgaaagcaagttccggagcagctgg

gacttgccgcagccggtggggccgtagatgaccccgatgaccggctgcaggtggtagttgagggagagacagctgccg

tcctcccggaggaggggggccacctcgttcatcatctcgcgcacgtgcatgttctcgcgcaccagttccgccaggaggcg

ctctccccccagggataggagctcctggagcgaggcgaagtttttcagcggcttgagtccgtcggccatgggcattttggag

agggtttgttgcaagagttccaggcggtcccagagctcggtgatgtgctctacggcatctcgatccagcagacctcctcgttt

cgcgggttgggacggctgcgggagtagggcaccagacgatgggcgtccagcgcagccagggtccggtccttccagggt

cgcagcgtccgcgtcagggtggtctccgtcacggtgaaggggtgcgcgccgggctgggcgcttgcgagggtgcgcttca

ggctcatccggctggtcgaaaaccgctcccgatcggcgccctgcgcgtcggccaggtagcaattgaccatgagttcgtag

ttgagcgcctcggccgcgtggcctttggcgcggagcttacctttggaagtctgcccgcaggcgggacagaggagggactt

gagggcgtagagcttgggggcgaggaagacggactcgggggcgtaggcgtccgcgccgcagtgggcgcagacggtc

tcgcactccacgagccaggtgaggtcgggctggtcggggtcaaaaaccagtttcccgccgttctttttgatgcgtttcttacctt

tggtctccatgagctcgtgtccccgctgggtgacaaagaggctgtccgtgtccccgtagaccgactttatgggccggtcctc

gagcggtgtgccgcggtcctcctcgtagaggaaccccgcccactccgagacgaaagcccgggtccaggccagcacga

aggaggccacgtgggacgggtagcggtcgttgtccaccagcgggtccaccttttccagggtatgcaaacacatgtccccc

tcgtccacatccaggaaggtgattggcttgtaagtgtaggccacgtgaccgggggtcccggccgggggggtataaaagg

gtgcgggtccctgctcgtcctcactgtcttccggatcgctgtccaggagcgccagctgttggggtaggtattccctctcgaag

gcgggcatgacctcggcactcaggttgtcagtttctagaaacgaggaggatttgatattgacggtgccggcggagatgcctt

tcaagagcccctcgtccatctggtcagaaaagacgatctttttgttgtcgagcttggtggcgaaggagccgtagagggcgtt

ggagaggagcttggcgatggagcgcatggtctggtttttttccttgtcggcgcgctccttggcggcgatgttgagctgcacgta

ctcgcgcgccacgcacttccattcggggaagacggtggtcagctcgtcgggcacgattctgacctgccagccccgattatg

cagggtgatgaggtccacactggtggccacctcgccgcgcaggggctcattagtccagcagaggcgtccgcccttgcgc

gagcagaaggggggcagggggtccagcatgacctcgtcgggggggtcggcatcgatggtgaagatgccgggcagga

ggtcggggtcaaagtagctgatggaagtggccagatcgtccagggcagcttgccattcgcgcacggccagcgcgcgctc

gtagggactgaggggcgtgccccagggcatgggatgggtaagcgcggaggcgtacatgccgcagatgtcgtagacgt

agaggggctcctcgaggatgccgatgtaggtggggtagcagcgccccccgcggatgctggcgcgcacgtagtcataca

gctcgtgcgagggggcgaggagccccgggcccaggttggtgcgactgggcttttcggcgcggtagacgatctggcgga

aaatggcatgcgagttggaggagatggtgggcctttggaagatgttgaagtgggcgtggggcagtccgaccgagtcgcg

gatgaagtgggcgtaggagtcttgcagcttggcgacgagctcggcggtgactaggacgtccagagcgcagtagtcgag

ggtctcctggatgatgtcatacttgagctgtcccttttgtttccacagctcgcggttgagaaggaactcttcgcggtccttccagt

actcttcgagggggaacccgtcctgatctgcacggtaagagcctagcatgtagaactggttgacggccttgtaggcgcag

cagcccttctccacggggagggcgtaggcctgggcggccttgcgcagggaggtgtgcgtgagggcgaaagtgtccctg

accatgaccttgaggaactggtgcttgaagtcgatatcgtcgcagcccccctgctcccagagctggaagtccgtgcgcttct

tgtaggcggggttgggcaaagcgaaagtaacatcgttgaagaggatcttgcccgcgcggggcataaagttgcgagtgat

gcggaaaggttggggcacctcggcccggttgttgatgacctgggcggcgagcacgatctcgtcgaagccgttgatgttgtg

gcccacgatgtagagttccacgaatcgcggacggcccttgacgtggggcagtttcttgagctcctcgtaggtgagctcgtcg

gggtcgctgagcccgtgctgctcgagcgcccagtcggcgagatgggggttggcgcggaggaaggaagtccagagatc

cacggccagggcggtttgcagacggtcccggtactgacggaactgctgcccgacggccattttttcgggggtgacgcagt

agaaggtgcgggggtccccgtgccagcgatcccatttgagctggagggcgagatcgagggcgagctcgacgagccgg

tcgtccccggagagtttcatgaccagcatgaaggggacgagctgcttgccgaaggaccccatccaggtgtaggtttccac

atcgtaggtgaggaagagcctttcggtgcgaggatgcgagccgatggggaagaactggatctcctgccaccaattggag

gaatggctgttgatgtgatggaagtagaaatgccgacggcgcgccgaacactcgtgcttgtgtttatacaagcggccacag

tgctcgcaacgctgcacgggatgcacgtgctgcacgagctgtacctgagttcctttgacgaggaatttcagtgggaagtgg

agtcgtggcgcctgcatctcgtgctgtactacgtcgtggtggtcggcctggccctcttctgcctcgatggtggtcatgctgacg

agcccgcgcgggaggcaggtccagacctcggcgcgagcgggtcggagagcgaggacgagggcgcgcaggccgga

gctgtccagggtcctgagacgctgcggagtcaggtcagtgggcagcggcggcgcgcggttgacttgcaggagtttttcca

gggcgcgcgggaggtccagatggtacttgatctccaccgcgccattggtggcgacgtcgatggcttgcagggtcccgtgc

ccctggggtgtgaccaccgtcccccgtttcttcttgggcggctggggcgacgggggcggtgcctcttccatggttagaagcg

gcggcgaggacgcgcgccgggcggcaggggcggctcggggcccggaggcaggggcggcaggggcacgtcggcg

ccgcgcgcgggtaggttctggtactgcgcccggagaagactggcgtgagcgacgacgcgacggttgacgtcctggatct

gacgcctctgggtgaaggccacgggacccgtgagtttgaacctgaaagagagttcgacagaatcaatctcggtatcgttg

acggcggcctgccgcaggatctcttgcacgtcgcccgagttgtcctggtaggcgatctcggtcatgaactgctcgatctcctc

ctcttgaaggtctccgcggccggcgcgctccacggtggccgcgaggtcgttggagatgcggcccatgagctgcgagaag

gcgttcatgcccgcctcgttccagacgcggctgtagaccacgacgccctcgggatcgccggcgcgcatgaccacctggg

cgaggttgagctccacgtggcgcgtgaagaccgcgtagttgcagaggcgctggtagaggtagttgagcgtggtggcgat

gtgctcggtgacgaagaaatacatgatccagcggcggagcggcatctcgctgacgtcgcccagcgcctccaaacgttcc

atggcctcgtaaaagtccacggcgaagttgaaaaactgggagttgcgcgccgagacggtcaactcctcctccagaagac

ggatgagctcggcgatggtggcgcgcacctcgcgctcgaaggcccccgggagttcctccacttcctcttcttcctcctccact

aacatctcttctacttcctcctcaggcggcagtggtggcgggggagggggcctgcgtcgccggcggcgcacgggcagac

ggtcgatgaagcgctcgatggtctcgccgcgccggcgtcgcatggtctcggtgacggcgcgcccgtcctcgcggggccg

cagcgtgaagacgccgccgcgcatctccaggtggccgggggggtccccgttgggcagggagagggcgctgacgatgc

atcttatcaattgccccgtagggactccgcgcaaggacctgagcgtctcgagatccacgggatctgaaaaccgctgaacg

aaggcttcgagccagtcgcagtcgcaaggtaggctgagcacggtttcttctggcgggtcatgttggttgggagcggggcgg

gcgatgctgctggtgatgaagttgaaataggcggttctgagacggcggatggtggcgaggagcaccaggtctttgggccc

ggcttgctggatgcgcagacggtcggccatgccccaggcgtggtcctgacacctggccaggtccttgtagtagtcctgcat

gagccgctccacgggcacctcctcctcgcccgcgcggccgtgcatgcgcgtgagcccgaagccgcgctggggctggac

gagcgccaggtcggcgacgacgcgctcggcgaggatggcttgctggatctgggtgagggtggtctggaagtcatcaaag

tcgacgaagcggtggtaggctccggtgttgatggtgtaggagcagttggccatgacggaccagttgacggtctggtggccc

ggacgcacgagctcgtggtacttgaggcgcgagtaggcgcgcgtgtcgaagatgtagtcgttgcaggtgcgcaccaggt

actggtagccgatgaggaagtgcggcggcggctggcggtagagcggccatcgctcggtggcgggggcgccgggcgc

gaggtcctcgagcatggtgcggtggtagccgtagatgtacctggacatccaggtgatgccggcggcggtggtggaggcg

cgcgggaactcgcggacgcggttccagatgttgcgcagcggcaggaagtagttcatggtgggcacggtctggcccgtga

ggcgcgcgcagtcgtggatgctctatacgggcaaaaacgaaagcggtcagcggctcgactccgtggcctggaggctaa

gcgaacgggttgggctgcgcgtgtaccccggttcgaatctcgaatcaggctggagccgcagctaacgtggtattggcactc

ccgtctcgacccaagcctgcaccaaccctccaggatacggaggcgggtcgttttgcaacttttttttggaggccggatgaga

ctagtaagcgcggaaagcggccgaccgcgatggctcgctgccgtagtctggagaagaatcgccagggttgcgttgcggt

gtgccccggttcgaggccggccggattccgcggctaacgagggcgtggctgccccgtcgtttccaagaccccatagcca

gccgacttctccagttacggagcgagcccctcttttgttttgtttgtttttgccagatgcatcccgtactgcggcagatgcgcccc

caccaccctccaccgcaacaacagccccctccacagccggcgcttctgcccccgccccagcagcaacttccagccacg

accgccgcggccgccgtgagcggggctggacagagttatgatcaccagctggccttggaagagggcgaggggctggc

gcgcctgggggcgtcgtcgccggagcggcacccgcgcgtgcagatgaaaagggacgctcgcgaggcctacgtgccc

aagcagaacctgttcagagacaggagcggcgaggagcccgaggagatgcgcgcggcccggttccacgcggggcgg

gagctgcggcgcggcctggaccgaaagagggtgctgagggacgaggatttcgaggcggacgagctgacggggatca

gccccgcgcgcgcgcacgtggccgcggccaacctggtcacggcgtacgagcagaccgtgaaggaggagagcaactt

ccaaaaatccttcaacaaccacgtgcgcaccctgatcgcgcgcgaggaggtgaccctgggcctgatgcacctgtgggac

ctgctggaggccatcgtgcagaaccccaccagcaagccgctgacggcgcagctgttcctggtggtgcagcatagtcggg

acaacgaagcgttcagggaggcgctgctgaatatcaccgagcccgagggccgctggctcctggacctggtgaacattct

gcagagcatcgtggtgcaggagcgcgggctgccgctgtccgagaagctggcggccatcaacttctcggtgctgagtttgg

gcaagtactacgctaggaagatctacaagaccccgtacgtgcccatagacaaggaggtgaagatcgacgggttttacat

gcgcatgaccctgaaagtgctgaccctgagcgacgatctgggggtgtaccgcaacgacaggatgcaccgtgcggtgag

cgccagcaggcggcgcgagctgagcgaccaggagctgatgcatagtctgcagcgggccctgaccggggccgggacc

gagggggagagctactttgacatgggcgcggacctgcactggcagcccagccgccgggccttggaggcggcggcagg

accctacgtagaagaggtggacgatgaggtggacgaggagggcgagtacctggaagactgatggcgcgaccgtattttt

gctagatgcaacaacaacagccacctcctgatcccgcgatgcgggcggcgctgcagagccagccgtccggcattaact

cctcggacgattggacccaggccatgcaacgcatcatggcgctgacgacccgcaaccccgaagcctttagacagcagc

cccaggccaaccggctctcggccatcctggaggccgtggtgccctcgcgctccaaccccacgcacgagaaggtcctgg

ccatcgtgaacgcgctggtggagaacaaggccatccgcggcgacgaggccggcctggtgtacaacgcgctgctggag

cgcgtggcccgctacaacagcaccaacgtgcagaccaacctggaccgcatggtgaccgacgtgcgcgaggccgtggc

ccagcgcgagcggttccaccgcgagtccaacctgggatccatggtggcgctgaacgccttcctcagcacccagcccgcc

aacgtgccccggggccaggaggactacaccaacttcatcagcgccctgcgcctgatggtgaccgaggtgccccagagc

gaggtgtaccagtccgggccggactacttcttccagaccagtcgccagggcttgcagaccgtgaacctgagccaggcttt

caagaacttgcagggcctgtggggcgtgcaggccccggtcggggaccgcgcgacggtgtcgagcctgctgacgccga

actcgcgcctgctgctgctgctggtggcccccttcacggacagcggcagcatcaaccgcaactcgtacctgggctacctg

attaacctgtaccgcgaggccatcggccaggcgcacgtggacgagcagacctaccaggagatcacccacgtgagccg

cgccctgggccaggacgacccgggcaacctggaagccaccctgaactttttgctgaccaaccggtcgcagaagatccc

gccccagtacgcgctcagcaccgaggaggagcgcatcctgcgttacgtgcagcagagcgtgggcctgttcctgatgcag

gagggggccacccccagcgccgcgctcgacatgaccgcgcgcaacatggagcccagcatgtacgccagcaaccgcc

cgttcatcaataaactgatggactacttgcatcgggcggccgccatgaactctgactatttcaccaacgccatcctgaatccc

cactggctcccgccgccggggttctacacgggcgagtacgacatgcccgaccccaatgacgggttcctgtgggacgatgt

ggacagcagcgtgttctccccccgaccgggtgctaacgagcgccccttgtggaagaaggaaggcagcgaccgacgcc

cgtcctcggcgctgtccggccgcgagggtgctgccgcggcggtgcccgaggccgccagtcctttcccgagcttgcccttct

cgctgaacagtatccgcagcagcgagctgggcaggatcacgcgcccgcgcttgctgggcgaagaggagtacttgaatg

actcgctgttgagacccgagcgggagaagaacttccccaataacgggatagaaagcctggtggacaagatgagccgct

ggaagacgtatgcgcaggagcacagggacgatccccgggcgtcgcagggggccacgagccggggcagcgccgcc

cgtaaacgccggtggcacgacaggcagcggggacagatgtgggacgatgaggactccgccgacgacagcagcgtgt

tggacttgggtgggagtggtaacccgttcgctcacctgcgcccccgtatcgggcgcatgatgtaagagaaaccgaaaata

aatgatactcaccaaggccatggcgaccagcgtgcgttcgtttcttctctgttgttgttgtatctagtatgatgaggcgtgcgtac

ccggagggtcctcctccctcgtacgagagcgtgatgcagcaggcgatggcggcggcggcgatgcagcccccgctgga

ggctccttacgtgcccccgcggtacctggcgcctacggaggggcggaacagcattcgttactcggagctggcacccttgta

cgataccacccggttgtacctggtggacaacaagtcggcggacatcgcctcgctgaactaccagaacgaccacagcaa

cttcctgaccaccgtggtgcagaacaatgacttcacccccacggaggccagcacccagaccatcaactttgacgagcgc

tcgcggtggggcggccagctgaaaaccatcatgcacaccaacatgcccaacgtgaacgagttcatgtacagcaacaag

ttcaaggcgcgggtgatggtctcccgcaagacccccaatggggtgacagtgacagaggattatgatggtagtcaggatg

agctgaagtatgaatgggtggaatttgagctgcccgaaggcaacttctcggtgaccatgaccatcgacctgatgaacaac

gccatcatcgacaattacttggcggtggggcggcagaacggggtgctggagagcgacatcggcgtgaagttcgacacta

ggaacttcaggctgggctgggaccccgtgaccgagctggtcatgcccggggtgtacaccaacgaggctttccatcccgat

attgtcttgctgcccggctgcggggtggacttcaccgagagccgcctcagcaacctgctgggcattcgcaagaggcagcc

cttccaggaaggcttccagatcatgtacgaggatctggaggggggcaacatccccgcgctcctggatgtcgacgcctatg

agaaaagcaaggaggatgcagcagctgaagcaactgcagccgtagctaccgcctctaccgaggtcaggggcgataat

tttgcaagcgccgcagcagtggcagcggccgaggcggctgaaaccgaaagtaagatagtcattcagccggtggagaa

ggatagcaagaacaggagctacaacgtactaccggacaagataaacaccgcctaccgcagctggtacctagcctaca

actatggcgaccccgagaagggcgtgcgctcctggacgctgctcaccacctcggacgtcacctgcggcgtggagcaagt

ctactggtcgctgcccgacatgatgcaagacccggtcaccttccgctccacgcgtcaagttagcaactacccggtggtggg

cgccgagctcctgcccgtctactccaagagcttcttcaacgagcaggccgtctactcgcagcagctgcgcgccttcacctc

gcttacgcacgtcttcaaccgcttccccgagaaccagatcctcgtccgcccgcccgcgcccaccattaccaccgtcagtga

aaacgttcctgctctcacagatcacgggaccctgccgctgcgcagcagtatccggggagtccagcgcgtgaccgttactg

acgccagacgccgcacctgcccctacgtctacaaggccctgggcatagtcgcgccgcgcgtcctctcgagccgcacctt

ctaaatgtccattctcatctcgcccagtaataacaccggttggggcctgcgcgcgcccagcaagatgtacggaggcgctc

gccaacgctccacgcaacaccccgtgcgcgtgcgcgggcacttccgcgctccctggggcgccctcaagggccgcgtgc

ggtcgcgcaccaccgtcgacgacgtgatcgaccaggtggtggccgacgcgcgcaactacacccccgccgccgcgccc

gtctccaccgtggacgccgtcatcgacagcgtggtggcggacgcgcgccggtacgcccgcgccaagagccggcggcg

gcgcatcgcccggcggcaccggagcacccccgccatgcgcgcggcgcgagccttgctgcgcagggccaggcgcacg

ggacgcagggccatgctcagggcggccagacgcgcggcttcaggcgccagcgccggcaggacccggagacgcgcg

gccacggcggcggcagcggccatcgccagcatgtcccgcccgcggcgagggaacgtgtactgggtgcgcgacgccg

ccaccggtgtgcgcgtgcccgtgcgcacccgcccccctcgcacttgaagatgttcacttcgcgatgttgatgtgtcccagcg

gcgaggaggatgtccaagcgcaaattcaaggaagagatgctccaggtcatcgcgcctgagatctacggccctgcggtg

gtgaaggaggaaagaaagccccgcaaaatcaagcgggtcaaaaaggacaaaaaggaagaagaaagtgatgtgga

cggattggtggagtttgtgcgcgagttcgccccccggcggcgcgtgcagtggcgcgggcggaaggtgcaaccggtgctg

agacccggcaccaccgtggtcttcacgcccggcgagcgctccggcaccgcttccaagcgctcctacgacgaggtgtacg

gggatgatgatattctggagcaggcggccgagcgcctgggcgagtttgcttacggcaagcgcagccgttccgcaccgaa

ggaagaggcggtgtccatcccgctggaccacggcaaccccacgccgagcctcaagcccgtgaccttgcagcaggtgct

gccgaccgcggcgccgcgccgggggttcaagcgcgagggcgaggatctgtaccccaccatgcagctgatggtgccca

agcgccagaagctggaagacgtgctggagaccatgaaggtggacccggacgtgcagcccgaggtcaaggtgcggcc

catcaagcaggtggccccgggcctgggcgtgcagaccgtggacatcaagattcccacggagcccatggaaacgcaga

ccgagcccatgatcaagcccagcaccagcaccatggaggtgcagacggatccctggatgccatcggctcctagtcgaa

gaccccggcgcaagtacggcgcggccagcctgctgatgcccaactacgcgctgcatccttccatcatccccacgccggg

ctaccgcggcacgcgcttctaccgcggtcataccagcagccgccgccgcaagaccaccactcgccgccgccgtcgccg

caccgccgctgcaaccacccctgccgccctggtgcggagagtgtaccgccgcggccgcgcacctctgaccctgccgcg

cgcgcgctaccacccgagcatcgccatttaaactttcgccagctttgcagatcaatggccctcacatgccgccttcgcgttcc

cattacgggctaccgaggaagaaaaccgcgccgtagaaggctggcggggaacgggatgcgtcgccaccaccaccgg

cggcggcgcgccatcagcaagcggttggggggaggcttcctgcccgcgctgatccccatcatcgccgcggcgatcggg

gcgatccccggcattgcttccgtggcggtgcaggcctctcagcgccactgagacacacttggaaacatcttgtaataaacc

catggactctgacgctcctggtcctgtgatgtgttttcgtagacagatggaagacatcaatttttcgtccctggctccgcgacac

ggcacgcggccgttcatgggcacctggagcgacatcggcaccagccaactgaacgggggcgccttcaattggagcagt

ctctggagcgggcttaagaatttcgggtccacgcttaaaacctatggcagcaaggcgtggaacagcaccacagggcag

gcgctgagggataagctgaaagagcagaacttccagcagaaggtggtcgatgggctcgcctcgggcatcaacggggtg

gtggacctggccaaccaggccgtgcagcggcagatcaacagccgcctggacccggtgccgcccgccggctccgtgga

gatgccgcaggtggaggaggagctgcctcccctggacaagcggggcgagaagcgaccccgccccgatgcggagga

gacgctgctgacgcacacggacgagccgcccccgtacgaggaggcggtgaaactgggtctgcccaccacgcggccc

atcgcgcccctggccaccggggtgctgaaacccgaaaagcccgcgaccctggacttgcctcctccccagccttcccgcc

cctctacagtggctaagcccctgccgccggtggccgtggcccgcgcgcgacccgggggcaccgcccgccctcatgcga

actggcagagcactctgaacagcatcgtgggtctgggagtgcagagtgtgaagcgccgccgctgctattaaacctaccgt

agcgcttaacttgcttgtctgtgtgtgtatgtattatgtcgccgccgccgctgtccaccagaaggaggagtgaagaggcgcgt

cgccgagttgcaagatggccaccccatcgatgctgccccagtgggcgtacatgcacatcgccggacaggacgcttcgga

gtacctgagtccgggtctggtgcagtttgcccgcgccacagacacctacttcagtctggggaacaagtttaggaaccccac

ggtggcgcccacgcacgatgtgaccaccgaccgcagccagcggctgacgctgcgcttcgtgcccgtggaccgcgagg

acaacacctactcgtacaaagtgcgctacacgctggccgtgggcgacaaccgcgtgctggacatggccagcacctacttt

gacatccgcggcgtgctggatcggggccctagcttcaaaccctactccggcaccgcctacaacagtctggcccccaagg

gagcacccaacacttgtcagtggacatataaagccgatggtgaaactgccacagaaaaaacctatacatatggaaatgc

acccgtgcagggcattaacatcacaaaagatggtattcaacttggaactgacaccgatgatcagccaatctacgcagata

aaacctatcagcctgaacctcaagtgggtgatgctgaatggcatgacatcactggtactgatgaaaagtatggaggcaga

gctcttaagcctgataccaaaatgaagccttgttatggttcttttgccaagcctactaataaagaaggaggtcaggcaaatgt

gaaaacaggaacaggcactactaaagaatatgacatagacatggctttctttgacaacagaagtgcggctgctgctggcc

tagctccagaaattgttttgtatactgaaaatgtggatttggaaactccagatacccatattgtatacaaagcaggcacagat

gacagcagctcttctattaatttgggtcagcaagccatgcccaacagacctaactacattggtttcagagacaactttatcgg

gctcatgtactacaacagcactggcaatatgggggtgctggccggtcaggcttctcagctgaatgctgtggttgacttgcaa

gacagaaacaccgagctgtcctaccagctcttgcttgactctctgggtgacagaacccggtatttcagtatgtggaatcagg

cggtggacagctatgatcctgatgtgcgcattattgaaaatcatggtgtggaggatgaacttcccaactattgtttccctctgga

tgctgttggcagaacagatacttatcagggaattaaggctaatggaactgatcaaaccacatggaccaaagatgacagtg

tcaatgatgctaatgagataggcaagggtaatccattcgccatggaaatcaacatccaagccaacctgtggaggaacttc

ctctacgccaacgtggccctgtacctgcccgactcttacaagtacacgccggccaatgttaccctgcccaccaacaccaa

cacctacgattacatgaacggccgggtggtggcgccctcgctggtggactcctacatcaacatcggggcgcgctggtcgc

tggatcccatggacaacgtgaaccccttcaaccaccaccgcaatgcggggctgcgctaccgctccatgctcctgggcaa

cgggcgctacgtgcccttccacatccaggtgccccagaaatttttcgccatcaagagcctcctgctcctgcccgggtcctac

acctacgagtggaacttccgcaaggacgtcaacatgatcctgcagagctccctcggcaacgacctgcgcacggacggg

gcctccatctccttcaccagcatcaacctctacgccaccttcttccccatggcgcacaacacggcctccacgctcgaggcc

atgctgcgcaacgacaccaacgaccagtccttcaacgactacctctcggcggccaacatgctctaccccatcccggcca

acgccaccaacgtgcccatctccatcccctcgcgcaactgggccgccttccgcggctggtccttcacgcgtctcaagacca

aggagacgccctcgctgggctccgggttcgacccctacttcgtctactcgggctccatcccctacctcgacggcaccttcta

cctcaaccacaccttcaagaaggtctccatcaccttcgactcctccgtcagctggcccggcaacgaccggctcctgacgc

ccaacgagttcgaaatcaagcgcaccgtcgacggcgagggctacaacgtggcccagtgcaacatgaccaaggactgg

ttcctggtccagatgctggcccactacaacatcggctaccagggcttctacgtgcccgagggctacaaggaccgcatgtac

tccttcttccgcaacttccagcccatgagccgccaggtggtggacgaggtcaactacaaggactaccaggccgtcaccct

ggcctaccagcacaacaactcgggcttcgtcggctacctcgcgcccaccatgcgccagggccagccctaccccgccaa

ctacccctacccgctcatcggcaagagcgccgtcaccagcgtcacccagaaaaagttcctctgcgacagggtcatgtgg

cgcatccccttctccagcaacttcatgtccatgggcgcgctcaccgacctcggccagaacatgctctatgccaactccgcc

cacgcgctagacatgaatttcgaagtcgaccccatggatgagtccacccttctctatgttgtcttcgaagtcttcgacgtcgtc

cgagtgcaccagccccaccgcggcgtcatcgaggccgtctacctgcgcacccccttctcggccggtaacgccaccacct

aagctcttgcttcttgcaagccatggccgcgggctccggcgagcaggagctcagggccatcatccgcgacctgggctgcg

ggccctacttcctgggcaccttcgataagcgcttcccgggattcatggccccgcacaagctggcctgcgccatcgtcaaca

cggccggccgcgagaccgggggcgagcactggctggccttcgcctggaacccgcgctcgaacacctgctacctcttcg

accccttcgggttctcggacgagcgcctcaagcagatctaccagttcgagtacgagggcctgctgcgccgcagcgccctg

gccaccgaggaccgctgcgtcaccctggaaaagtccacccagaccgtgcagggtccgcgctcggccgcctgcgggctc

ttctgctgcatgttcctgcacgccttcgtgcactggcccgaccgccccatggacaagaaccccaccatgaacttgctgacg

ggggtgcccaacggcatgctccagtcgccccaggtggaacccaccctgcgccgcaaccaggaggcgctctaccgcttc

ctcaactcccactccgcctactttcgctcccaccgcgcgcgcatcgagaaggccaccgccttcgaccgcatgaatcaaga

catgtaaaccgtgtgtgtatgttaaatgtctttaataaacagcactttcatgttacacatgcatctgagatgatttatttagaaatc

gaaagggttctgccgggtctcggcatggcccgcgggcagggacacgttgcggaactggtacttggccagccacttgaact

cggggatcagcagtttgggcagcggggtgtcggggaaggagtcggtccacagcttccgcgtcagttgcagggcgccca

gcaggtcgggcgcggagatcttgaaatcgcagttgggacccgcgttctgcgcgcgggagttgcggtacacggggttgca

gcactggaacaccatcagggccgggtgcttcacgctcgccagcaccgtcgcgtcggtgatgctctccacgtcgaggtcct

cggcgttggccatcccgaagggggtcatcttgcaggtctgccttcccatggtgggcacgcacccgggcttgtggttgcaatc

gcagtgcagggggatcagcatcatctgggcctggtcggcgttcatccccgggtacatggccttcatgaaagcctccaattg

cctgaacgcctgctgggccttggctccctcggtgaagaagaccccgcaggacttgctagagaactggttggtggcgcacc

cggcgtcgtgcacgcagcagcgcgcgtcgttgttggccagctgcaccacgctgcgcccccagcggttctgggtgatcttgg

cccggtcggggttctccttcagcgcgcgctgcccgttctcgctcgccacatccatctcgatcatgtgctccttctggatcatggt

ggtcccgtgcaggcaccgcagcttgccctcggcctcggtgcacccgtgcagccacagcgcgcacccggtgcactccca

gttcttgtgggcgatctgggaatgcgcgtgcacgaagccctgcaggaagcggcccatcatggtggtcagggtcttgttgcta

gtgaaggtcagcggaatgccgcggtgctcctcgttgatgtacaggtggcagatgcggcggtacacctcgccctgctcggg

catcagctggaagttggctttcaggtcggtctccacgcggtagcggtccatcagcatagtcatgatttccatacccttctccca

ggccgagacgatgggcaggctcatagggttcttcaccatcatcttagcgctagcagccgcggccagggggtcgctctcgt

ccagggtctcaaagctccgcttgccgtccttctcggtgatccgcaccggggggtagctgaagcccacggccgccagctcc

tcctcggcctgtctttcgtcctcgctgtcctggctgacgtcctgcaggaccacatgcttggtcttgcggggtttcttcttggcggc

agcggcggcggagatgttggagatggcgagggggagcgcgagttctcgctcaccactactatctcttcctcttcttggtccg

aggccacgcggcggtaggtatgtctcttcgggggcagaggcggaggcgacgggctctcgccgccgcgacttggcggat

ggctggcagagccccttccgcgttcgggggtgcgctcccggcggcgctctgactgacttcctccgcggccggccattgtgtt

ctcctagggaggaacaacaagcatggagactcagccatcgccaacctcgccatctgcccccaccgccgacgagaagc

agcagcagcagaatgaaagcttaaccgccccgccgcccagccccgccacctccgacgcggccgtcccagacatgca

agagatggaggaatccatcgagattgacctgggctatgtgacgcccgcggagcacgaggaggagctggcagtgcgcttt

tcacaagaagagatacaccaagaacagccagagcaggaagcagagaatgagcagagtcaggctgggctcgagcat

gacggcgactacctccacctgagcgggggggaggacgcgctcatcaagcatctggcccggcaggccaccatcgtcaa

ggatgcgctgctcgaccgcaccgaggtgcccctcagcgtggaggagctcagccgcgcctacgagttgaacctcttctcgc

cgcgcgtgccccccaagcgccagcccaatggcacctgcgagcccaacccgcgcctcaacttctacccggtcttcgcggt

gcccgaggccctggccacctaccacatctttttcaagaaccaaaagatccccgtctcctgccgcgccaaccgcacccgc

gccgacgcccttttcaacctgggtcccggcgcccgcctacctgatatcgcctccttggaagaggttcccaagatcttcgagg

gtctgggcagcgacgagactcgggccgcgaacgctctgcaaggagaaggaggagagcatgagcaccacagcgccct

ggtcgagttggaaggcgacaacgcgcggctggcggtgctcaaacgcacggtcgagctgacccatttcgcctacccggct

ctgaacctgccccccaaagtcatgagcgcggtcatggaccaggtgctcatcaagcgcgcgtcgcccatctccgaggacg

agggcatgcaagactccgaggagggcaagcccgtggtcagcgacgagcagctggcccggtggctgggtcctaatgct

agtccccagagtttggaagagcggcgcaaactcatgatggccgtggtcctggtgaccgtggagctggagtgcctgcgcc

gcttcttcgccgacgcggagaccctgcgcaaggtcgaggagaacctgcactacctcttcaggcacgggttcgtgcgccag

gcctgcaagatctccaacgtggagctgaccaacctggtctcctacatgggcatcttgcacgagaaccgcctggggcaga

acgtgctgcacaccaccctgcgcggggaggcccggcgcgactacatccgcgactgcgtctacctctacctctgccacac

ctggcagacgggcatgggcgtgtggcagcagtgtctggaggagcagaacctgaaagagctctgcaagctcctgcagaa

gaacctcaagggtctgtggaccgggttcgacgagcgcaccaccgcctcggacctggccgacctcattttccccgagcgc

ctcaggctgacgctgcgcaacggcctgcccgactttatgagccaaagcatgttgcaaaactttcgctctttcatcctcgaacg

ctccggaatcctgcccgccacctgctccgcgctgccctcggacttcgtgccgctgaccttccgcgagtgccccccgccgct

gtggagccactgctacctgctgcgcctggccaactacctggcctaccactcggacgtgatcgaggacgtcagcggcgag

ggcctgctcgagtgccactgccgctgcaacctctgcacgccgcaccgctccctggcctgcaacccccagctgctgagcg

agacccagatcatcggcaccttcgagttgcaagggcccagcgaaggcgagggttcagccgccaaggggggtctgaaa

ctcaccccggggctgtggacctcggcctacttgcgcaagttcgtgcccgaggactaccatcccttcgagatcaggttctacg

aggaccaatcccatccgcccaaggccgagctgtcggcctgcgtcatcacccagggggcgatcctggcccaattgcaag

ccatccagaaatcccgccaagaattcttgctgaaaaagggccgcggggtctacctcgacccccagaccggtgaggagc

tcaaccccggcttcccccaggatgccccgaggaaacaagaagctgaaagtggagctgccgcccgtggaggatttggag

gaagactgggagaacagcagtcaggcagaggaggaggagatggaggaagactgggacagcactcaggcagagg

aggacagcctgcaagacagtctggaggaagacgaggaggaggcagaggaggaggtggaagaagcagccgccgc

cagaccgtcgtcctcggcgggggagaaagcaagcagcacggataccatctccgctccgggtcggggtcccgctcgacc

acacagtagatgggacgagaccggacgattcccgaaccccaccacccagaccggtaagaaggagcggcagggata

caagtcctggcgggggcacaaaaacgccatcgtctcctgcttgcaggcctgcgggggcaacatctccttcacccggcgct

acctgctcttccaccgcggggtgaactttccccgcaacatcttgcattactaccgtcacctccacagcccctactacttccaa

gaagaggcagcagcagcagaaaaagaccagcagaaaaccagcagctagaaaatccacagcggcggcagcaggt

ggactgaggatcgcggcgaacgagccggcgcaaacccgggagctgaggaaccggatctttcccaccctctatgccatc

ttccagcagagtcgggggcaggagcaggaactgaaagtcaagaaccgttctctgcgctcgctcacccgcagttgtctgtat

cacaagagcgaagaccaacttcagcgcactctcgaggacgccgaggctctcttcaacaagtactgcgcgctcactcttaa

agagtagcccgcgcccgcccagtcgcagaaaaaggcgggaattacgtcacctgtgcccttcgccctagccgcctccacc

catcatcatgagcaaagagattcccacgccttacatgtggagctaccagccccagatgggcctggccgccggtgccgcc

caggactactccacccgcatgaattggctcagcgccgggcccgcgatgatctcacgggtgaatgacatccgcgcccacc

gaaaccagatactcctagaacagtcagcgctcaccgccacgccccgcaatcacctcaatccgcgtaattggcccgccgc

cctggtgtaccaggaaattccccagcccacgaccgtactacttccgcgagacgcccaggccgaagtccagctgactaac

tcaggtgtccagctggcgggcggcgccaccctgtgtcgtcaccgccccgctcagggtataaagcggctggtgatccggg

gcagaggcacacagctcaacgacgaggtggtgagctcttcgctgggtctgcgacctgacggagtcttccaactcgccgg

atcggggagatcttccttcacgcctcgtcaggccgtcctgactttggagagttcgtcctcgcagccccgctcgggtggcatcg

gcactctccagttcgtggaggagttcactccctcggtctacttcaaccccttctccggctcccccggccactacccggacga

gttcatcccgaacttcgacgccatcagcgagtcggtggacggctacgattgaatgtcccatggtggcgcagctgacctagc

tcggcttcgacacctggaccactgccgccgcttccgctgcttcgctcgggatctcgccgagtttgcctactttgagctgcccga

ggagcaccctcagggcccggcccacggagtgcggatcgtcgtcgaagggggcctcgactcccacctgcttcggatcttc

agccagcgtccgatcctggtcgagcgcgagcaaggacagacccttctgactctgtactgcatctgcaaccaccccggcct

gcatgaaagtctttgttgtctgctgtgtactgagtataataaaagctgagatcagcgactactccggacttccgtgtgttcctga

atccatcaaccagtctttgttcttcaccgggaacgagaccgagctccagctccagtgtaagccccacaagaagtacctcac

ctggctgttccagggctccccgatcgccgttgtcaaccactgcgacaacgacggagtcctgctgagcggccctgccaacc

ttactttttccacccgcagaagcaagctccagctcttccaacccttcctccccgggacctatcagtgcgtctcgggaccctgc

catcacaccttccacctgatcccgaataccacagcgtcgctccccgctactaacaaccaaactaacctccaccaacgcca

ccgtcgcgacctttctgaatctaatactaccacccacaccggaggtgagctccgaggtcaaccaacctctgggatttactac

ggcccctgggaggtggttgggttaatagcgctaggcctagttgcgggtgggcttttggttctctgctacctatacctcccttgct

gttcgtacttagtggtgctgtgttgctggtttaagaaatggggaagatcaccctagtgagctgcggtgcgctggtggcggtgtt

gctttcgattgtgggactgggcggtgcggctgtagtgaaggagaaggccgatccctgcttgcatttcaatcccaacaaatgc

cagctgagttttcagcccgatggcaatcggtgcgcggtactgatcaagtgcggatgggaatgcgagaacgtgagaatcg

agtacaataacaagactcggaacaatactctcgcgtccgtgtggcagcccggggaccccgagtggtacaccgtctctgtc

cccggtgctgacggctccccgcgcaccgtgaataatactttcatttttgcgcacatgtgcgacacggtcatgtggatgagca

agcagtacgatatgtggccccccacgaaggagaacatcgtggtcttctccatcgcttacagcctgtgcacggcgctaatca

ccgctatcgtgtgcctgagcattcacatgctcatcgctattcgccccagaaataatgccgaaaaagaaaaacagccataa

cgttttttttcacacctttttcagaccatggcctctgttaaatttttgcttttatttgccagtctcattgccgtcattcatggaatgagtaa

tgagaaaattactatttacactggcactaatcacacattgaaaggtccagaaaaagccacagaagtttcatggtattgttattt

taatgaatcagatgtatctactgaactctgtggaaacaataacaaaaaaaatgagagcattactctcatcaagtttcaatgtg

gatctgacttaaccctaattaacatcactagagactatgtaggtatgtattatggaactacagcaggcatttcggacatggaa

ttttatcaagtttctgtgtctgaacccaccacgcctagaatgaccacaaccacaaaaactacacctgttaccactatgcagct

cactaccaataacatttttgccatgcgtcaaatggtcaacaatagcactcaacccaccccacccagtgaggaaattcccaa

atccatgattggcattattgttgctgtagtggtgtgcatgttgatcatcgccttgtgcatggtgtactatgccttctgctacagaaa

gcacagactgaacgacaagctggaacacttactaagtgttgaattttaattttttagaaccatgaagatcctaggccttttaatt

ttttctatcattacctctgctctatgcaattctgacaatgaggacgttactgtcgttgtcggatcaaattatacactgaaaggtcca

gcgaagggtatgctttcgtggtattgctattttggatctgacactacagaaactgaattatgcaatcttaagaatggcaaaattc

aaaattctaaaattaacaattatatatgcaatggtactgatctgatactcctcaatatcacgaaatcatatgctggcagttaca

cctgccctggagatgatgctgacagtatgattttttacaaagtaactgttgttgatcccactactccacctccacccaccacaa

ctactcacaccacacacacagatcaaaccgcagcagaggaggcagcaaagttagccttgcaggtccaagacagttcat

ttgttggcattacccctacacctgatcagcggtgtccggggctgctagtcagcggcattgtcggtgtgctttcgggattagcag

tcataatcatctgcatgttcatttttgcttgctgctatagaaggctttaccgacaaaaatcagacccactgctgaacctctatgttt

aattttttccagagtcatgaaggcagttagcgctctagttttttgttctttgattggcattgttttttgcaatcctattcctaaagttagct

ttattaaagatgtgaatgttactgaggggggcaatgtgacactggtaggtgtagagggtgctgaaaacaccacctggaca

aaataccacctcaatgggtggaaagatatttgcaattggagtgtattagtttatacatgtgagggagttaatcttaccattgtca

atgccacctcagctcaaaatggtagaattcaaggacaaagtgtcagtgtatctaatgggtattttacccaacatacttttatcta

tgacgttaaagtcataccactgcctacgcctagcccacctagcactaccacacagacaacccacactacacagacaacc

acatacagtacattaaatcagcctaccaccactacagcagcagaggttgccagctcgtctggggtccgagtggcatttttga

tgtgggccccatctagcagtcccactgctagtaccaatgagcagactactgaatttttgtccactgtcgagagccacaccac

agctacctccagtgccttctctagcaccgccaatctctcctcgctttcctctacaccaatcagtcccgctactactcctagcccc

gctcctcttcccactcccctgaagcaaacagacggcggcatgcaatggcagatcaccctgctcattgtgatcgggttggtca

tcctggccgtgttgctctactacatcttctgccgccgcattcccaacgcgcaccgcaagccggtctacaagcccatcattgtc

gggcagccggagccgcttcaggtggaagggggtctaaggaatcttctcttctcttttacagtatggtgattgaactatgattcct

agacaattcttgatcactattcttatctgcctcctccaagtctgtgccaccctcgctctggtggccaacgccagtccagactgta

ttgggcccttcgcctcctacgtgctctttgccttcaccacctgcatctgctgctgtagcatagtctgcctgcttatcaccttcttcca

gttcattgactggatctttgtgcgcatcgcctacctgcgccaccacccccagtaccgcgaccagcgagtggcgcggctgct

caggctcctctgataagcatgcgggctctgctacttctcgcgcttctgctgttagtgctcccccgtcccgtcgacccccggtcc

cccacccagtcccccgaggaggtccgcaaatgcaaattccaagaaccctggaaattcctcaaatgctaccgccaaaaat

cagacatgcatcccagctggatcatgatcattgggatcgtgaacattctggcctgcaccctcatctcctttgtgatttacccctg

ctttgactttggttggaactcgccagaggcgctctatctcccgcctgaacctgacacaccaccacagcaacctcaggcaca

cgcactaccaccactacagcctaggccacaatacatgcccatattagactatgaggccgagccacagcgacccatgctc

cccgctattagttacttcaatctaaccggcggagatgactgacccactggccaacaacaacgtcaacgaccttctcctgga

catggacggccgcgcctcggagcagcgactcgcccaacttcgcattcgccagcagcaggagagagccgtcaaggagc

tgcaggatgcggtggccatccaccagtgcaagagaggcatcttctgcctggtgaaacaggccaagatctcctacgaggtc

actccaaacgaccatcgcctctcctacgagctcctgcagcagcgccagaagttcacctgcctggtcggagtcaaccccat

cgtcatcacccagcagtctggcgataccaaggggtgcatccactgctcctgcgactcccccgactgcgtccacactctgat

caagaccctctgcggcctccgcgacctcctccccatgaactaatcacccccttatccagtgaaataaagatcatattgatga

tgattttacagaaataaaaaataatcatttgatttgaaataaagatacaatcatattgatgatttgagtttaacaaaaaaataa

agaatcacttacttgaaatctgataccaggtctctgtccatgttttctgccaacaccacttcactcccctcttcccagctctggta

ctgcaggccccggcgggctgcaaacttcctccacacgctgaaggggatgtcaaattcctcctgtccctcaatcttcattttatc

ttctatcagatgtccaaaaagcgcgtccgggtggatgatgacttcgaccccgtctacccctacgatgcagacaacgcacc

gaccgtgcccttcatcaacccccccttcgtctcttcagatggattccaagagaagcccctgggggtgttgtccctgcgactgg

ccgaccccgtcaccaccaagaacggggaaatcaccctcaagctgggagagggggtggacctcgattcctcgggaaaa

ctcatctccaacacggccaccaaggccgccgcccctctcagtttttccaacaacaccatttcccttaacatggatcacccctt

ttacactaaagatggaaaattatccttacaagtttctccaccattaaatatactgagaacaagcattctaaacacactagcttt

aggttttggatcaggtttaggactccgtggctctgccttggcagtacagttagtctctccacttacatttgatactgatggaaaca

taaagcttaccttagacagaggtttgcatgttacaacaggagatgcaattgaaagcaacataagctgggctaaaggtttaa

aatttgaagatggagccatagcaaccaacattggaaatgggttagagtttggaagcagtagtacagaaacaggtgttgat

gatgcttacccaatccaagttaaacttggatctggccttagctttgacagtacaggagccataatggctggtaacaaagaag

acgataaactcactttgtggacaacacctgatccatcaccaaactgtcaaatactcgcagaaaatgatgcaaaactaaca

ctttgcttgactaaatgtggtagtcaaatactggccactgtgtcagtcttagttgtaggaagtggaaacctaaaccccattactg

gcaccgtaagcagtgctcaggtgtttctacgttttgatgcaaacggtgttcttttaacagaacattctacactaaaaaaatactg

ggggtataggcagggagatagcatagatggcactccatataccaatgctgtaggattcatgcccaatttaaaagcttatcc

aaagtcacaaagttctactactaaaaataatatagtagggcaagtatacatgaatggagatgtttcaaaacctatgcttctca

ctataaccctcaatggtactgatgacagcaacagtacatattcaatgtcattttcatacacctggactaatggaagctatgttg

gagcaacatttggggctaactcttataccttctcatacatcgcccaagaatgaacactgtatcccaccctgcatgccaaccct

tcccaccccactctgtggaacaaactctgaaacacaaaataaaataaagttcaagtgttttattgattcaacagttttacagg

attcgagcagttatttttcctccaccctcccaggacatggaatacaccaccctctccccccgcacagccttgaacatctgaat

gccattggtgatggacatgcttttggtctccacgttccacacagtttcagagcgagccagtctcgggtcggtcagggagatg

aaaccctccgggcactcccgcatctgcacctcacagctcaacagctgaggattgtcctcggtggtcgggatcacggttatct

ggaagaagcagaagagcggcggtgggaatcatagtccgcgaacgggatcggccggtggtgtcgcatcaggccccgc

agcagtcgctgccgccgccgctccgtcaagctgctgctcagggggtccgggtccagggactccctcagcatgatgccca

cggccctcagcatcagtcgtctggtgcggcgggcgcagcagcgcatgcggatctcgctcaggtcgctgcagtacgtgca

acacagaaccaccaggttgttcaacagtccatagttcaacacgctccagccgaaactcatcgcgggaaggatgctaccc

acgtggccgtcgtaccagatcctcaggtaaatcaagtggtgccccctccagaacacgctgcccacgtacatgatctccttg

ggcatgtggcggttcaccacctcccggtaccacatcaccctctggttgaacatgcagccccggatgatcctgcggaacca

cagggccagcaccgccccgcccgccatgcagcgaagagaccccgggtcccggcaatggcaatggaggacccaccg

ctcgtacccgtggatcatctgggagctgaacaagtctatgttggcacagcacaggcatatgctcatgcatctcttcagcactc

tcaactcctcgggggtcaaaaccatatcccagggcacggggaactcttgcaggacagcgaaccccgcagaacagggc

aatcctcgcacagaacttacattgtgcatggacagggtatcgcaatcaggcagcaccgggtgatcctccaccagagaag

cgcgggtctcggtctcctcacagcgtggtaagggggccggccgatacgggtgatggcgggacgcggctgatcgtgttcgc

gaccgtgtcatgatgcagttgctttcggacattttcgtacttgctgtagcagaacctggtccgggcgctgcacaccgatcgcc

ggcggcggtctcggcgcttggaacgctcggtgttgaaattgtaaaacagccactctctcagaccgtgcagcagatctagg

gcctcaggagtgatgaagatcccatcatgcctgatggctctgatcacatcgaccaccgtggaatgggccagacccagcc

agatgatgcaattttgttgggtttcggtgacggcgggggagggaagaacaggaagaaccatgattaacttttaatccaaac

ggtctcggagtacttcaaaatgaagatcgcggagatggcacctctcgcccccgctgtgttggtggaaaataacagccagg

tcaaaggtgatacggttctcgagatgttccacggtggcttccagcaaagcctccacgcgcacatccagaaacaagacaat

agcgaaagcgggagggttctctaattcctcaatcatcatgttacactcctgcaccatccccagataattttcatttttccagcctt

gaatgattcgaactagttcgtgaggtaaatccaagccagccatgataaagagctcgcgcagagcgccctccaccggcatt

cttaagcacaccctcataattccaagatattctgctcctggttcacctgcagcagattgacaagcggaatatcaaaatctctg

ccgcgatccctgagctcctccctcagcaataactgtaagtactctttcatatcctctccgaaatttttagccataggaccacca

ggaataagattagggcaagccacagtacagataaaccgaagtcctccccagtgagcattgccaaatgcaagactgctat

aagcatgctggctagacccggtgatatcttccagataactggacagaaaatcgcccaggcaatttttaagaaaatcaaca

aaagaaaaatcctccaggtggacgtttagagcctcgggaacaacgatgaagtaaatgcaagcggtgcgttccagcatg

gttagttagctgatctgtagaaaaaacaaaaatgaacattaaaccatgctagcctggcgaacaggtgggtaaatcgttctct

ccagcaccaggcaggccacggggtctccggcgcgaccctcgtaaaaattgtcgctatgattgaaaaccatcacagaga

gacgttcccggtggccggcgtgaatgattcgacaagatgaatacacccccggaacattggcgtccgcgagtgaaaaaa

agcgcccgaggaagcaataaggcactacaatgctcagtctcaagtccagcaaagcgatgccatgcggatgaagcaca

aaattctcaggtgcgtacaaaatgtaattactcccctcctgcacaggcagcaaagcccccgatccctccaggtacacatac

aaagcctcagcgtccatagcttaccgagcagcagcacacaacaggcgcaagagtcagagaaaggctgagctctaacc

tgtccacccgctctctgctcaatatatagcccagatctacactgacgtaaaggccaaagtctaaaaatacccgccaaataa

tcacacacgcccagcacacgcccagaaaccggtgacacactcaaaaaaatacgcgcacttcctcaaacgcccaaaa

ctgccgtcatttccgggttcccacgctacgtcatcaaaacacgactttcaaattccgtcgaccgttaaaaacgtcacccgcc

ccgcccctaacggtcgcccgtctctcagccaatcagcgccccgcatccccaaattcaaacacctcatttgcatattaacgc

gcacaaaaagtttgaggtatattattgatgatgg

SEQ ID NO: 58. Complete Sequence of the AdC68-734 Vector

TTAATTAAccatcttcaataatatacctcaaactttttgtgcgcgttaatatgcaaatgaggcgtttgaatttggggaggaa

gggcggtgattggtcgagggatgagcgaccgttaggggcggggcgagtgacgttttgatgacgtggttgcgaggaggag

ccagtttgcaagttctcgtgggaaaagtgacgtcaaacgaggtgtggtttgaacacggaaatactcaattttcccgcgctctc

tgacaggaaatgaggtgtttctgggcggatgcaagtgaaaacgggccattttcgcgcgaaaactgaatgaggaagtgaa

aatctgagtaatttcgcgtttatggcagggaggagtatttgccgagggccgagtagactttgaccgattacgtgggggtttcg

attaccgtgtttttcacctaaatttccgcgtacggtgtcaaagtccggtgtttttactactgtaatagtaatcaattacggggtcatt

agttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccg

cccattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacg

gtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggccc

gcctggcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggt

gatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca

atgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcg

gtaggcgtgtacggtgggaggtctatataagcagagctgtccctatcagtgatagagatctccctatcagtgatagagagttt

agtgaaccgtcagatccgctagggtaccaacATGGCTAGCATCGTCGGAGGGTGGGAGTGCGAA

AAGCACTCACAGCCATGGCAGGTCCTGGTCGCCTCGCGCGGACGCGCCGTGTGT

GGAGGTGTGCTGGTCCACCCGCAGTGGGTGTTGACTGCGGCCCATTGCATCAGAA

ATAAGTCCGTGATCCTCTTGGGGAGACATTCCCTGTTTCACCCCGAAGATACTGGA

CAGGTGTTCCAAGTGAGCCACTCCTTCCCGCATCCACTGTACGACATGAGCCTGCT

GAAGAACCGCTTTCTGCGGCCAGGGGACGACTCATCACACGATTTGATGCTGCTT

CGGCTCTCGGAACCGGCCGAGCTCACCGACGCAGTGAAGGTCATGGACCTCCCTA

CGCAAGAGCCTGCTCTCGGTACCACTTGTTACGCATCGGGATGGGGCTCCATCGA

GCCGGAAGAATTCCTGACCCCGAAAAAGCTGCAGTGCGTGGATCTGCACGTGATT

TCGAATGACGTGTGCGCGCAAGTGCATCCACAAAAGGTCACTAAGTTCATGCTGTG

CGCCGGAAGGTGGACCGGCGGAAAATCGACCTGTTCCGGCGACAGCGGAGGCCC

ACTCGTGTGCAACGGTGTGCTGCAGGGCATCACTAGCTGGGGATCAGAACCGTGC

GCGCTTCCGGAGCGGCCCTCGCTCTACACGAAGGTGGTGCACTACCGCAAATGGA

TTAAAGATACCATCGTCGCAAACCCTggatccgaaggtaggggttcattattgacctgtggagatgtcga

agaaaacccaggacccGCTAGCAAAGCAGTGCTGCTGGCGCTCCTGATGGCTGGACTCG

CGCTGCAGCCTGGAACCGCCCTGCTCTGTTACTCGTGCAAGGCCCAAGTCTCGAA

TGAGGACTGTTTGCAAGTGGAAAACTGCACCCAGCTCGGAGAACAATGCTGGACT

GCACGGATCCGCGCTGTCGGCCTGCTGACCGTGATCTCCAAAGGGTGCTCATTGA

ACTGCGTGGACGATAGCCAGGACTACTACGTGGGAAAGAAGAATATCACTTGTTGC

GACACGGATCTTTGCAACGCGTCCGGAGCGCACGCCCTGCAGCCAGCAGCCGCC

ATTCTGGCCCTGCTTCCGGCCCTGGGGTTGCTGCTCTGGGGTCCGGGCCAGCTCg

gatcccagaccctgaactttgatctgctgaaactggcaggcgatgtggaaagcaacccaggcccaATGGCTAGC

GCTCGCAGACCGCGGTGGCTGTGTGCAGGGGCGCTCGTCCTGGCGGGTGGCTTC

TTTTTGCTCGGCTTTCTTTTCGGATGGTTCATCAAATCGTCAAACGAAGCTACCAAT

ATCACCCCGAAGCACAACATGAAGGCCTTTCTGGATGAGCTGAAGGCTGAGAACAT

TAAGAAGTTCCTCTACAACTTCACCCAGATCCCACATTTGGCGGGCACTGAGCAGA

ACTTTCAGTTGGCTAAGCAGATCCAGAGCCAGTGGAAGGAATTCGGCCTGGACTC

CGTCGAGCTGGCGCATTACGATGTGCTGCTGAGCTACCCTAATAAGACTCATCCGA

ACTATATCTCGATTATCAATGAGGACGGAAACGAAATCTTTAACACGTCCCTCTTCG

AGCCGCCACCGCCTGGATACGAGAACGTGTCAGATATCGTGCCTCCGTTCTCGGC

CTTCTCGCCCCAGGGAATGCCCGAAGGGGACCTGGTGTACGTGAACTACGCAAGG

ACCGAGGACTTCTTCAAGTTGGAGCGGGATATGAAGATCAATTGCAGCGGAAAGAT

CGTCATCGCCCGCTACGGCAAAGTGTTCCGCGGCAACAAGGTGAAGAATGCACAG

TTGGCAGGCGCCAAGGGCGTCATCCTCTACTCGGATCCTGCCGACTACTTCGCTC

CTGGCGTGAAATCCTACCCTGATGGTTGGAATCTGCCAGGAGGAGGGGTGCAGAG

GGGAAATATCCTGAACCTGAACGGTGCCGGTGACCCACTTACTCCGGGTTACCCG

GCCAACGAATACGCGTACAGGCGGGGTATCGCGGAAGCCGTCGGACTGCCGTCC

ATCCCGGTCCATCCGATTGGTTACTACGACGCCCAGAAGCTCCTCGAAAAGATGG

GAGGCAGCGCCCCTCCGGACTCGTCATGGAGAGGCTCGCTGAAGGTGCCATACA

ACGTGGGACCCGGATTCACTGGAAATTTCAGCACTCAAAAAGTGAAGATGCACATT

CACTCCACTAACGAAGTCACCAGGATCTACAACGTCATCGGAACCCTCCGGGGAG

CGGTGGAACCGGACCGCTACGTGATCCTCGGTGGACACCGGGATAGCTGGGTGT

TCGGAGGAATCGATCCTCAATCGGGCGCAGCCGTCGTCCATGAAATCGTCAGGTC

CTTTGGTACTCTTAAGAAGGAGGGCTGGCGCCCTAGACGCACTATTCTGTTCGCCT

CGTGGGATGCCGAAGAATTTGGTCTGCTCGGCAGCACCGAATGGGCTGAGGAAAA

CTCCCGCCTGCTCCAAGAACGCGGAGTGGCGTACATCAATGCCGACTCATCCATC

GAAGGAAACTACACGCTGCGGGTGGACTGCACTCCACTGATGTACTCGCTCGTGC

ACAACCTGACCAAAGAACTCAAATCCCCAGACGAAGGATTCGAGGGAAAATCGCTG

TACGAGTCGTGGACCAAGAAGAGCCCATCCCCGGAGTTCAGCGGGATGCCGCGG

ATCTCAAAGCTCGGATCAGGAAATGATTTCGAAGTGTTCTTTCAGAGGCTGGGAAT

TGCGTCGGGAAGGGCTCGGTACACGAAAAACTGGGAAACTAACAAGTTCTCGGGA

TACCCGCTGTACCACTCGGTGTATGAAACTTACGAACTGGTGGAGAAATTCTACGA

TCCTATGTTTAAGTACCACCTGACTGTGGCCCAAGTGAGAGGCGGAATGGTGTTCG

AGTTGGCCAATTCAATTGTGCTGCCATTCGATTGCCGCGACTACGCCGTGGTGCTG

AGAAAGTACGCAGACAAAATCTACTCAATCAGCATGAAGCACCCACAAGAGATGAA

AACCTACTCAGTCTCCTTCGACTCCCTCTTCTCCGCGGTGAAGAACTTCACCGAGA

TCGCGAGCAAATTCTCGGAGCGCCTTCAAGATTTTGACAAATCCAATCCGATCGTC

CTCCGCATGATGAATGACCAGCTCATGTTTCTCGAACGGGCCTTCATCGATCCACT

GGGACTTCCGGACCGGCCGTTTTACCGCCACGTGATCTACGCGCCCTCGTCGCAT

AACAAGTATGCTGGAGAGAGCTTCCCGGGTATCTACGACGCATTGTTCGACATTGA

GTCCAAGGTGGATCCGTCCAAAGCCTGGGGTGAAGTGAAGCGCCAAATCTACGTG

GCGGCCTTTACCGTCCAGGCGGCAGCAGAAACCTTGAGCGAGGTGGCTTGActcga

gcctaagcttctagataagatatccgatccaccggatctagataactgatcataatcagccataccacatttgtagaggtttta

cttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagc

ttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaa

actcatcaatgtatcttatatgctggccaccgtacatgtggcttcccatgctcgcaagccctggcccgagttcgagcacaatg

tcatgaccaggtgcaatatgcatctggggtcccgccgaggcatgttcatgccctaccagtgcaacctgaattatgtgaaggt

gctgctggagcccgatgccatgtccagagtgagcctgacgggggtgtttgacatgaatgtggaggtgtggaagattctgag

atatgatgaatccaagaccaggtgccgagcctgcgagtgcggagggaagcatgccaggttccagcccgtgtgtgtggat

gtgacggaggacctgcgacccgatcatttggtgttgccctgcaccgggacggagttcggttccagcggggaagaatctga

ctagagtgagtagtgttctggggcgggggaggacctgcatgagggccagaataactgaaatctgtgcttttctgtgtgttgca

gcagcatgagcggaagcggctcctttgagggaggggtattcagcccttatctgacggggcgtctcccctcctgggcggga

gtgcgtcagaatgtgatgggatccacggtggacggccggcccgtgcagcccgcgaactcttcaaccctgacctatgcaa

ccctgagctcttcgtcgttggacgcagctgccgccgcagctgctgcatctgccgccagcgccgtgcgcggaatggccatg

ggcgccggctactacggcactctggtggccaactcgagttccaccaataatcccgccagcctgaacgaggagaagctgt

tgctgctgatggcccagctcgaggccttgacccagcgcctgggcgagctgacccagcaggtggctcagctgcaggagc

agacgcgggccgcggttgccacggtgaaatccaaataaaaaatgaatcaataaataaacggagacggttgttgattttaa

cacagagtctgaatctttatttgatttttcgcgcgcggtaggccctggaccaccggtctcgatcattgagcacccggtggatctt

ttccaggacccggtagaggtgggcttggatgttgaggtacatgggcatgagcccgtcccgggggtggaggtagctccattg

cagggcctcgtgctcgggggtggtgttgtaaatcacccagtcatagcaggggcgcagggcatggtgttgcacaatatctttg

aggaggagactgatggccacgggcagccctttggtgtaggtgtttacaaatctgttgagctgggagggatgcatgcgggg

ggagatgaggtgcatcttggcctggatcttgagattggcgatgttaccgcccagatcccgcctggggttcatgttgtgcagga

ccaccagcacggtgtatccggtgcacttggggaatttatcatgcaacttggaagggaaggcgtgaaagaatttggcgacg

cctttgtgcccgcccaggttttccatgcactcatccatgatgatggcgatgggcccgtgggcggcggcctgggcaaagacg

tttcgggggtcggacacatcatagttgtggtcctgggtgaggtcatcataggccattttaatgaatttggggcggagggtgcc

ggactgggggacaaaggtaccctcgatcccgggggcgtagttcccctcacagatctgcatctcccaggctttgagctcgg

agggggggatcatgtccacctgcggggcgataaagaacacggtttccggggcgggggagatgagctgggccgaaag

caagttccggagcagctgggacttgccgcagccggtggggccgtagatgaccccgatgaccggctgcaggtggtagttg

agggagagacagctgccgtcctcccggaggaggggggccacctcgttcatcatctcgcgcacgtgcatgttctcgcgcac

cagttccgccaggaggcgctctccccccagggataggagctcctggagcgaggcgaagtttttcagcggcttgagtccgt

cggccatgggcattttggagagggtttgttgcaagagttccaggcggtcccagagctcggtgatgtgctctacggcatctcg

atccagcagacctcctcgtttcgcgggttgggacggctgcgggagtagggcaccagacgatgggcgtccagcgcagcc

agggtccggtccttccagggtcgcagcgtccgcgtcagggtggtctccgtcacggtgaaggggtgcgcgccgggctggg

cgcttgcgagggtgcgcttcaggctcatccggctggtcgaaaaccgctcccgatcggcgccctgcgcgtcggccaggtag

caattgaccatgagttcgtagttgagcgcctcggccgcgtggcctttggcgcggagcttacctttggaagtctgcccgcagg

cgggacagaggagggacttgagggcgtagagcttgggggcgaggaagacggactcgggggcgtaggcgtccgcgc

cgcagtgggcgcagacggtctcgcactccacgagccaggtgaggtcgggctggtcggggtcaaaaaccagtttcccgc

cgttctttttgatgcgtttcttacctttggtctccatgagctcgtgtccccgctgggtgacaaagaggctgtccgtgtccccgtaga

ccgactttatgggccggtcctcgagcggtgtgccgcggtcctcctcgtagaggaaccccgcccactccgagacgaaagc

ccgggtccaggccagcacgaaggaggccacgtgggacgggtagcggtcgttgtccaccagcgggtccaccttttccag

ggtatgcaaacacatgtccccctcgtccacatccaggaaggtgattggcttgtaagtgtaggccacgtgaccgggggtccc

ggccgggggggtataaaagggtgcgggtccctgctcgtcdcactgtcttccggatcgctgtccaggagcgccagctgttg

gggtaggtattccctctcgaaggcgggcatgacctcggcactcaggttgtcagtttctagaaacgaggaggatttgatattg

acggtgccggcggagatgcctttcaagagcccctcgtccatctggtcagaaaagacgatctttttgttgtcgagcttggtggc

gaaggagccgtagagggcgttggagaggagcttggcgatggagcgcatggtctggtttttttccttgtcggcgcgctccttg

gcggcgatgttgagctgcacgtactcgcgcgccacgcacttccattcggggaagacggtggtcagctcgtcgggcacgat

tctgacctgccagccccgattatgcagggtgatgaggtccacactggtggccacctcgccgcgcaggggctcattagtcca

gcagaggcgtccgcccttgcgcgagcagaaggggggcagggggtccagcatgacctcgtcgggggggtcggcatcg

atggtgaagatgccgggcaggaggtcggggtcaaagtagctgatggaagtggccagatcgtccagggcagcttgccatt

cgcgcacggccagcgcgcgctcgtagggactgaggggcgtgccccagggcatgggatgggtaagcgcggaggcgta

catgccgcagatgtcgtagacgtagaggggctcctcgaggatgccgatgtaggtggggtagcagcgccccccgcggat

gctggcgcgcacgtagtcatacagctcgtgcgagggggcgaggagccccgggcccaggttggtgcgactgggcttttcg

gcgcggtagacgatctggcggaaaatggcatgcgagttggaggagatggtgggcctttggaagatgttgaagtgggcgt

ggggcagtccgaccgagtcgcggatgaagtgggcgtaggagtcttgcagcttggcgacgagctcggcggtgactagga

cgtccagagcgcagtagtcgagggtctcctggatgatgtcatacttgagctgtcccttttgtttccacagctcgcggttgagaa

ggaactcttcgcggtccttccagtactcttcgagggggaacccgtcctgatctgcacggtaagagcctagcatgtagaactg

gttgacggccttgtaggcgcagcagcccttctccacggggagggcgtaggcctgggcggccttgcgcagggaggtgtgc

gtgagggcgaaagtgtccctgaccatgaccttgaggaactggtgcttgaagtcgatatcgtcgcagcccccctgctcccag

agctggaagtccgtgcgcttcttgtaggcggggttgggcaaagcgaaagtaacatcgttgaagaggatcttgcccgcgcg

gggcataaagttgcgagtgatgcggaaaggttggggcacctcggcccggttgttgatgacctgggcggcgagcacgatct

cgtcgaagccgttgatgttgtggcccacgatgtagagttccacgaatcgcggacggcccttgacgtggggcagtttcttgag

ctcctcgtaggtgagctcgtcggggtcgctgagcccgtgctgctcgagcgcccagtcggcgagatgggggttggcgcgga

ggaaggaagtccagagatccacggccagggcggtttgcagacggtcccggtactgacggaactgctgcccgacggcc

attttttcgggggtgacgcagtagaaggtgcgggggtccccgtgccagcgatcccatttgagctggagggcgagatcgag

ggcgagctcgacgagccggtcgtccccggagagtttcatgaccagcatgaaggggacgagctgcttgccgaaggaccc

catccaggtgtaggtttccacatcgtaggtgaggaagagcctttcggtgcgaggatgcgagccgatggggaagaactgg

atctcctgccaccaattggaggaatggctgttgatgtgatggaagtagaaatgccgacggcgcgccgaacactcgtgcttg

tgtttatacaagcggccacagtgctcgcaacgctgcacgggatgcacgtgctgcacgagctgtacctgagttcctttgacga

ggaatttcagtgggaagtggagtcgtggcgcctgcatctcgtgctgtactacgtcgtggtggtcggcctggccctcttctgcct

cgatggtggtcatgctgacgagcccgcgcgggaggcaggtccagacctcggcgcgagcgggtcggagagcgaggac

gagggcgcgcaggccggagctgtccagggtcctgagacgctgcggagtcaggtcagtgggcagcggcggcgcgcgg

ttgacttgcaggagtttttccagggcgcgcgggaggtccagatggtacttgatctccaccgcgccattggtggcgacgtcga

tggcttgcagggtcccgtgcccctggggtgtgaccaccgtcccccgtttcttcttgggcggctggggcgacgggggcggtg

cctcttccatggttagaagcggcggcgaggacgcgcgccgggcggcaggggcggctcggggcccggaggcaggggc

ggcaggggcacgtcggcgccgcgcgcgggtaggttctggtactgcgcccggagaagactggcgtgagcgacgacgcg

acggttgacgtcctggatctgacgcctctgggtgaaggccacgggacccgtgagtttgaacctgaaagagagttcgacag

aatcaatctcggtatcgttgacggcggcctgccgcaggatctcttgcacgtcgcccgagttgtcctggtaggcgatctcggtc

atgaactgctcgatctcctcctcttgaaggtctccgcggccggcgcgctccacggtggccgcgaggtcgttggagatgcgg

cccatgagctgcgagaaggcgttcatgcccgcctcgttccagacgcggctgtagaccacgacgccctcgggatcgcGg

gcgcgcatgaccacctgggcgaggttgagctccacgtggcgcgtgaagaccgcgtagttgcagaggcgctggtagagg

tagttgagcgtggtggcgatgtgctcggtgacgaagaaatacatgatccagcggcggagcggcatctcgctgacgtcgcc

cagcgcctccaaacgttccatggcctcgtaaaagtccacggcgaagttgaaaaactgggagttgcgcgccgagacggtc

aactcctcctccagaagacggatgagctcggcgatggtggcgcgcacctcgcgctcgaaggcccccgggagttcctcca

cttcctcttcttcctcctccactaacatctcttctacttcctcctcaggcggcagtggtggcgggggagggggcctgcgtcgcc

ggcggcgcacgggcagacggtcgatgaagcgctcgatggtctcgccgcgccggcgtcgcatggtctcggtgacggcgc

gcccgtcctcgcggggccgcagcgtgaagacgccgccgcgcatctccaggtggccgggggggtccccgttgggcagg

gagagggcgctgacgatgcatcttatcaattgccccgtagggactccgcgcaaggacctgagcgtctcgagatccacgg

gatctgaaaaccgctgaacgaaggcttcgagccagtcgcagtcgcaaggtaggctgagcacggtttcttctggcgggtca

tgttggttgggagcggggcgggcgatgctgctggtgatgaagttgaaataggcggttctgagacggcggatggtggcgag

gagcaccaggtctttgggcccggcttgctggatgcgcagacggtcggccatgccccaggcgtggtcctgacacctggcca

ggtccttgtagtagtcctgcatgagccgctccacgggcacctcctcctcgcccgcgcggccgtgcatgcgcgtgagcccga

agccgcgctggggctggacgagcgccaggtcggcgacgacgcgctcggcgaggatggcttgctggatctgggtgagg

gtggtctggaagtcatcaaagtcgacgaagcggtggtaggctccggtgttgatggtgtaggagcagttggccatgacgga

ccagttgacggtctggtggcccggacgcacgagctcgtggtacttgaggcgcgagtaggcgcgcgtgtcgaagatgtagt

cgttgcaggtgcgcaccaggtactggtagccgatgaggaagtgcggcggcggctggcggtagagcggccatcgctcgg

tggcgggggcgccgggcgcgaggtcctcgagcatggtgcggtggtagccgtagatgtacctggacatccaggtgatgcc

ggcggcggtggtggaggcgcgcgggaactcgcggacgcggttccagatgttgcgcagcggcaggaagtagttcatggt

gggcacggtctggcccgtgaggcgcgcgcagtcgtggatgctctatacgggcaaaaacgaaagcggtcagcggctcg

actccgtggcctggaggctaagcgaacgggttgggctgcgcgtgtaccccggttcgaatctcgaatcaggctggagccgc

agctaacgtggtattggcactcccgtctcgacccaagcctgcaccaaccctccaggatacggaggcgggtcgttttgcaac

ttttttttggaggccggatgagactagtaagcgcggaaagcggccgaccgcgatggctcgctgccgtagtctggagaaga

atcgccagggttgcgttgcggtgtgccccggttcgaggccggccggattccgcggctaacgagggcgtggctgccccgtc

gtttccaagaccccatagccagccgacttctccagttacggagcgagcccctcttttgttttgtttgtttttgccagatgcatcccg

tactgcggcagatgcgcccccaccaccctccaccgcaacaacagccccctccacagccggcgcttctgcccccgcccc

agcagcaacttccagccacgaccgccgcggccgccgtgagcggggctggacagagttatgatcaccagctggccttgg

aagagggcgaggggctggcgcgcctgggggcgtcgtcgccggagcggcacccgcgcgtgcagatgaaaagggacg

ctcgcgaggcctacgtgcccaagcagaacctgttcagagacaggagcggcgaggagcccgaggagatgcgcgcggc

ccggttccacgcggggcgggagctgcggcgcggcctggaccgaaagagggtgctgagggacgaggatttcgaggcg

gacgagctgacggggatcagccccgcgcgcgcgcacgtggccgcggccaacctggtcacggcgtacgagcagaccg

tgaaggaggagagcaacttccaaaaatccttcaacaaccacgtgcgcaccctgatcgcgcgcgaggaggtgaccctgg

gcctgatgcacctgtgggacctgctggaggccatcgtgcagaaccccaccagcaagccgctgacggcgcagctgttcct

ggtggtgcagcatagtcgggacaacgaagcgttcagggaggcgctgctgaatatcaccgagcccgagggccgctggct

cctggacctggtgaacattctgcagagcatcgtggtgcaggagcgcgggctgccgctgtccgagaagctggcggccatc

aacttctcggtgctgagtttgggcaagtactacgctaggaagatctacaagaccccgtacgtgcccatagacaaggaggt

gaagatcgacgggttttacatgcgcatgaccctgaaagtgctgaccctgagcgacgatctgggggtgtaccgcaacgac

aggatgcaccgtgcggtgagcgccagcaggcggcgcgagctgagcgaccaggagctgatgcatagtctgcagcggg

ccctgaccggggccgggaccgagggggagagctactttgacatgggcgcggacctgcactggcagcccagccgccg

ggccttggaggcggcggcaggaccctacgtagaagaggtggacgatgaggtggacgaggagggcgagtacctggaa

gactgatggcgcgaccgtatttttgctagatgcaacaacaacagccacctcctgatcccgcgatgcgggcggcgctgcag

agccagccgtccggcattaactcctcggacgattggacccaggccatgcaacgcatcatggcgctgacgacccgcaac

cccgaagcctttagacagcagccccaggccaaccggctctcggccatcctggaggccgtggtgccctcgcgctccaacc

ccacgcacgagaaggtcctggccatcgtgaacgcgctggtggagaacaaggccatccgcggcgacgaggccggcct

ggtgtacaacgcgctgctggagcgcgtggcccgctacaacagcaccaacgtgcagaccaacctggaccgcatggtga

ccgacgtgcgcgaggccgtggcccagcgcgagcggttccaccgcgagtccaacctgggatccatggtggcgctgaacg

ccttcctcagcacccagcccgccaacgtgccccggggccaggaggactacaccaacttcatcagcgccctgcgcctgat

ggtgaccgaggtgccccagagcgaggtgtaccagtccgggccggactacttcttccagaccagtcgccagggcttgcag

accgtgaacctgagccaggctttcaagaacttgcagggcctgtggggcgtgcaggccccggtcggggaccgcgcgacg

gtgtcgagcctgctgacgccgaactcgcgcctgctgctgctgctggtggcccccttcacggacagcggcagcatcaaccg

caactcgtacctgggctacctgattaacctgtaccgcgaggccatcggccaggcgcacgtggacgagcagacctaccag

gagatcacccacgtgagccgcgccctgggccaggacgacccgggcaacctggaagccaccctgaactttttgctgacc

aaccggtcgcagaagatcccgccccagtacgcgctcagcaccgaggaggagcgcatcctgcgttacgtgcagcagag

cgtgggcctgttcctgatgcaggagggggccacccccagcgccgcgctcgacatgaccgcgcgcaacatggagccca

gcatgtacgccagcaaccgcccgttcatcaataaactgatggactacttgcatcgggcggccgccatgaactctgactattt

caccacgccatcctgaatccccactggctcccgccgccggggttctacacgggcgagtacgacatgcccgaccccaat

gacgggttcctgtgggacgatgtggacagcagcgtgttctccccccgaccgggtgctaacgagcgccccttgtggaagaa

ggaaggcagcgaccgacgcccgtcctcggcgctgtccggccgcgagggtgctgccgcggcggtgcccgaggccgcc

agtcctttcccgagcttgcccttctcgctgaacagtatccgcagcagcgagctgggcaggatcacgcgcccgcgcttgctg

ggcgaagaggagtacttgaatgactcgctgttgagacccgagcgggagaagaacttccccaataacgggatagaaag

cctggtggacaagatgagccgctggaagacgtatgcgcaggagcacagggacgatccccgggcgtcgcagggggcc

acgagccggggcagcgccgcccgtaaacgccggtggcacgacaggcagcggggacagatgtgggacgatgagga

ctccgccgacgacagcagcgtgttggacttgggtgggagtggtaacccgttcgctcacctgcgcccccgtatcgggcgcat

gatgtaagagaaaccgaaaataaatgatactcaccaaggccatggcgaccagcgtgcgttcgtttcttctctgttgttgttgta

tctagtatgatgaggcgtgcgtacccggagggtcctcctccctcgtacgagagcgtgatgcagcaggcgatggcggcggc

ggcgatgcagcccccgctggaggctccttacgtgcccccgcggtacctggcgcctacggaggggcggaacagcattcgt

tactcggagctggcacccttgtacgataccacccggttgtacctggtggacaacaagtcggcggacatcgcctcgctgaa

ctaccagaacgaccacagcaacttcctgaccaccgtggtgcagaacaatgacttcacccccacggaggccagcaccc

agaccatcaactttgacgagcgctcgcggtggggcggccagctgaaaaccatcatgcacaccaacatgcccaacgtga

acgagttcatgtacagcaacaagttcaaggcgcgggtgatggtctcccgcaagacccccaatggggtgacagtgacag

aggattatgatggtagtcaggatgagctgaagtatgaatgggtggaatttgagctgcccgaaggcaacttctcggtgaccat

gaccatcgacctgatgaacaacgccatcatcgacaattacttggcggtggggcggcagaacggggtgctggagagcga

catcggcgtgaagttcgacactaggaacttcaggctgggctgggaccccgtgaccgagctggtcatgcccggggtgtaca

ccaacgaggctttccatcccgatattgtcttgctgcccggctgcggggtggacttcaccgagagccgcctcagcaacctgct

gggcattcgcaagaggcagcccttccaggaaggcttccagatcatgtacgaggatctggaggggggcaacatccccgc

gctcctggatgtcgacgcctatgagaaaagcaaggaggatgcagcagctgaagcaactgcagccgtagctaccgcctct

accgaggtcaggggcgataattttgcaagcgccgcagcagtggcagcggccgaggcggctgaaaccgaaagtaagat

agtcattcagccggtggagaaggatagcaagaacaggagctacaacgtactaccggacaagataaacaccgcctacc

gcagctggtacctagcctacaactatggcgaccccgagaagggcgtgcgctcctggacgctgctcaccacctcggacgt

cacctgcggcgtggagcaagtctactggtcgctgcccgacatgatgcaagacccggtcaccttccgctccacgcgtcaag

ttagcaactacccggtggtgggcgccgagctcctgcccgtctactccaagagcttcttcaacgagcaggccgtctactcgc

agcagctgcgcgccttcacctcgcttacgcacgtcttcaaccgcttccccgagaaccagatcctcgtccgcccgcccgcgc

ccaccattaccaccgtcagtgaaaacgttcctgctctcacagatcacgggaccctgccgctgcgcagcagtatccgggga

gtccagcgcgtgaccgttactgacgccagacgccgcacctgcccctacgtctacaaggccctgggcatagtcgcgccgc

gcgtcctctcgagccgcaccttctaaatgtccattctcatctcgcccagtaataacaccggttggggcctgcgcgcgcccag

caagatgtacggaggcgctcgccaacgctccacgcaacaccccgtgcgcgtgcgcgggcacttccgcgctccctgggg

cgccctcaagggccgcgtgcggtcgcgcaccaccgtcgacgacgtgatcgaccaggtggtggccgacgcgcgcaact

acacccccgccgccgcgcccgtctccaccgtggacgccgtcatcgacagcgtggtggcCgacgcgcgccggtacgcc

cgcgccaagagccggcggcggcgcatcgcccggcggcaccggagcacccccgccatgcgcgcggcgcgagccttg

ctgcgcagggccaggcgcacgggacgcagggccatgctcagggcggccagacgcgcggcttcaggcgccagcgcc

ggcaggacccggagacgcgcggccacggcggcggcagcggccatcgccagcatgtcccgcccgcggcgagggaa

cgtgtactgggtgcgcgacgccgccaccggtgtgcgcgtgcccgtgcgcacccgcccccctcgcacttgaagatgttcact

tcgcgatgttgatgtgtcccagcggcgaggaggatgtccaagcgcaaattcaaggaagagatgctccaggtcatcgcgc

ctgagatctacggccctgcggtggtgaaggaggaaagaaagccccgcaaaatcaagcgggtcaaaaaggacaaaa

aggaagaagaaagtgatgtggacggattggtggagtttgtgcgcgagttcgccccccggcggcgcgtgcagtggcgcg

ggcggaaggtgcaaccggtgctgagacccggcaccaccgtggtcttcacgcccggcgagcgctccggcaccgcttcca

agcgctcctacgacgaggtgtacggggatgatgatattctggagcaggcggccgagcgcctgggcgagtttgcttacggc

aagcgcagccgttccgcaccgaaggaagaggcggtgtccatcccgctggaccacggcaaccccacgccgagcctca

agcccgtgaccttgcagcaggtgctgccgaccgcggcgccgcgccgggggttcaagcgcgagggcgaggatctgtac

cccaccatgcagctgatggtgcccaagcgccagaagctggaagacgtgctggagaccatgaaggtggacccggacgt

gcagcccgaggtcaaggtgcggcccatcaagcaggtggccccgggcctgggcgtgcagaccgtggacatcaagattc

ccacggagcccatggaaacgcagaccgagcccatgatcaagcccagcaccagcaccatggaggtgcagacggatcc

ctggatgccatcggctcctagtcgaagaccccggcgcaagtacggcgcggccagcctgctgatgcccaactacgcgctg

catccttccatcatccccacgccgggctaccgcggcacgcgcttctaccgcggtcataccagcagccgccgccgcaaga

ccaccactcgccgccgccgtcgccgcaccgccgctgcaaccacccctgccgccctggtgcggagagtgtaccgccgcg

gccgcgcacctctgaccctgccgcgcgcgcgctaccacccgagcatcgccatttaaactttcgccTgctttgcagatcaat

ggccctcacatgccgccttcgcgttcccattacgggctaccgaggaagaaaaccgcgccgtagaaggctggcggggaa

cgggatgcgtcgccaccaccaccggcggcggcgcgccatcagcaagcggttggggggaggcttcctgcccgcgctgat

ccccatcatcgccgcggcgatcggggcgatccccggcattgcttccgtggcggtgcaggcctctcagcgccactgagac

acacttggaaacatcttgtaataaaccAatggactctgacgctcctggtcctgtgatgttttcgtagacagatggaagaca

tcaatttttcgtccctggctccgcgacacggcacgcggccgttcatgggcacctggagcgacatcggcaccagccaactg

aacgggggcgccttcaattggagcagtctctggagcgggcttaagaatttcgggtccacgcttaaaacctatggcagcaa

ggcgtggaacagcaccacagggcaggcgctgagggataagctgaaagagcagaacttccagcagaaggtggtcgat

gggctcgcctcgggcatcaacggggtggtggacctggccaaccaggccgtgcagcggcagatcaacagccgcctgga

cccggtgccgcccgccggctccgtggagatgccgcaggtggaggaggagctgcctcccctggacaagcggggcgag

aagcgaccccgccccgatgcggaggagacgctgctgacgcacacggacgagccgcccccgtacgaggaggcggtg

aaactgggtctgcccaccacgcggcccatcgcgcccctggccaccggggtgctgaaacccgaaaagcccgcgaccct

ggacttgcctcctccccagccttcccgcccctctacagtggctaagcccctgccgccggtggccgtggcccgcgcgcgac

ccgggggcaccgcccgccctcatgcgaactggcagagcactctgaacagcatcgtgggtctgggagtgcagagtgtga

agcgccgccgctgctattaaacctaccgtagcgcttaacttgcttgtctgtgtgtgtatgtattatgtcgccgccgccgctgtcc

accagaaggaggagtgaagaggcgcgtcgccgagttgcaagatggccaccccatcgatgctgccccagtgggcgtac

atgcacatcgccggacaggacgcttcggagtacctgagtccgggtctggtgcagtttgcccgcgccacagacacctacttc

agtctggggaacaagtttaggaaccccacggtggcgcccacgcacgatgtgaccaccgaccgcagccagcggctgac

gctgcgcttcgtgcccgtggaccgcgaggacaacacctactcgtacaaagtgcgctacacgctggccgtgggcgacaac

cgcgtgctggacatggccagcacctactttgacatccgcggcgtgctggatcggggccctagcttcaaaccctactccggc

accgcctacaacagtctggcccccaagggagcacccaacacttgtcagtggacatataaagccgatggtgaaactgcc

acagaaaaaacctatacatatggaaatgcacccgtgcagggcattaacatcacaaaagatggtattcaacttggaactg

acaccgatgatcagccaatctacgcagataaaacctatcagcctgaacctcaagtgggtgatgctgaatggcatgacatc

actggtactgatgaaaagtatggaggcagagctcttaagcctgataccaaaatgaagccttgttatggttcttttgccaagcc

tactaataaagaaggaggtcaggcaaatgtgaaaacaggaacaggcactactaaagaatatgacatagacatggctttc

tttgacaacagaagtgcggctgctgctggcctagctccagaaattgttttgtatactgaaaatgtggatttggaaactccagat

acccatattgtatacaaagcaggcacagatgacagcagctcttctattaatttgggtcagcaagccatgcccaacagacct

aactacattggtttcagagacaactttatcgggctcatgtactacaacagcactggcaatatgggggtgctggccggtcagg

cttctcagctgaatgctgtggttgacttgcaagacagaaacaccgagctgtcctaccagctcttgcttgactctctgggtgaca

gaacccggtatttcagtatgtggaatcaggcggtggacagctatgatcctgatgtgcgcattattgaaaatcatggtgtggag

gatgaacttcccaactattgtttccctctggatgctgttggcagaacagatacttatcagggaattaaggctaatggaactgat

caaaccacatggaccaaagatgacagtgtcaatgatgctaatgagataggcaagggtaatccattcgccatggaaatca

acatccaagccaacctgtggaggaacttcctctacgccaacgtggccctgtacctgcccgactcttacaagtacacgccg

gccaatgttaccctgcccaccaacaccaacacctacgattacatgaacggccgggtggtggcgccctcgctggtggactc

ctacatcaacatcggggcgcgctggtcgctggatcccatggacaacgtgaaccccttcaaccaccaccgcaatgcgggg

ctgcgctaccgctccatgctcctgggcaacgggcgctacgtgcccttccacatccaggtgccccagaaatttttcgccatca

agagcctcctgctcctgcccgggtcctacacctacgagtggaacttccgcaaggacgtcaacatgatcctgcagagctcc

ctcggcaacgacctgcgcacggacggggcctccatctccttcaccagcatcaacctctacgccaccttcttccccatggcg

cacaacacggcctccacgctcgaggccatgctgcgcaacgacaccaacgaccagtccttcaacgactacctctcggcg

gccaacatgctctaccccatcccggccaacgccaccaacgtgcccatctccatcccctcgcgcaactgggccgccttccg

cggctggtccttcacgcgtctcaagaccaaggagacgccctcgctgggctccgggttcgacccctacttcgtctactcggg

ctccatcccctacctcgacggcaccttctacctcaaccacaccttcaagaaggtctccatcaccttcgactcctccgtcagct

ggcccggcaacgaccggctcctgacgcccaacgagttcgaaatcaagcgcaccgtcgacggcgagggctacaacgtg

gcccagtgcaacatgaccaaggactggttcctggtccagatgctggcccactacaacatcggctaccagggcttctacgt

gcccgagggctacaaggaccgcatgtactccttcttccgcaacttccagcccatgagccgccaggtggtggacgaggtca

actacaaggactaccaggccgtcaccctggcctaccagcacaacaactcgggcttcgtcggctacctcgcgcccaccat

gcgccagggccagccctaccccgccaactacccctacccgctcatcggcaagagcgccgtcaccagcgtcacccaga

aaaagttcctctgcgacagggtcatgtggcgcatccccttctccagcaacttcatgtccatgggcgcgctcaccgacctcgg

ccagaacatgctctatgccaactccgcccacgcgctagacatgaatttcgaagtcgaccccatggatgagtccacccttct

ctatgttgtcttcgaagtcttcgacgtcgtccgagtgcaccagccccaccgcggcgtcatcgaggccgtctacctgcgcacc

cccttctcggccggtaacgccaccacctaagctcttgcttcttgcaagccatggccgcgggctccggcgagcaggagctc

agggccatcatccgcgacctgggctgcgggccctacttcctgggcaccttcgataagcgcttcccgggattcatggccccg

cacaagctggcctgcgccatcgtcaacacggccggccgcgagaccgggggcgagcactggctggccttcgcctggaa

cccgcgctcgaacacctgctacctcttcgaccccttcgggttctcggacgagcgcctcaagcagatctaccagttcgagtac

gagggcctgctgcgccgcagcgccctggccaccgaggaccgctgcgtcaccctggaaaagtccacccagaccgtgca

gggtccgcgctcggccgcctgcgggctcttctgctgcatgttcctgcacgccttcgtgcactggcccgaccgccccatggac

aagaaccccaccatgaacttgctgacgggggtgcccaacggcatgctccagtcgccccaggtggaacccaccctgcgc

cgcaaccaggaggcgctctaccgcttcctcaactcccactccgcctactttcgctcccaccgcgcgcgcatcgagaaggc

caccgccttcgaccgcatgaatcaagacatgtaaaccgtgtgtgtatgttaaatgtctttaataaacagcactttcatgttaca

catgcatctgagatgatttatttagaaatcgaaagggttctgccgggtctcggcatggcccgcgggcagggacacgttgcg

gaactggtacttggccagccacttgaactcggggatcagcagtttgggcagcggggtgtcggggaaggagtcggtccac

agcttccgcgtcagttgcagggcgcccagcaggtcgggcgcggagatcttgaaatcgcagttgggacccgcgttctgcgc

gcgggagttgcggtacacggggttgcagcactggaacaccatcagggccgggtgcttcacgctcgccagcaccgtcgc

gtcggtgatgctctccacgtcgaggtcctcggcgttggccatcccgaagggggtcatcttgcaggtctgccttcccatggtgg

gcacgcacccgggcttgtggttgcaatcgcagtgcagggggatcagcatcatctgggcctggtcggcgttcatccccgggt

acatggccttcatgaaagcctccaattgcctgaacgcctgctgggccttggctccctcggtgaagaagaccccgcaggact

tgctagagaactggttggtggcgcacccggcgtcgtgcacgcagcagcgcgcgtcgttgttggccagctgcaccacgctg

cgcccccagcggttctgggtgatcttggcccggtcggggttctccttcagcgcgcgctgcccgttctcgctcgccacatccat

ctcgatcatgtgctccttctggatcatggtggtcccgtgcaggcaccgcagcttgccctcggcctcggtgcacccgtgcagc

cacagcgcgcacccggtgcactcccagttcttgtgggcgatctgggaatgcgcgtgcacgaagccctgcaggaagcgg

cccatcatggtggtcagggtcttgttgctagtgaaggtcagcggaatgccgcggtgctcctcgttgatgtacaggtggcagat

gcggcggtacacctcgccctgctcgggcatcagctggaagttggctttcaggtcggtctccacgcggtagcggtccatcag

catagtcatgatttccatacccttctcccaggccgagacgatgggcaggctcatagggttcttcaccatcatcttagcgctag

cagccgcggccagggggtcgctctcgtccagggtctcaaagctccgcttgccgtccttctcggtgatccgcaccggggggt

agctgaagcccacggccgccagctcctcctcggcctgtctttcgtcctcgctgtcctggctgacgtcctgcaggaccacatg

cttggtcttgcggggtttcttcttgggcggcagcggcggcggagatgttggagatggcgagggggagcgcgagttctcgctc

accactactatctcttcctcttcttggtccgaggccacgcggcggtaggtatgtctcttcgggggcagaggcggaggcgacg

ggctctcgccgccgcgacttggcggatggctggcagagccccttccgcgttcgggggtgcgctcccggcggcgctctgac

tgacttcctccgcggccggccattgtgttctcctagggaggaacaacaagcatggagactcagccatcgccaacctcgcc

atctgcccccaccgccgacgagaagcagcagcagcagaatgaaagcttaaccgccccgccgcccagccccgccacc

tccgacgcggccgtcccagacatgcaagagatggaggaatccatcgagattgacctgggctatgtgacgcccgcggag

cacgaggaggagctggcagtgcgcttttcacaagaagagatacaccaagaacagccagagcaggaagcagagaat

gagcagagtcaggctgggctcgagcatgacggcgactacctccacctgagcgggggggaggacgcgctcatcaagca

tctggcccggcaggccaccatcgtcaaggatgcgctgctcgaccgcaccgaggtgcccctcagcgtggaggagctcag

ccgcgcctacgagttgaacctcttctcgccgcgcgtgccccccaagcgccagcccaatggcacctgcgagcccaacccg

cgcctcaacttctacccggtcttcgcggtgcccgaggccctggccacctaccacatctttttcaagaaccaaaagatccccg

tctcctgccgcgccaaccgcacccgcgccgacgcccttttcaacctgggtcccggcgcccgcctacctgatatcgcctcctt

ggaagaggttcccaagatcttcgagggtctgggcagcgacgagactcgggccgcgaacgctctgcaaggagaaggag

gagagcatgagcaccacagcgccctggtcgagttggaaggcgacaacgcgcggctggcggtgctcaaacgcacggtc

gagctgacccatttcgcctacccggctctgaacctgccccccaaagtcatgagcgcggtcatggaccaggtgctcatcaa

gcgcgcgtcgcccatctccgaggacgagggcatgcaagactccgaggagggcaagcccgtggtcagcgacgagcag

ctggcccggtggctgggtcctaatgctagtccccagagtttggaagagcggcgcaaactcatgatggccgtggtcctggtg

accgtggagctggagtgcctgcgccgcttcttcgccgacgcggagaccctgcgcaaggtcgaggagaacctgcactacc

tcttcaggcacgggttcgtgcgccaggcctgcaagatctccaacgtggagctgaccaacctggtctcctacatgggcatctt

gcacgagaaccgcctggggcagaacgtgctgcacaccaccctgcgcggggaggcccggcgcgactacatccgcgac

tgcgtctacctctacctctgccacacctggcagacgggcatgggcgtgtggcagcagtgtctggaggagcagaacctgaa

agagctctgcaagctcctgcagaagaacctcaagggtctgtggaccgggttcgacgagcgcaccaccgcctcggacct

ggccgacctcattttccccgagcgcctcaggctgacgctgcgcaacggcctgcccgactttatgagccaaagcatgttgca

aaactttcgctctttcatcctcgaacgctccggaatcctgcccgccacctgctccgcgctgccctcggacttcgtgccgctga

ccttccgcgagtgccccccgccgctgtggagccactgctacctgctgcgcctggccaactacctggcctaccactcggac

gtgatcgaggacgtcagcggcgagggcctgctcgagtgccactgccgctgcaacctctgcacgccgcaccgctccctgg

cctgcaacccccagctgctgagcgagacccagatcatcggcaccttcgagttgcaagggcccagcgaaggcgagggtt

cagccgccaaggggggtctgaaactcaccccggggctgtggacctcggcctacttgcgcaagttcgtgcccgaggacta

ccatcccttcgagatcaggttctacgaggaccaatcccatccgcccaaggccgagctgtcggcctgcgtcatcacccagg

gggcgatcctggcccaattgcaagccatccagaaatcccgccaagaattcttgctgaaaaagggccgcggggtctacct

cgacccccagaccggtgaggagctcaaccccggcttcccccaggatgccccgaggaaacaagaagctgaaagtgga

gctgccgcccgtggaggatttggaggaagactgggagaacagcagtcaggcagaggaggaggagatggaggaaga

ctgggacagcactcaggcagaggaggacagcctgcaagacagtctggaggaagacgaggaggaggcagaggagg

aggtggaagaagcagccgccgccagaccgtcgtcctcggcgggggagaaagcaagcagcacggataccatctccgc

tccgggtcggggtcccgctcgaccacacagtagatgggacgagaccggacgattcccgaaccccaccacccagaccg

gtaagaaggagcggcagggatacaagtcctggcgggggcacaaaaacgccatcgtctcctgcttgcaggcctgcggg

ggcaacatctccttcacccggcgctacctgctcttccaccgcggggtgaactttccccgcaacatcttgcattactaccgtca

cctccacagcccctactacttccaagaagaggcagcagcagcagaaaaagaccagcagaaaaccagcagctagaa

aatccacagcggcggcagcaggtggactgaggatcgcggcgaacgagccggcgcaaacccgggagctgaggaacc

ggatctttcccaccctctatgccatcttccagcagagtcgggggcaggagcaggaactgaaagtcaagaaccgttctctgc

gctcgctcacccgcagttgtctgtatcacaagagcgaagaccaacttcagcgcactctcgaggacgccgaggctctcttca

acaagtactgcgcgctcactcttaaagagtagcccgcgcccgcccagtcgcagaaaaaggcgggaattacgtcacctgt

gcccttcgccctagccgcctccacccatcatcatgagcaaagagattcccacgccttacatgtggagctaccagccccag

atgggcctggccgccggtgccgcccaggactactccacccgcatgaattggctcagcgccgggcccgcgatgatctcac

gggtgaatgacatccgcgcccaccgaaaccagatactcctagaacagtcagcgctcaccgccacgccccgcaatcacc

tcaatccgcgtaattggcccgccgccctggtgtaccaggaaattccccagcccacgaccgtactacttccgcgagacgcc

caggccgaagtccagctgactaactcaggtgtccagctggcgggcggcgccaccctgtgtcgtcaccgccccgctcagg

gtataaagcggctggtgatccggggcagaggcacacagctcaacgacgaggtggtgagctcttcgctgggtctgcgacc

tgacggagtcttccaactcgccggatcggggagatcttccttcacgcctcgtcaggccgtcctgactttggagagttcgtcctc

gcagccccgctcgggtggcatcggcactctccagttcgtggaggagttcactccctcggtctacttcaaccccttctccggct

cccccggccactacccggacgagttcatcccgaacttcgacgccatcagcgagtcggtggacggctacgattgaatgtcc

catggtggcgcagctgacctagctcggcttcgacacctggaccactgccgccgcttccgctgcttcgctcgggatctcgccg

agtttgcctactttgagctgcccgaggagcaccctcagggcccggcccacggagtgcggatcgtcgtcgaagggggcct

cgactcccacctgcttcggatcttcagccagcgtccgatcctggtcgagcgcgagcaaggacagacccttctgactctgta

ctgcatctgcaaccaccccggcctgcatgaaagtctttgttgtctgctgtgtactgagtataataaaagctgagatcagcgac

tactccggacttccgtgtgttcctgaatccatcaaccagtctttgttcttcaccgggaacgagaccgagctccagctccagtgt

aagccccacaagaagtacctcacctggctgttccagggctccccgatcgccgttgtcaaccactgcgacaacgacggag

tcctgctgagcggccctgccaaccttactttttccacccgcagaagcaagctccagctcttccaacccttcctccccgggacc

tatcagtgcgtctcgggaccctgccatcacaccttccacctgatcccgaataccacagcgtcgctccccgctactaacaac

caaactaacctccaccaacgccaccgtcgctaggccacaatacatgcccatattagactatgaggccgagccacagcg

acccatgctccccgctattagttacttcaatctaaccggcggagatgactgacccactggccaacaacaacgtcaacgac

cttctcctggacatggacggccgcgcctcggagcagcgactcgcccaacttcgcattcgccagcagcaggagagagcc

gtcaaggagctgcaggatgcggtggccatccaccagtgcaagagaggcatcttctgcctggtgaaacaggccaagatct

cctacgaggtcactccaaacgaccatcgcctctcctacgagctcctgcagcagcgccagaagttcacctgcctggtcgga

gtcaaccccatcgtcatcacccagcagtctggcgataccaaggggtgcatccactgctcctgcgactcccccgactgcgtc

cacactctgatcaagaccctctgcggcctccgcgacctcctccccatgaactaatcacccccttatccagtgaaataaagat

catattgatgatgattttacagaaataaaaaataatcatttgatttgaaataaagatacaatcatattgatgatttgagtttaaca

aaaaaataaagaatcacttacttgaaatctgataccaggtctctgtccatgttttctgccaacaccacttcactcccctcttccc

agctctggtactgcaggccccggcgggctgcaaacttcctccacacgctgaaggggatgtcaaattcctcctgtccctcaat

cttcattttatcttctatcagatgtccaaaaagcgcgtccgggtggatgatgacttcgaccccgtctacccctacgatgcagac

aacgcaccgaccgtgcccttcatcaacccccccttcgtctcttcagatggattccaagagaagcccctgggggtgttgtccc

tgcgactggccgaccccgtcaccaccaagaacggggaaatcaccctcaagctgggagagggggtggacctcgattcct

cgggaaaactcatctccaacacggccaccaaggccgccgcccctctcagtttttccaacaacaccatttcccttaacatgg

atcaccccttttacactaaagatggaaaattatccttacaagtttctccaccattaaatatactgagaacaagcattctaaaca

cactagctttaggttttggatcaggtttaggactccgtggctctgccttggcagtacagttagtctctccacttacatttgatactg

atggaaacataaagcttaccttagacagaggtttgcatgttacaacaggagatgcaattgaaagcaacataagctgggct

aaaggtttaaaatttgaagatggagccatagcaaccaacattggaaatgggttagagtttggaagcagtagtacagaaac

aggtgttgatgatgcttacccaatccaagttaaacttggatctggccttagctttgacagtacaggagccataatggctggta

acaaagaagacgataaactcactttgtggacaacacctgatccatcaccaaactgtcaaatactcgcagaaaatgatgc

aaaactaacactttgcttgactaaatgtggtagtcaaatactggccactgtgtcagtcttagttgtaggaagtggaaacctaa

accccattactggcaccgtaagcagtgctcaggtgtttctacgttttgatgcaaacggtgttcttttaacagaacattctacact

aaaaaaatactgggggtataggcagggagatagcatagatggcactccatataccaatgctgtaggattcatgcccaattt

aaaagcttatccaaagtcacaaagttctactactaaaaataatatagtagggcaagtatacatgaatggagatgtttcaaa

acctatgcttctcactataaccctcaatggtactgatgacagcaacagtacatattcaatgtcattttcatacacctggactaat

ggaagctatgttggagcaacatttggggctaactcttataccttctcatacatcgcccaagaatgaacactgtatcccaccct

gcatgccaacccttcccaccccactctgtggaacaaactctgaaacacaaaataaaataaagttcaagtgttttattgattca

acagttttacaggattcgagcagttatttttcctccaccctcccaggacatggaatacaccaccctctccccccgcacagcctt

gaacatctgaatgccattggtgatggacatgcttttggtctccacgttccacacagtttcagagcgagccagtctcgggtcgg

tcagggagatgaaaccctccgggcactcccgcatctgcacctcacagctcaacagctgaggattgtcctcggtggtcggg

atcacggttatctggaagaagcagaagagcggcggtgggaatcatagtccgcgaacgggatcggccggtggtgtcgca

tcaggccccgcagcagtcgctgccgccgccgctccgtcaagctgctgctcagggggtccgggtccagggactccctcag

catgatgcccacggccctcagcatcagtcgtctggtgcggcgggcgcagcagcgcatgcggatctcgctcaggtcgctgc

agtacgtgcaacacagaaccaccaggttgttcaacagtccatagttcaacacgctccagccgaaactcatcgcgggaag

gatgctacccacgtggccgtcgtaccagatcctcaggtaaatcaagtggtgccccctccagaacacgctgcccacgtaca

tgatctccttgggcatgtggcggttcaccacctcccggtaccacatcaccctctggttgaacatgcagccccggatgatcctg

cggaaccacagggccagcaccgccccgcccgccatgcagcgaagagaccccgggtcccggcaatggcaatggagg

acccaccgctcgtacccgtggatcatctgggagctgaacaagtctatgttggcacagcacaggcatatgctcatgcatctct

tcagcactctcaactcctcgggggtcaaaaccatatcccagggcacggggaactcttgcaggacagcgaaccccgcag

aacagggcaatcctcgcacagaacttacattgtgcatggacagggtatcgcaatcaggcagcaccgggtgatcctccac

cagagaagcgcgggtctcggtctcctcacagcgtggtaagggggccggccgatacgggtgatggcgggacgcggctg

atcgtgttcgcgaccgtgtcatgatgcagttgctttcggacattttcgtacttgctgtagcagaacctggtccgggcgctgcaca

ccgatcgccggcggcggtctcggcgcttggaacgctcggtgttgaaattgtaaaacagccactctctcagaccgtgcagc

agatctagggcctcaggagtgatgaagatcccatcatgcctgatggctctgatcacatcgaccaccgtggaatgggccag

acccagccagatgatgcaattttgttgggtttcggtgacggcgggggagggaagaacaggaagaaccatgattaactttta

atccaaacggtctcggagtacttcaaaatgaagatcgcggagatggcacctctcgcccccgctgtgttggtggaaaataa

cagccaggtcaaaggtgatacggttctcgagatgttccacggtggcttccagcaaagcctccacgcgcacatccagaaa

caagacaatagcgaaagcgggagggttctctaattcctcaatcatcatgttacactcctgcaccatccccagataattttcatt

tttccagccttgaatgattcgaactagttcCtgaggtaaatccaagccagccatgataaagagctcgcgcagagcgccctc

caccggcattcttaagcacaccctcataattccaagatattctgctcctggttcacctgcagcagattgacaagcggaatatc

aaaatctctgccgcgatccctgagctcctccctcagcaataactgtaagtactctttcatatcctctccgaaatttttagccatag

gaccaccaggaataagattagggcaagccacagtacagataaaccgaagtcctccccagtgagcattgccaaatgca

agactgctataagcatgctggctagacccggtgatatcttccagataactggacagaaaatcgcccaggcaatttttaaga

aaatcaacaaaagaaaaatcctccaggtggacgtttagagcctcgggaacaacgatgaagtaaatgcaagcggtgcgt

tccagcatggttagttagctgatctgtagaaaaaacaaaaatgaacattaaaccatgctagcctggcgaacaggtgggta

aatcgttctctccagcaccaggcaggccacggggtctccggcgcgaccctcgtaaaaattgtcgctatgattgaaaaccat

cacagagagacgttcccggtggccggcgtgaatgattcgacaagatgaatacacccccggaacattggcgtccgcgagt

gaaaaaaagcgcccgaggaagcaataaggcactacaatgctcagtctcaagtccagcaaagcgatgccatgcggatg

aagcacaaaattctcaggtgcgtacaaaatgtaattactcccctcctgcacaggcagcaaagcccccgatccctccaggt

acacatacaaagcctcagcgtccatagcttaccgagcagcagcacacaacaggcgcaagagtcagagaaaggctga

gctctaacctgtccacccgctctctgctcaatatatagcccagatctacactgacgtaaaggccaaagtctaaaaatacccg

ccaaataatcacacacgcccagcacacgcccagaaaccggtgacacactcaaaaaaatacgcgcacttcctcaaacg

cccaaaactgccgtcatttccgggttcccacgctacgtcatcaaaacacgactttcaaattccgtcgaccgttaaaaacgtc

acccgccccgcccctaacggtcgcccgtctctcagccaatcagcgccccgcatccccaaattcaaacacctcatttgcata

ttaacgcgcacaaaaagtttgaggtatattattgatgatggTTAATTAA

SEQ ID NO: 59: Nucleotide Seqeunce of Preferred EMCV IRES (pIRES)

TAACGTTACTGGCCGAAGCCGCTTGGAATAAGGCCGGTGTGCGTTTGTCTATATGT

TATTTTCCACCATATTGCCGTCTTTTGGCAATGTGAGGGCCCGGAAACCTGGCCCT

GTCTTCTTGACGAGCATTCCTAGGGGTCTTTCCCCTCTCGCCAAAGGAATGCAAGG

TCTGTTGAATGTCGTGAAGGAAGCAGTTCCTCTGGAAGCTTCTTGAAGACAAACAA

CGTCTGTAGCGACCCTTTGCAGGCAGCGGAACCCCCCACCTGGCGACAGGTGCCT

CTGCGGCCAAAAGCCACGTGTATAAGATACACCTGCAAAGGCGGCACAACCCCAG

TGCCACGTTGTGAGTTGGATAGTTGTGGAAAGAGTCAAATGGCTCTCCTCAAGCGT

ATTCAACAAGGGGCTGAAGGATGCCCAGAAGGTACCCCATTGTATGGGATCTGATC

TGGGGCCTCGGTGCACATGCTTTACATGTGTTTAGTCGAGGTTAAAAAACGTCTAG

GCCCCCCGAACCACGGGGACGTGGTTTTCCTTTGAAAAACACGATGATAATATGGC

CACAACCATG

(The minimal EMCV IRES (mIRES) lacks the underlined 15 nucleotides)

SEQ ID NO: 60. Amino Acid Sequence Comprising an Immunogenic PSA,

PSCA, and PSMA Polypeptide (Encoded by by Plasmid 916 and Vectors AdC68-

734 and AdC68W-734)

MASIVGGWECEKHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRNKSVILLGRH

SLFHPEDTGQVFQVSHSFPHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAV

KVMDLPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTK

FMLCAGRWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYR

KWIKDTIVANPGSEGRGSLLTCGDVEENPGPASKAVLLALLMAGLALQPGTALLCYSCK

AQVSNEDCLQVENCTQLGEQCWTARIRAVGLLTVISKGCSLNCVDDSQDYYVGKKNIT

CCDTDLCNASGAHALQPAAAILALLPALGLLLWGPGQLGSQTLNFDLLKLAGDVESNP

GPMASARRPRWLCAGALVLAGGFFLLGFLFGWFIKSSNEATNITPKHNMKAFLDELKA

ENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQWKEFGLDSVELAHYDVLLSYPNKTHPN

YISIINEDGNEIFNTSLFEPPPPGYENVSDIVPPFSAFSPQGMPEGDLVYVNYARTEDFF

KLERDMKINCSGKIVIARYGKVFRGNKVKNAQLAGAKGVILYSDPADYFAPGVKSYPDG

WNLPGGGVQRGNILNLNGAGDPLTPGYPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQ

KLLEKMGGSAPPDSSWRGSLKVPYNVGPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGT

LRGAVEPDRYVILGGHRDSWVFGGIDPQSGAAVVHEIVRSFGTLKKEGWRPRRTILFA

SWDAEEFGLLGSTEWAEENSRLLQERGVAYINADSSIEGNYTLRVDCTPLMYSLVHNL

TKELKSPDEGFEGKSLYESWTKKSPSPEFSGMPRISKLGSGNDFEVFFQRLGIASGRA

RYTKNWETNKFSGYPLYHSVYETYELVEKFYDPMFKYHLTVAQVRGGMVFELANSIVL

PFDCRDYAVVLRKYADKIYSISMKHPQEMKTYSVSFDSLFSAVKNFTEIASKFSERLQD

FDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFYRHVIYAPSSHNKYAGESFPGIYDA

LFDIESKVDPSKAWGEVKRQIYVAAFTVQAAAETLSEVA

SEQ ID NO: 61. Nucleotide Sequence Encoding the Amino Acid Sequence

of SEQ ID NO: 60.

atggctagcatcgtcggagggtgggagtgcgaaaagcactcacagccatggcaggtcctggtcgcctcgcgcggacgc

gccgtgtgtggaggtgtgctggtccacccgcagtgggtgttgactgcggcccattgcatcagaaataagtccgtgatcctctt

ggggagacattccctgtttcaccccgaagatactggacaggtgttccaagtgagccactccttcccgcatccactgtacgac

atgagcctgctgaagaaccgctttctgcggccaggggacgactcatcacacgatttgatgctgcttcggctctcggaaccg

gccgagctcaccgacgcagtgaaggtcatggacctccctacgcaagagcctgctctcggtaccacttgttacgcatcggg

atggggctccatcgagccggaagaattcctgaccccgaaaaagctgcagtgcgtggatctgcacgtgatttcgaatgacg

tgtgcgcgcaagtgcatccacaaaaggtcactaagttcatgctgtgcgccggaaggtggaccggcggaaaatcgacctg

ttccggcgacagcggaggcccactcgtgtgcaacggtgtgctgcagggcatcactagctggggatcagaaccgtgcgcg

cttccggagcggccctcgctctacacgaaggtggtgcactaccgcaaatggattaaagataccatcgtcgcaaaccctgg

atccgaaggtaggggttcattattgacctgtggagatgtcgaagaaaacccaggacccgctagcaaagcagtgctgctgg

cgctcctgatggctggactcgcgctgcagcctggaaccgccctgctctgttactcgtgcaaggcccaagtctcgaatgagg

actgtttgcaagtggaaaactgcacccagctcggagaacaatgctggactgcacggatccgcgctgtcggcctgctgacc

gtgatctccaaagggtgctcattgaactgcgtggacgatagccaggactactacgtgggaaagaagaatatcacttgttgc

gacacggatctttgcaacgcgtccggagcgcacgccctgcagccagcagccgccattctggccctgcttccggccctggg

gttgctgctctggggtccgggccagctcggatcccagaccctgaactttgatctgctgaaactggcaggcgatgtggaaag

caacccaggcccaatggctagcgctcgcagaccgcggtggctgtgtgcaggggcgctcgtcctggcgggtggcttcttttt

gctcggctttcttttcggatggttcatcaaatcgtcaaacgaagctaccaatatcaccccgaagcacaacatgaaggcctttc

tggatgagctgaaggctgagaacattaagaagttcctctacaacttcacccagatcccacatttggcgggcactgagcag

aactttcagttggctaagcagatccagagccagtggaaggaattcggcctggactccgtcgagctggcgcattacgatgtg

ctgctgagctaccctaataagactcatccgaactatatctcgattatcaatgaggacggaaacgaaatctttaacacgtccct

cttcgagccgccaccgcctggatacgagaacgtgtcagatatcgtgcctccgttctcggccttctcgccccagggaatgcc

cgaaggggacctggtgtacgtgaactacgcaaggaccgaggacttcttcaagttggagcgggatatgaagatcaattgc

agcggaaagatcgtcatcgcccgctacggcaaagtgttccgcggcaacaaggtgaagaatgcacagttggcaggcgc

caagggcgtcatcctctactcggatcctgccgactacttcgctcctggcgtgaaatcctaccctgatggttggaatctgccag

gaggaggggtgcagaggggaaatatcctgaacctgaacggtgccggtgacccacttactccgggttacccggccaacg

aatacgcgtacaggcggggtatcgcggaagccgtcggactgccgtccatcccggtccatccgattggttactacgacgcc

cagaagctcctcgaaaagatgggaggcagcgcccctccggactcgtcatggagaggctcgctgaaggtgccatacaac

gtgggacccggattcactggaaatttcagcactcaaaaagtgaagatgcacattcactccactaacgaagtcaccaggat

ctacaacgtcatcggaaccctccggggagcggtggaaccggaccgctacgtgatcctcggtggacaccgggatagctg

ggtgttcggaggaatcgatcctcaatcgggcgcagccgtcgtccatgaaatcgtcaggtcctttggtactcttaagaaggag

ggctggcgccctagacgcactattctgttcgcctcgtgggatgccgaagaatttggtctgctcggcagcaccgaatgggctg

aggaaaactcccgcctgctccaagaacgcggagtggcgtacatcaatgccgactcatccatcgaaggaaactacacgc

tgcgggtggactgcactccactgatgtactcgctcgtgcacaacctgaccaaagaactcaaatccccagacgaaggattc

gagggaaaatcgctgtacgagtcgtggaccaagaagagcccatccccggagttcagcgggatgccgcggatctcaaa

gctcggatcaggaaatgatttcgaagtgttctttcagaggctgggaattgcgtcgggaagggctcggtacacgaaaaactg

ggaaactaacaagttctcgggatacccgctgtaccactcggtgtatgaaacttacgaactggtggagaaattctacgatcct

atgtttaagtaccacctgactgtggcccaagtgagaggcggaatggtgttcgagttggccaattcaattgtgctgccattcgat

tgccgcgactacgccgtggtgctgagaaagtacgcagacaaaatctactcaatcagcatgaagcacccacaagagatg

aaaacctactcagtctccttcgactccctcttctccgcggtgaagaacttcaccgagatcgcgagcaaattctcggagcgcc

ttcaagattttgacaaatccaatccgatcgtcctccgcatgatgaatgaccagctcatgtttctcgaacgggccttcatcgatc

cactgggacttccggaccggccgttttaccgccacgtgatctacgcgccctcgtcgcataacaagtatgctggagagagct

tcccgggtatctacgacgcattgttcgacattgagtccaaggtggatccgtccaaagcctggggtgaagtgaagcgccaa

atctacgtggcggcctttaccgtccaggcggcagcagaaaccttgagcgaggtggct

SEQ ID NO: 62. Nucleotide Sequence of Plasmid 916

ggcgtaatgctctgccagtgttacaaccaattaaccaattctgattagaaaaactcatcgagcatcaaatgaaactgcaattt

attcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccata

ggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaata

aggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagcttatgcatttctttccagactt

gttcaacaggccagccattacgctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagc

gagacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcaaatgcaaccggcgcaggaacactgcca

gcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccggggatcgcagtggtgagtaa

ccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatc

tcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatag

attgtcgcacctgattgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggc

ctcgagcaagacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacaggtcgacaatattg

gctattggccattgcatacgttgtatctatatcataatatgtacatttatattggctcatgtccaatatgaccgccatgttgacattg

attattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgttacataacttacggt

aaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgacgtatgttcccatagtaacgccaa

tagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaa

gtccgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttacgggactttcctactt

ggcagtacatctacgtattagtcatcgctattaccatggtgatgcgOttggcagtacaccaatgggcgtggatagcggtttg

actcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaa

tgtcgtaataaccccgccccgttgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgttta

gtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccg

cggccgggaacggtgcattggaacgcggattccccgtgccaagagtgactcaccgtccggatctcagcaagcaggtatg

tactctccagggtgggcctggcttccccagtcaagactccagggatttgagggacgctgtgggctcttctcttacatgtaccttt

tgcttgcctcaaccctgactatcttccaggtcaggatcccagagtcaggggtctgtattttcctgctggtggctccagttcagga

acagtaaaccctgctccgaatattgcctctcacatctcgtcaatctccgcgaggactggggaccctgtgacgaacatggct

agcatcgtcggagggtgggagtgcgaaaagcactcacagccatggcaggtcctggtcgcctcgcgcggacgcgccgtg

tgtggaggtgtgctggtccacccgcagtgggtgttgactgcggcccattgcatcagaaataagtccgtgatcctcttgggga

gacattccctgtttcaccccgaagatactggacaggtgttccaagtgagccactccttcccgcatccactgtacgacatgag

cctgctgaagaaccgctttctgcggccaggggacgactcatcacacgatttgatgctgcttcggctctcggaaccggccga

gctcaccgacgcagtgaaggtcatggacctccctacgcaagagcctgctctcggtaccacttgttacgcatcgggatggg

gctccatcgagccggaagaattcctgaccccgaaaaagctgcagtgcgtggatctgcacgtgatttcgaatgacgtgtgc

gcgcaagtgcatccacaaaaggtcactaagttcatgctgtgcgccggaaggtggaccggcggaaaatcgacctgttccg

gcgacagcggaggcccactcgtgtgcaacggtgtgctgcagggcatcactagctggggatcagaaccgtgcgcgcttcc

ggagcggccctcgctctacacgaaggtggtgcactaccgcaaatggattaaagataccatcgtcgcaaaccctggatcc

gaaggtaggggttcattattgacctgtggagatgtcgaagaaaacccaggacccgctagcaaagcagtgctgctggcgct

cctgatggctggactcgcgctgcagcctggaaccgccctgctctgttactcgtgcaaggcccaagtctcgaatgaggactg

tttgcaagtggaaaactgcacccagctcggagaacaatgctggactgcacggatccgcgctgtcggcctgctgaccgtga

tctccaaagggtgctcattgaactgcgtggacgatagccaggactactacgtgggaaagaagaatatcacttgttgcgaca

cggatctttgcaacgcgtccggagcgcacgccctgcagccagcagccgccattctggccctgcttccggccctggggttgc

tgctctggggtccgggccagctcggatcccagaccctgaactttgatctgctgaaactggcaggcgatgtggaaagcaac

ccaggcccaatggctagcgctcgcagaccgcggtggctgtgtgcaggggcgctcgtcctggcgggtggcttctttttgctcg

gctttcttttcggatggttcatcaaatcgtcaaacgaagctaccaatatcaccccgaagcacaacatgaaggcctttctggat

gagctgaaggctgagaacattaagaagttcctctacaacttcacccagatcccacatttggcgggcactgagcagaacttt

cagttggctaagcagatccagagccagtggaaggaattcggcctggactccgtcgagctggcgcattacgatgtgctgct

gagctaccctaataagactcatccgaactatatctcgattatcaatgaggacggaaacgaaatctttaacacgtccctcttcg

agccgccaccgcctggatacgagaacgtgtcagatatcgtgcctccgttctcggccttctcgccccagggaatgcccgaa

ggggacctggtgtacgtgaactacgcaaggaccgaggacttcttcaagttggagcgggatatgaagatcaattgcagcg

gaaagatcgtcatcgcccgctacggcaaagtgttccgcggcaacaaggtgaagaatgcacagttggcaggcgccaag

ggcgtcatcctctactcggatcctgccgactacttcgctcctggcgtgaaatcctaccctgatggttggaatctgccaggagg

aggggtgcagaggggaaatatcctgaacctgaacggtgccggtgacccacttactccgggttacccggccaacgaatac

gcgtacaggcggggtatcgcggaagccgtcggactgccgtccatcccggtccatccgattggttactacgacgcccaga

agctcctcgaaaagatgggaggcagcgcccctccggactcgtcatggagaggctcgctgaaggtgccatacaacgtgg

gacccggattcactggaaatttcagcactcaaaaagtgaagatgcacattcactccactaacgaagtcaccaggatctac

aacgtcatcggaaccctccggggagcggtggaaccggaccgctacgtgatcctcggtggacaccgggatagctgggtgt

tcggaggaatcgatcctcaatcgggcgcagccgtcgtccatgaaatcgtcaggtcctttggtactcttaagaaggagggct

ggcgccctagacgcactattctgttcgcctcgtgggatgccgaagaatttggtctgctcggcagcaccgaatgggctgagg

aaaactcccgcctgctccaagaacgcggagtggcgtacatcaatgccgactcatccatcgaaggaaactacacgctgc

gggtggactgcactccactgatgtactcgctcgtgcacaacctgaccaaagaactcaaatccccagacgaaggattcga

gggaaaatcgctgtacgagtcgtggaccaagaagagcccatccccggagttcagcgggatgccgcggatctcaaagct

cggatcaggaaatgatttcgaagtgttctttcagaggctgggaattgcgtcgggaagggctcggtacacgaaaaactggg

aaactaacaagttctcgggatacccgctgtaccactcggtgtatgaaacttacgaactggtggagaaattctacgatcctat

gtttaagtaccacctgactgtggcccaagtgagaggcggaatggtgttcgagttggccaattcaattgtgctgccattcgattg

ccgcgactacgccgtggtgctgagaaagtacgcagacaaaatctactcaatcagcatgaagcacccacaagagatga

aaacctactcagtctccttcgactccctcttctccgcggtgaagaacttcaccgagatcgcgagcaaattctcggagcgcctt

caagattttgacaaatccaatccgatcgtcctccgcatgatgaatgaccagctcatgtttctcgaacgggccttcatcgatcc

actgggacttccggaccggccgttttaccgccacgtgatctacgcgccctcgtcgcataacaagtatgctggagagagctt

cccgggtatctacgacgcattgttcgacattgagtccaaggtggatccgtccaaagcctggggtgaagtgaagcgccaaa

tctacgtggcggcctttaccgtccaggcggcagcagaaaccttgagcgaggtggcttaaagatctgggccctaacaaaac

aaaaagatggggttattccctaaacttcatgggttacgtaattggaagttgggggacattgccacaagatcatattgtacaaa

agatcaaacactgttttagaaaacttcctgtaaacaggcctattgattggaaagtatgtcaaaggattgtgggtcttttgggcttt

gctgctccatttacacaatgtggatatcctgccttaatgcctttgtatgcatgtatacaagctaaacaggctttcactttctcgcca

acttacaaggcctttctaagtaaacagtacatgaacctttaccccgttgctcggcaacggcctggtctgtgccaagtgtttgct

gacgcaacccccactggctggggcttggccataggccatcagcgcatgcgtggaacctttgtggctcctctgccgatccat

actgcggaactcctagccgcttgttttgctcgcagccggtctggagcaaagctcataggaactgacaattctgtcgtcctctc

gcggaaatatacatcgtttcgatctacgtatgatctttttccctctgccaaaaattatggggacatcatgaagccccttgagcat

ctgacttctggctaataaaggaaatttattttcattgcaatagtgtgttggaattttttgtgtctctcactcggaaggaattctgcatt

aatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctc

ggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgca

ggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccatag

gctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagat

accaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctccc

ttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtg

cacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgactta

tcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtg

gcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggt

agctcttgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaa

ggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatg

agattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaactt

ggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactc

SEQ ID NO: 63. Complete Sequence of the AdC68W-734 Vector

ccatcttcaataatatacctcaaactttttgtgcgcgttaatatgcaaatgaggcgtttgaatttggggaggaagggcggtgatt

ggtcgagggatgagcgaccgttaggggcggggcgagtgacgttttgatgacgtggttgcgaggaggagccagtttgcaa

gttctcgtgggaaaagtgacgtcaaacgaggtgtggtttgaacacggaaatactcaattttcccgcgctctctgacaggaaa

tgaggtgtttctgggcggatgcaagtgaaaacgggccattttcgcgcgaaaactgaatgaggaagtgaaaatctgagtaa

tttcgcgtttatggcagggaggagtatttgccgagggccgagtagactttgaccgattacgtgggggtttcgattaccgtgttttt

cacctaaatttccgcgtacggtgtcaaagtccggtgtttttactactgtaatagtaatcaattacggggtcattagttcatagccc

atatatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtc

aataatgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccc

acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattat

gcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttg

gcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtcaatgggagtttgt

tttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgcaaatgggcggtaggcgtgtac

ggtgggaggtctatataagcagagctgtccctatcagtgatagagatctccctatcagtgatagagagtttagtgaaccgtc

agatccgctagggtaccaacATGGCTAGCATCGTCGGAGGGTGGGAGTGCGAAAAGCACTC

ACAGCCATGGCAGGTCCTGGTCGCCTCGCGCGGACGCGCCGTGTGTGGAGGTGT

GCTGGTCCACCCGCAGTGGGTGTTGACTGCGGCCCATTGCATCAGAAATAAGTCC

GTGATCCTCTTGGGGAGACATTCCCTGTTTCACCCCGAAGATACTGGACAGGTGTT

CCAAGTGAGCCACTCCTTCCCGCATCCACTGTACGACATGAGCCTGCTGAAGAAC

CGCTTTCTGCGGCCAGGGGACGACTCATCACACGATTTGATGCTGCTTCGGCTCT

CGGAACCGGCCGAGCTCACCGACGCAGTGAAGGTCATGGACCTCCCTACGCAAG

AGCCTGCTCTCGGTACCACTTGTTACGCATCGGGATGGGGCTCCATCGAGCCGGA

AGAATTCCTGACCCCGAAAAAGCTGCAGTGCGTGGATCTGCACGTGATTTCGAATG

ACGTGTGCGCGCAAGTGCATCCACAAAAGGTCACTAAGTTCATGCTGTGCGCCGG

AAGGTGGACCGGCGGAAAATCGACCTGTTCCGGCGACAGCGGAGGCCCACTCGT

GTGCAACGGTGTGCTGCAGGGCATCACTAGCTGGGGATCAGAACCGTGCGCGCTT

CCGGAGCGGCCCTCGCTCTACACGAAGGTGGTGCACTACCGCAAATGGATTAAAG

ATACCATCGTCGCAAACCCTggatccgaaggtaggggttcattattgacctgtggagatgtcgaagaaaacc

caggacccGCTAGCAAAGCAGTGCTGCTGGCGCTCCTGATGGCTGGACTCGCGCTGC

AGCCTGGAACCGCCCTGCTCTGTTACTCGTGCAAGGCCCAAGTCTCGAATGAGGA

CTGTTTGCAAGTGGAAAACTGCACCCAGCTCGGAGAACAATGCTGGACTGCACGG

ATCCGCGCTGTCGGCCTGCTGACCGTGATCTCCAAAGGGTGCTCATTGAACTGCG

TGGACGATAGCCAGGACTACTACGTGGGAAAGAAGAATATCACTTGTTGCGACACG

GATCTTTGCAACGCGTCCGGAGCGCACGCCCTGCAGCCAGCAGCCGCCATTCTGG

CCCTGCTTCCGGCCCTGGGGTTGCTGCTCTGGGGTCCGGGCCAGCTCggatcccaga

ccctgaactttgatctgctgaaactggcaggcgatgtggaaagcaacccaggcccaATGGCTAGCGCTCGCA

GACCGCGGTGGCTGTGTGCAGGGGCGCTCGTCCTGGCGGGTGGCTTCTTTTTGCT

CGGCTTTCTTTTCGGATGGTTCATCAAATCGTCAAACGAAGCTACCAATATCACCCC

GAAGCACAACATGAAGGCCTTTCTGGATGAGCTGAAGGCTGAGAACATTAAGAAGT

TCCTCTACAACTTCACCCAGATCCCACATTTGGCGGGCACTGAGCAGAACTTTCAG

TTGGCTAAGCAGATCCAGAGCCAGTGGAAGGAATTCGGCCTGGACTCCGTCGAGC

TGGCGCATTACGATGTGCTGCTGAGCTACCCTAATAAGACTCATCCGAACTATATC

TCGATTATCAATGAGGACGGAAACGAAATCTTTAACACGTCCCTCTTCGAGCCGCC

ACCGCCTGGATACGAGAACGTGTCAGATATCGTGCCTCCGTTCTCGGCCTTCTCG

CCCCAGGGAATGCCCGAAGGGGACCTGGTGTACGTGAACTACGCAAGGACCGAG

GACTTCTTCAAGTTGGAGCGGGATATGAAGATCAATTGCAGCGGAAAGATCGTCAT

CGCCCGCTACGGCAAAGTGTTCCGCGGCAACAAGGTGAAGAATGCACAGTTGGCA

GGCGCCAAGGGCGTCATCCTCTACTCGGATCCTGCCGACTACTTCGCTCCTGGCG

TGAAATCCTACCCTGATGGTTGGAATCTGCCAGGAGGAGGGGTGCAGAGGGGAAA

TATCCTGAACCTGAACGGTGCCGGTGACCCACTTACTCCGGGTTACCCGGCCAAC

GAATACGCGTACAGGCGGGGTATCGCGGAAGCCGTCGGACTGCCGTCCATCCCG

GTCCATCCGATTGGTTACTACGACGCCCAGAAGCTCCTCGAAAAGATGGGAGGCA

GCGCCCCTCCGGACTCGTCATGGAGAGGCTCGCTGAAGGTGCCATACAACGTGG

GACCCGGATTCACTGGAAATTTCAGCACTCAAAAAGTGAAGATGCACATTCACTCC

ACTAACGAAGTCACCAGGATCTACAACGTCATCGGAACCCTCCGGGGAGCGGTGG

AACCGGACCGCTACGTGATCCTCGGTGGACACCGGGATAGCTGGGTGTTCGGAG

GAATCGATCCTCAATCGGGCGCAGCCGTCGTCCATGAAATCGTCAGGTCCTTTGGT

ACTCTTAAGAAGGAGGGCTGGCGCCCTAGACGCACTATTCTGTTCGCCTCGTGGG

ATGCCGAAGAATTTGGTCTGCTCGGCAGCACCGAATGGGCTGAGGAAAACTCCCG

CCTGCTCCAAGAACGCGGAGTGGCGTACATCAATGCCGACTCATCCATCGAAGGA

AACTACACGCTGCGGGTGGACTGCACTCCACTGATGTACTCGCTCGTGCACAACC

TGACCAAAGAACTCAAATCCCCAGACGAAGGATTCGAGGGAAAATCGCTGTACGA

GTCGTGGACCAAGAAGAGCCCATCCCCGGAGTTCAGCGGGATGCCGCGGATCTC

AAAGCTCGGATCAGGAAATGATTTCGAAGTGTTCTTTCAGAGGCTGGGAATTGCGT

CGGGAAGGGCTCGGTACACGAAAAACTGGGAAACTAACAAGTTCTCGGGATACCC

GCTGTACCACTCGGTGTATGAAACTTACGAACTGGTGGAGAAATTCTACGATCCTA

TGTTTAAGTACCACCTGACTGTGGCCCAAGTGAGAGGCGGAATGGTGTTCGAGTT

GGCCAATTCAATTGTGCTGCCATTCGATTGCCGCGACTACGCCGTGGTGCTGAGA

AAGTACGCAGACAAAATCTACTCAATCAGCATGAAGCACCCACAAGAGATGAAAAC

CTACTCAGTCTCCTTCGACTCCCTCTTCTCCGCGGTGAAGAACTTCACCGAGATCG

CGAGCAAATTCTCGGAGCGCCTTCAAGATTTTGACAAATCCAATCCGATCGTCCTC

CGCATGATGAATGACCAGCTCATGTTTCTCGAACGGGCCTTCATCGATCCACTGGG

ACTTCCGGACCGGCCGTTTTACCGCCACGTGATCTACGCGCCCTCGTCGCATAAC

AAGTATGCTGGAGAGAGCTTCCCGGGTATCTACGACGCATTGTTCGACATTGAGTC

CAAGGTGGATCCGTCCAAAGCCTGGGGTGAAGTGAAGCGCCAAATCTACGTGGCG

GCCTTTACCGTCCAGGCGGCAGCAGAAACCTTGAGCGAGGTGGCTTGActcgagccta

agcttctagataagatatccgatccaccggatctagataactgatcataatcagccataccacatttgtagaggttttacttgct

ttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttgttgttaacttgtttattgcagcttata

atggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtggtttgtccaaactc

atcaatgtatcttatatgctggccaccgtacatgtggcttcccatgctcgcaagccctggcccgagttcgagcacaatgtcat

gaccaggtgcaatatgcatctggggtcccgccgaggcatgttcatgccctaccagtgcaacctgaattatgtgaaggtgct

gctggagcccgatgccatgtccagagtgagcctgacgggggtgtttgacatgaatgtggaggtgtggaagattctgagata

tgatgaatccaagaccaggtgccgagcctgcgagtgcggagggaagcatgccaggttccagcccgtgtgtgtggatgtg

acggaggacctgcgacccgatcatttggtgttgccctgcaccgggacggagttcggttccagcggggaagaatctgacta

gagtgagtagtgttctggggcgggggaggacctgcatgagggccagaataactgaaatctgtgcttttctgtgtgttgcagc

agcatgagcggaagcggctcctttgagggaggggtattcagcccttatctgacggggcgtctcccctcctgggcgggagt

gcgtcagaatgtgatgggatccacggtggacggccggcccgtgcagcccgcgaactcttcaaccctgacctatgcaacc

ctgagctcttcgtcgttggacgcagctgccgccgcagctgctgcatctgccgccagcgccgtgcgcggaatggccatggg

cgccggctactacggcactctggtggccaactcgagttccaccaataatcccgccagcctgaacgaggagaagctgttgc

tgctgatggcccagctcgaggccttgacccagcgcctgggcgagctgacccagcaggtggctcagctgcaggagcaga

cgcgggccgcggttgccacggtgaaatccaaataaaaaatgaatcaataaataaacggagacggttgttgattttaacac

agagtctgaatctttatttgatttttcgcgcgcggtaggccctggaccaccggtctcgatcattgagcacccggtggatcttttcc

aggacccggtagaggtgggcttggatgttgaggtacatgggcatgagcccgtcccgggggtggaggtagctccattgca

gggcctcgtgctcgggggtggtgttgtaaatcacccagtcatagcaggggcgcagggcatggtgttgcacaatatctttgag

gaggagactgatggccacgggcagccctttggtgtaggtgtttacaaatctgttgagctgggagggatgcatgcgggggg

agatgaggtgcatcttggcctggatcttgagattggcgatgttaccgcccagatcccgcctggggttcatgttgtgcaggacc

accagcacggtgtatccggtgcacttggggaatttatcatgcaacttggaagggaaggcgtgaaagaatttggcgacgcc

tttgtgcccgcccaggttttccatgcactcatccatgatgatggcgatgggcccgtgggcggcggcctgggcaaagacgttt

cgggggtcggacacatcatagttgtggtcctgggtgaggtcatcataggccattttaatgaatttggggcggagggtgccgg

actgggggacaaaggtaccctcgatcccgggggcgtagttcccctcacagatctgcatctcccaggctttgagctcggag

ggggggatcatgtccacctgcggggcgataaagaacacggtttccggggcgggggagatgagctgggccgaaagca

agttccggagcagctgggacttgccgcagccggtggggccgtagatgaccccgatgaccggctgcaggtggtagttgag

ggagagacagctgccgtcctcccggaggaggggggccacctcgttcatcatctcgcgcacgtgcatgttctcgcgcacca

gttccgccaggaggcgctctccccccagggataggagctcctggagcgaggcgaagtttttcagcggcttgagtccgtcg

gccatgggcattttggagagggtttgrtgcaagagttccaggcggtcccagagctcggtgatgtgctctacggcatctcgatc

cagcagacctcctcgtttcgcgggttgggacggctgcgggagtagggcaccagacgatgggcgtccagcgcagccagg

gtccggtccttccagggtcgcagcgtccgcgtcagggtggtctccgtcacggtgaaggggtgcgcgccgggctgggcgct

tgcgagggtgcgcttcaggctcatccggctggtcgaaaaccgctcccgatcggcgccctgcgcgtcggccaggtagcaat

tgaccatgagttcgtagttgagcgcctcggccgcgtggcctttggcgcggagcttacctttggaagtctgcccgcaggcggg

acagaggagggacttgagggcgtagagcttgggggcgaggaagacggactcgggggcgtaggcgtccgcgccgca

gtgggcgcagacggtctcgcactccacgagccaggtgaggtcgggctggtcggggtcaaaaaccagtttcccgccgttct

ttttgatgcgtttcttacctttggtctccatgagctcgtgtccccgctgggtgacaaagaggctgtccgtgtccccgtagaccga

ctttatgggccggtcctcgagcggtgtgccgcggtcctcctcgtagaggaaccccgcccactccgagacgaaagcccgg

gtccaggccagcacgaaggaggccacgtgggacgggtagcggtcgttgtccaccagcgggtccaccttttccagggtat

gcaaacacatgtccccctcgtccacatccaggaaggtgattggcttgtaagtgtaggccacgtgaccgggggtcccggcc

gggggggtataaaagggtgcgggtccctgctcgtcctcactgtcttccggatcgctgtccaggagcgccagctgttggggt

aggtattccctctcgaaggcgggcatgacctcggcactcaggttgtcagtttctagaaacgaggaggatttgatattgacggt

gccggcggagatgcctttcaagagcccctcgtccatctggtcagaaaagacgatctttttgttgtcgagcttggtggcgaag

gagccgtagagggcgttggagaggagcttggcgatggagcgcatggtctggtttttttccttgtcggcgcgctccttggcggc

gatgttgagctgcacgtactcgcgcgccacgcacttccattcggggaagacggtggtcagctcgtcgggcacgattctgac

ctgccagccccgattatgcagggtgatgaggtccacactggtggccacctcgccgcgcaggggctcattagtccagcag

aggcgtccgcccttgcgcgagcagaaggggggcagggggtccagcatgacctcgtcgggggggtcggcatcgatggt

gaagatgccgggcaggaggtcggggtcaaagtagctgatggaagtggccagatcgtccagggcagcttgccattcgcg

cacggccagcgcgcgctcgtagggactgaggggcgtgccccagggcatgggatgggtaagcgcggaggcgtacatg

ccgcagatgtcgtagacgtagaggggctcctcgaggatgccgatgtaggtggggtagcagcgccccccgcggatgctg

gcgcgcacgtagtcatacagctcgtgcgagggggcgaggagccccgggcccaggttggtgcgactgggcttttcggcgc

ggtagacgatctggcggaaaatggcatgcgagttggaggagatggtgggcctttggaagatgttgaagtgggcgtgggg

cagtccgaccgagtcgcggatgaagtgggcgtaggagtcttgcagcttggcgacgagctcggcggtgactaggacgtcc

agagcgcagtagtcgagggtctcctggatgatgtcatacttgagctgtcccttttgtttccacagctcgcggttgagaaggaa

ctcttcgcggtccttccagtactcttcgagggggaacccgtcctgatctgcacggtaagagcctagcatgtagaactggttga

cggccttgtaggcgcagcagcccttctccacggggagggcgtaggcctgggcggccttgcgcagggaggtgtgcgtgag

ggcgaaagtgtccctgaccatgaccttgaggaactggtgcttgaagtcgatatcgtcgcagcccccctgctcccagagctg

gaagtccgtgcgcttcttgtaggcggggttgggcaaagcgaaagtaacatcgttgaagaggatcttgcccgcgcggggca

taaagttgcgagtgatgcggaaaggttggggcacctcggcccggttgttgatgacctgggcggcgagcacgatctcgtcg

aagccgttgatgttgtggcccacgatgtagagttccacgaatcgcggacggcccttgacgtggggcagtttcttgagctcctc

gtaggtgagctcgtcggggtcgctgagcccgtgctgctcgagcgcccagtcggcgagatgggggttggcgcggaggaa

ggaagtccagagatccacggccagggcggtttgcagacggtcccggtactgacggaactgctgcccgacggccatttttt

cgggggtgacgcagtagaaggtgcgggggtccccgtgccagcgatcccatttgagctggagggcgagatcgagggcg

agctcgacgagccggtcgtccccggagagtttcatgaccagcatgaaggggacgagctgcttgccgaaggaccccatc

caggtgtaggtttccacatcgtaggtgaggaagagcctttcggtgcgaggatgcgagccgatggggaagaactggatctc

ctgccaccaattggaggaatggctgttgatgtgatggaagtagaaatgccgacggcgcgccgaacactcgtgcttgtgttta

tacaagcggccacagtgctcgcaacgctgcacgggatgcacgtgctgcacgagctgtacctgagttcctttgacgaggaa

tttcagtgggaagtggagtcgtggcgcctgcatctcgtgctgtactacgtcgtggtggtcggcctggccctcttctgcctcgatg

gtggtcatgctgacgagcccgcgcgggaggcaggtccagacctcggcgcgagcgggtcggagagcgaggacgagg

gcgcgcaggccggagctgtccagggtcctgagacgctgcggagtcaggtcagtgggcagcggcggcgcgcggttgact

tgcaggagtttttccagggcgcgcgggaggtccagatggtacttgatctccaccgcgccattggtggcgacgtcgatggctt

gcagggtcccgtgcccctggggtgtgaccaccgtcccccgtttcttcttgggcggctggggcgacgggggcggtgcctcttc

catggttagaagcggcggcgaggacgcgcgccgggcggcaggggcggctcggggcccggaggcaggggcggcag

gggcacgtcggcgccgcgcgcgggtaggttctggtactgcgcccggagaagactggcgtgagcgacgacgcgacggtt

gacgtcctggatctgacgcctctgggtgaaggccacgggacccgtgagtttgaacctgaaagagagttcgacagaatca

atctcggtatcgttgacggcggcctgccgcaggatctcttgcacgtcgcccgagttgtcctggtaggcgatctcggtcatgaa

ctgctcgatctcctcctcttgaaggtctccgcggccggcgcgctccacggtggccgcgaggtcgttggagatgcggcccat

gagctgcgagaaggcgttcatgcccgcctcgttccagacgcggctgtagaccacgacgccctcgggatcgcGggcgcg

catgaccacctgggcgaggttgagctccacgtggcgcgtgaagaccgcgtagttgcagaggcgctggtagaggtagttg

agcgtggtggcgatgtgctcggtgacgaagaaatacatgatccagcggcggagcggcatctcgctgacgtcgcccagc

gcctccaaacgttccatggcctcgtaaaagtccacggcgaagttgaaaaactgggagttgcgcgccgagacggtcaact

cctcctccagaagacggatgagctcggcgatggtggcgcgcacctcgcgctcgaaggcccccgggagttcctccacttc

ctcttcttcctcctccactaacatctcttctacttcctcctcaggcggcagtggtggcgggggagggggcctgcgtcgccggc

ggcgcacgggcagacggtcgatgaagcgctcgatggtctcgccgcgccggcgtcgcatggtctcggtgacggcgcgcc

cgtcctcgcggggccgcagcgtgaagacgccgccgcgcatctccaggtggccgggggggtccccgttgggcagggag

agggcgctgacgatgcatcttatcaattgccccgtagggactccgcgcaaggacctgagcgtctcgagatccacgggatc

tgaaaaccgctgaacgaaggcttcgagccagtcgcagtcgcaaggtaggctgagcacggtttcttctggcgggtcatgttg

gttgggagcggggcgggcgatgctgctggtgatgaagttgaaataggcggttctgagacggcggatggtggcgaggag

caccaggtctttgggcccggcttgctggatgcgcagacggtcggccatgccccaggcgtggtcctgacacctggccaggt

ccttgtagtagtcctgcatgagccgctccacgggcacctcctcctcgcccgcgcggccgtgcatgcgcgtgagcccgaag

ccgcgctggggctggacgagcgccaggtcggcgacgacgcgctcggcgaggatggcttgctggatctgggtgagggtg

gtctggaagtcatcaaagtcgacgaagcggtggtaggctccggtgttgatggtgtaggagcagttggccatgacggacca

gttgacggtctggtggcccggacgcacgagctcgtggtacttgaggcgcgagtaggcgcgcgtgtcgaagatgtagtcgtt

gcaggtgcgcaccaggtactggtagccgatgaggaagtgcggcggcggctggcggtagagcggccatcgctcggtgg

cgggggcgccgggcgcgaggtcctcgagcatggtgcggtggtagccgtagatgtacctggacatccaggtgatgccgg

cggcggtggtggaggcgcgcgggaactcgcggacgcggttccagatgttgcgcagcggcaggaagtagttcatggtgg

gcacggtctggcccgtgaggcgcgcgcagtcgtggatgctctatacgggcaaaaacgaaagcggtcagcggctcgact

ccgtggcctggaggctaagcgaacgggttgggctgcgcgtgtaccccggttcgaatctcgaatcaggctggagccgcag

ctaacgtggtattggcactcccgtctcgacccaagcctgcaccaaccctccaggatacggaggcgggtcgttttgcaactttt

ttttggaggccggatgagactagtaagcgcggaaagcggccgaccgcgatggctcgctgccgtagtctggagaagaatc

gccagggttgcgttgcggtgtgccccggttcgaggccggccggattccgcggctaacgagggcgtggctgccccgtcgttt

ccaagaccccatagccagccgacttctccagttacggagcgagcccctcttttgttttgtttgtttttgccagatgcatcccgtac

tgcggcagatgcgcccccaccaccctccaccgcaacaacagccccctccacagccggcgcttctgcccccgccccagc

agcaacttccagccacgaccgccgcggccgccgtgagcggggctggacagagttatgatcaccagctggccttggaag

agggcgaggggctggcgcgcctgggggcgtcgtcgccggagcggcacccgcgcgtgcagatgaaaagggacgctcg

cgaggcctacgtgcccaagcagaacctgttcagagacaggagcggcgaggagcccgaggagatgcgcgcggcccg

gttccacgcggggcgggagctgcggcgcggcctggaccgaaagagggtgctgagggacgaggatttcgaggcggac

gagctgacggggatcagccccgcgcgcgcgcacgtggccgcggccaacctggtcacggcgtacgagcagaccgtga

aggaggagagcaacttccaaaaatccttcaacaaccacgtgcgcaccctgatcgcgcgcgaggaggtgaccctgggc

ctgatgcacctgtgggacctgctggaggccatcgtgcagaaccccaccagcaagccgctgacggcgcagctgttcctggt

ggtgcagcatagtcgggacaacgaagcgttcagggaggcgctgctgaatatcaccgagcccgagggccgctggctcct

ggacctggtgaacattctgcagagcatcgtggtgcaggagcgcgggctgccgctgtccgagaagctggcggccatcaac

ttctcggtgctgagtttgggcaagtactacgctaggaagatctacaagaccccgtacgtgcccatagacaaggaggtgaa

gatcgacgggttttacatgcgcatgaccctgaaagtgctgaccctgagcgacgatctgggggtgtaccgcaacgacagg

atgcaccgtgcggtgagcgccagcaggcggcgcgagctgagcgaccaggagctgatgcatagtctgcagcgggccct

gaccggggccgggaccgagggggagagctactttgacatgggcgcggacctgcactggcagcccagccgccgggcc

ttggaggcggcggcaggaccctacgtagaagaggtggacgatgaggtggacgaggagggcgagtacctggaagact

gatggcgcgaccgtatttttgctagatgcaacaacaacagccacctcctgatcccgcgatgcgggcggcgctgcagagc

cagccgtccggcattaactcctcggacgattggacccaggccatgcaacgcatcatggcgctgacgacccgcaacccc

gaagcctttagacagcagccccaggccaaccggctctcggccatcctggaggccgtggtgccctcgcgctccaacccca

cgcacgagaaggtcctggccatcgtgaacgcgctggtggagaacaaggccatccgcggcgacgaggccggcctggtg

tacaacgcgctgctggagcgcgtggcccgctacaacagcaccaacgtgcagaccaacctggaccgcatggtgaccga

cgtgcgcgaggccgtggcccagcgcgagcggttccaccgcgagtccaacctgggatccatggtggcgctgaacgccttc

ctcagcacccagcccgccaacgtgccccggggccaggaggactacaccaacttcatcagcgccctgcgcctgatggtg

accgaggtgccccagagcgaggtgtaccagtccgggccggactacttcttccagaccagtcgccagggcttgcagaccg

tgaacctgagccaggctttcaagaacttgcagggcctgtggggcgtgcaggccccggtcggggaccgcgcgacggtgtc

gagcctgctgacgccgaactcgcgcctgctgctgctgctggtggcccccttcacggacagcggcagcatcaaccgcaac

tcgtacctgggctacctgattaacctgtaccgcgaggccatcggccaggcgcacgtggacgagcagacctaccaggag

atcacccacgtgagccgcgccctgggccaggacgacccgggcaacctggaagccaccctgaactttttgctgaccaac

cggtcgcagaagatcccgccccagtacgcgctcagcaccgaggaggagcgcatcctgcgttacgtgcagcagagcgt

gggcctgttcctgatgcaggagggggccacccccagcgccgcgctcgacatgaccgcgcgcaacatggagcccagca

tgtacgccagcaaccgcccgttcatcaataaactgatggactacttgcatcgggcggccgccatgaactctgactatttcac

caacgccatcctgaatccccactggctcccgccgccggggttctacacgggcgagtacgacatgcccgaccccaatgac

gggttcctgtgggacgatgtggacagcagcgtgttctccccccgaccgggtgctaacgagcgccccttgtggaagaagga

aggcagcgaccgacgcccgtcctcggcgctgtccggccgcgagggtgctgccgcggcggtgcccgaggccgccagtc

ctttcccgagcttgcccttctcgctgaacagtatccgcagcagcgagctgggcaggatcacgcgcccgcgcttgctgggcg

aagaggagtacttgaatgactcgctgttgagacccgagcgggagaagaacttccccaataacgggatagaaagcctgg

tggacaagatgagccgctggaagacgtatgcgcaggagcacagggacgatccccgggcgtcgcagggggccacga

gccggggcagcgccgcccgtaaacgccggtggcacgacaggcagcggggacagatgtgggacgatgaggactccg

ccgacgacagcagcgtgttggacttgggtgggagtggtaacccgttcgctcacctgcgcccccgtatcgggcgcatgatgt

aagagaaaccgaaaataaatgatactcaccaaggccatggcgaccagcgtgcgttcgtttcttctctgttgttgttgtatctag

tatgatgaggcgtgcgtacccggagggtcctcctccctcgtacgagagcgtgatgcagcaggcgatggcggcggcggcg

atgcagcccccgctggaggctccttacgtgcccccgcggtacctggcgcctacggaggggcggaacagcattcgttactc

ggagctggcacccttgtacgataccacccggttgtacctggtggacaacaagtcggcggacatcgcctcgctgaactacc

agaacgaccacagcaacttcctgaccaccgtggtgcagaacaatgacttcacccccacggaggccagcacccagacc

atcaactttgacgagcgctcgcggtggggcggccagctgaaaaccatcatgcacaccaacatgcccaacgtgaacgag

ttcatgtacagcaacaagttcaaggcgcgggtgatggtctcccgcaagacccccaatggggtgacagtgacagaggatt

atgatggtagtcaggatgagctgaagtatgaatgggtggaatttgagctgcccgaaggcaacttctcggtgaccatgacca

tcgacctgatgaacaacgccatcatcgacaattacttggcggtggggcggcagaacggggtgctggagagcgacatcg

gcgtgaagttcgacactaggaacttcaggctgggctgggaccccgtgaccgagctggtcatgcccggggtgtacaccaa

cgaggctttccatcccgatattgtcttgctgcccggctgcggggtggacttcaccgagagccgcctcagcaacctgctgggc

attcgcaagaggcagcccttccaggaaggcttccagatcatgtacgaggatctggaggggggcaacatccccgcgctcc

tggatgtcgacgcctatgagaaaagcaaggaggatgcagcagctgaagcaactgcagccgtagctaccgcctctaccg

aggtcaggggcgataattttgcaagcgccgcagcagtggcagcggccgaggcggctgaaaccgaaagtaagatagtc

attcagccggtggagaaggatagcaagaacaggagctacaacgtactaccggacaagataaacaccgcctaccgca

gctggtacctagcctacaactatggcgaccccgagaagggcgtgcgctcctggacgctgctcaccacctcggacgtcac

ctgcggcgtggagcaagtctactggtcgctgcccgacatgatgcaagacccggtcaccttccgctccacgcgtcaagttag

caactacccggtggtgggcgccgagctcctgcccgtctactccaagagcttcttcaacgagcaggccgtctactcgcagc

agctgcgcgccttcacctcgcttacgcacgtcttcaaccgcttccccgagaaccagatcctcgtccgcccgcccgcgccca

ccattaccaccgtcagtgaaaacgttcctgctctcacagatcacgggaccctgccgctgcgcagcagtatccggggagtc

cagcgcgtgaccgttactgacgccagacgccgcacctgcccctacgtctacaaggccctgggcatagtcgcgccgcgcg

tcctctcgagccgcaccttctaaatgtccattctcatctcgcccagtaataacaccggttggggcctgcgcgcgcccagcaa

gatgtacggaggcgctcgccaacgctccacgcaacaccccgtgcgcgtgcgcgggcacttccgcgctccctggggcgc

cctcaagggccgcgtgcggtcgcgcaccaccgtcgacgacgtgatcgaccaggtggtggccgacgcgcgcaactaca

cccccgccgccgcgcccgtctccaccgtggacgccgtcatcgacagcgtggtggcCgacgcgcgccggtacgcccgc

gccaagagccggcggcggcgcatcgcccggcggcaccggagcacccccgccatgcgcgcggcgcgagccttgctgc

gcagggccaggcgcacgggacgcagggccatgctcagggcggccagacgcgcggcttcaggcgccagcgccggca

ggacccggagacgcgcggccacggcggcggcagcggccatcgccagcatgtcccgcccgcggcgagggaacgtgt

actgggtgcgcgacgccgccaccggtgtgcgcgtgcccgtgcgcacccgcccccctcgcacttgaagatgttcacttcgc

gatgttgatgtgtcccagcggcgaggaggatgtccaagcgcaaattcaaggaagagatgctccaggtcatcgcgcctga

gatctacggccctgcggtggtgaaggaggaaagaaagccccgcaaaatcaagcgggtcaaaaaggacaaaaagga

agaagaaagtgatgtggacggattggtggagtttgtgcgcgagttcgccccccggcggcgcgtgcagtggcgcgggcgg

aaggtgcaaccggtgctgagacccggcaccaccgtggtcttcacgcccggcgagcgctccggcaccgcttccaagcgc

tcctacgacgaggtgtacggggatgatgatattctggagcaggcggccgagcgcctgggcgagtttgcttacggcaagcg

cagccgttccgcaccgaaggaagaggcggtgtccatcccgctggaccacggcaaccccacgccgagcctcaagcccg

tgaccttgcagcaggtgctgccgaccgcggcgccgcgccgggggttcaagcgcgagggcgaggatctgtaccccacca

tgcagctgatggtgcccaagcgccagaagctggaagacgtgctggagaccatgaaggtggacccggacgtgcagccc

gaggtcaaggtgcggcccatcaagcaggtggccccgggcctgggcgtgcagaccgtggacatcaagattcccacgga

gcccatggaaacgcagaccgagcccatgatcaagcccagcaccagcaccatggaggtgcagacggatccctggatg

ccatcggctcctagtcgaagaccccggcgcaagtacggcgcggccagcctgctgatgcccaactacgcgctgcatccttc

catcatccccacgccgggctaccgcggcacgcgcttctaccgcggtcataccagcagccgccgccgcaagaccaccac

tcgccgccgccgtcgccgcaccgccgctgcaaccacccctgccgccctggtgcggagagtgtaccgccgcggccgcgc

acctctgaccctgccgcgcgcgcgctaccacccgagcatcgccatttaaactttcgccTgctttgcagatcaatggccctca

catgccgccttcgcgttcccattacgggctaccgaggaagaaaaccgcgccgtagaaggctggcggggaacgggatgc

gtcgccaccaccaccggcggcggcgcgccatcagcaagcggttggggggaggcttcctgcccgcgctgatccccatca

tcgccgcggcgatcggggcgatccccggcattgcttccgtggcggtgcaggcctctcagcgccactgagacacacttgga

aacatcttgtaataaaccAatggactctgacgctcctggtcctgtgatgtgttttcgtagacagatggaagacatcaatttttcg

tccctggctccgcgacacggcacgcggccgttcatgggcacctggagcgacatcggcaccagccaactgaacggggg

cgccttcaattggagcagtctctggagcgggcttaagaatttcgggtccacgcttaaaacctatggcagcaaggcgtggaa

cagcaccacagggcaggcgctgagggataagctgaaagagcagaacttccagcagaaggtggtcgatgggctcgcct

cgggcatcaacggggtggtggacctggccaaccaggccgtgcagcggcagatcaacagccgcctggacccggtgcc

gcccgccggctccgtggagatgccgcaggtggaggaggagctgcctcccctggacaagcggggcgagaagcgaccc

cgccccgatgcggaggagacgctgctgacgcacacggacgagccgcccccgtacgaggaggcggtgaaactgggtc

tgcccaccacgcggcccatcgcgcccctggccaccggggtgctgaaacccgaaaagcccgcgaccctggacttgcctc

ctccccagccttcccgcccctctacagtggctaagcccctgccgccggtggccgtggcccgcgcgcgacccgggggcac

cgcccgccctcatgcgaactggcagagcactctgaacagcatcgtgggtctgggagtgcagagtgtgaagcgccgccg

ctgctattaaacctaccgtagcgcttaacttgcttgtctgtgtgtgtatgtattatgtcgccgccgccgctgtccaccagaagga

ggagtgaagaggcgcgtcgccgagttgcaagatggccaccccatcgatgctgccccagtgggcgtacatgcacatcgc

cggacaggacgcttcggagtacctgagtccgggtctggtgcagtttgcccgcgccacagacacctacttcagtctgggga

acaagtttaggaaccccacggtggcgcccacgcacgatgtgaccaccgaccgcagccagcggctgacgctgcgcttcg

tgcccgtggaccgcgaggacaacacctactcgtacaaagtgcgctacacgctggccgtgggcgacaaccgcgtgctgg

acatggccagcacctactttgacatccgcggcgtgctggatcggggccctagcttcaaaccctactccggcaccgcctac

aacagtctggcccccaagggagcacccaacacttgtcagtggacatataaagccgatggtgaaactgccacagaaaa

aacctatacatatggaaatgcacccgtgcagggcattaacatcacaaaagatggtattcaacttggaactgacaccgatg

atcagccaatctacgcagataaaacctatcagcctgaacctcaagtgggtgatgctgaatggcatgacatcactggtactg

atgaaaagtatggaggcagagctcttaagcctgataccaaaatgaagccttgttatggttcttttgccaagcctactaataaa

gaaggaggtcaggcaaatgtgaaaacaggaacaggcactactaaagaatatgacatagacatggctttctttgacaaca

gaagtgcggctgctgctggcctagctccagaaattgttttgtatactgaaaatgtggatttggaaactccagatacccatattg

tatacaaagcaggcacagatgacagcagctcttctattaatttgggtcagcaagccatgcccaacagacctaactacattg

gtttcagagacaactttatcgggctcatgtactacaacagcactggcaatatgggggtgctggccggtcaggcttctcagct

gaatgctgtggttgacttgcaagacagaaacaccgagctgtcctaccagctcttgcttgactctctgggtgacagaacccgg

tatttcagtatgtggaatcaggcggtggacagctatgatcctgatgtgcgcattattgaaaatcatggtgtggaggatgaactt

cccaactattgtttccctctggatgctgttggcagaacagatacttatcagggaattaaggctaatggaactgatcaaaccac

atggaccaaagatgacagtgtcaatgatgctaatgagataggcaagggtaatccattcgccatggaaatcaacatccaa

gccaacctgtggaggaacttcctctacgccaacgtggccctgtacctgcccgactcttacaagtacacgccggccaatgtt

accctgcccaccaacaccaacacctacgattacatgaacggccgggtggtggcgccctcgctggtggactcctacatca

acatcggggcgcgctggtcgctggatcccatggacaacgtgaaccccttcaaccaccaccgcaatgcggggctgcgcta

ccgctccatgctcctgggcaacgggcgctacgtgcccttccacatccaggtgccccagaaatttttcgccatcaagagcctc

ctgctcctgcccgggtcctacacctacgagtggaacttccgcaaggacgtcaacatgatcctgcagagctccctcggcaa

cgacctgcgcacggacggggcctccatctccttcaccagcatcaacctctacgccaccttcttccccatggcgcacaacac

ggcctccacgctcgaggccatgctgcgcaacgacaccaacgaccagtccttcaacgactacctctcggcggccaacatg

ctctaccccatcccggccaacgccaccaacgtgcccatctccatcccctcgcgcaactgggccgccttccgcggctggtc

cttcacgcgtctcaagaccaaggagacgccctcgctgggctccgggttcgacccctacttcgtctactcgggctccatcccc

tacctcgacggcaccttctacctcaaccacaccttcaagaaggtctccatcaccttcgactcctccgtcagctggcccggca

acgaccggctcctgacgcccaacgagttcgaaatcaagcgcaccgtcgacggcgagggctacaacgtggcccagtgc

aacatgaccaaggactggttcctggtccagatgctggcccactacaacatcggctaccagggcttctacgtgcccgaggg

ctacaaggaccgcatgtactccttcttccgcaacttccagcccatgagccgccaggtggtggacgaggtcaactacaagg

actaccaggccgtcaccctggcctaccagcacaacaactcgggcttcgtcggctacctcgcgcccaccatgcgccaggg

ccagccctaccccgccaactacccctacccgctcatcggcaagagcgccgtcaccagcgtcacccagaaaaagttcctc

tgcgacagggtcatgtggcgcatccccttctccagcaacttcatgtccatgggcgcgctcaccgacctcggccagaacatg

ctctatgccaactccgcccacgcgctagacatgaatttcgaagtcgaccccatggatgagtccacccttctctatgttgtcttc

gaagtcttcgacgtcgtccgagtgcaccagccccaccgcggcgtcatcgaggccgtctacctgcgcacccccttctcggc

cggtaacgccaccacctaagctcttgcttcttgcaagccatggccgcgggctccggcgagcaggagctcagggccatcat

ccgcgacctgggctgcgggccctacttcctgggcaccttcgataagcgcttcccgggattcatggccccgcacaagctgg

cctgcgccatcgtcaacacggccggccgcgagaccgggggcgagcactggctggccttcgcctggaacccgcgctcg

aacacctgctacctcttcgaccccttcgggttctcggacgagcgcctcaagcagatctaccagttcgagtacgagggcctg

ctgcgccgcagcgccctggccaccgaggaccgctgcgtcaccctggaaaagtccacccagaccgtgcagggtccgcg

ctcggccgcctgcgggctcttctgctgcatgttcctgcacgccttcgtgcactggcccgaccgccccatggacaagaaccc

caccatgaacttgctgacgggggtgcccaacggcatgctccagtcgccccaggtggaacccaccctgcgccgcaacca

ggaggcgctctaccgcttcctcaactcccactccgcctactttcgctcccaccgcgcgcgcatcgagaaggccaccgcctt

cgaccgcatgaatcaagacatgtaaaccgtgtgtgtatgttaaatgtctttaataaacagcactttcatgttacacatgcatctg

agatgatttatttagaaatcgaaagggttctgccgggtctcggcatggcccgcgggcagggacacgttgcggaactggtac

ttggccagccacttgaactcggggatcagcagtttgggcagcggggtgtcggggaaggagtcggtccacagcttccgcgt

cagttgcagggcgcccagcaggtcgggcgcggagatcttgaaatcgcagttgggacccgcgttctgcgcgcgggagttg

cggtacacggggttgcagcactggaacaccatcagggccgggtgcttcacgctcgccagcaccgtcgcgtcggtgatgc

tctccacgtcgaggtcctcggcgttggccatcccgaagggggtcatcttgcaggtctgccttcccatggtgggcacgcaccc

gggcttgtggttgcaatcgcagtgcagggggatcagcatcatctgggcctggtcggcgttcatccccgggtacatggccttc

atgaaagcctccaattgcctgaacgcctgctgggccttggctccctcggtgaagaagaccccgcaggacttgctagagaa

ctggttggtggcgcacccggcgtcgtgcacgcagcagcgcgcgtcgttgttggccagctgcaccacgctgcgcccccag

cggttctgggtgatcttggcccggtcggggttctccttcagcgcgcgctgcccgttctcgctcgccacatccatctcgatcatgt

gctccttctggatcatggtggtcccgtgcaggcaccgcagcttgccctcggcctcggtgcacccgtgcagccacagcgcgc

acccggtgcactcccagttcttgtgggcgatctgggaatgcgcgtgcacgaagccctgcaggaagcggcccatcatggtg

gtcagggtcttgttgctagtgaaggtcagcggaatgccgcggtgctcctcgttgatgtacaggtggcagatgcggcggtaca

cctcgccctgctcgggcatcagctggaagttggctttcaggtcggtctccacgcggtagcggtccatcagcatagtcatgatt

tccatacccttctcccaggccgagacgatgggcaggctcatagggttcttcaccatcatcttagcgctagcagccgcggcc

agggggtcgctctcgtccagggtctcaaagctccgcttgccgtccttctcggtgatccgcaccggggggtagctgaagccc

acggccgccagctcctcctcggcctgtctttcgtcctcgctgtcctggctgacgtcctgcaggaccacatgcttggtcttgcgg

ggtttcttcttgggcggcagcggcggcggagatgttggagatggcgagggggagcgcgagttctcgctcaccactactatc

tcttcctcttcttggtccgaggccacgcggcggtaggtatgtctcttcgggggcagaggcggaggcgacgggctctcgccg

ccgcgacttggcggatggctggcagagccccttccgcgttcgggggtgcgctcccggcggcgctctgactgacttcctccg

cggccggccattgtgttctcctagggaggaacaacaagcatggagactcagccatcgccaacctcgccatctgccccca

ccgccgacgagaagcagcagcagcagaatgaaagcttaaccgccccgccgcccagccccgccacctccgacgcgg

ccgtcccagacatgcaagagatggaggaatccatcgagattgacctgggctatgtgacgcccgcggagcacgaggag

gagctggcagtgcgcttttcacaagaagagatacaccaagaacagccagagcaggaagcagagaatgagcagagtc

aggctgggctcgagcatgacggcgactacctccacctgagcgggggggaggacgcgctcatcaagcatctggcccgg

caggccaccatcgtcaaggatgcgctgctcgaccgcaccgaggtgcccctcagcgtggaggagctcagccgcgcctac

gagttgaacctcttctcgccgcgcgtgccccccaagcgccagcccaatggcacctgcgagcccaacccgcgcctcaact

tctacccggtcttcgcggtgcccgaggccctggccacctaccacatctttttcaagaaccaaaagatccccgtctcctgccg

cgccaaccgcacccgcgccgacgcccttttcaacctgggtcccggcgcccgcctacctgatatcgcctccttggaagagg

ttcccaagatcttcgagggtctgggcagcgacgagactcgggccgcgaacgctctgcaaggagaaggaggagagcat

gagcaccacagcgccctggtcgagttggaaggcgacaacgcgcggctggcggtgctcaaacgcacggtcgagctgac

ccatttcgcctacccggctctgaacctgccccccaaagtcatgagcgcggtcatggaccaggtgctcatcaagcgcgcgt

cgcccatctccgaggacgagggcatgcaagactccgaggagggcaagcccgtggtcagcgacgagcagctggcccg

gtggctgggtcctaatgctagtccccagagtttggaagagcggcgcaaactcatgatggccgtggtcctggtgaccgtgga

gctggagtgcctgcgccgcttcttcgccgacgcggagaccctgcgcaaggtcgaggagaacctgcactacctcttcaggc

acgggttcgtgcgccaggcctgcaagatctccaacgtggagctgaccaacctggtctcctacatgggcatcttgcacgag

aaccgcctggggcagaacgtgctgcacaccaccctgcgcggggaggcccggcgcgactacatccgcgactgcgtcta

cctctacctctgccacacctggcagacgggcatgggcgtgtggcagcagtgtctggaggagcagaacctgaaagagctc

tgcaagctcctgcagaagaacctcaagggtctgtggaccgggttcgacgagcgcaccaccgcctcggacctggccgac

ctcattttccccgagcgcctcaggctgacgctgcgcaacggcctgcccgactttatgagccaaagcatgttgcaaaactttc

gctctttcatcctcgaacgctccggaatcctgcccgccacctgctccgcgctgccctcggacttcgtgccgctgaccttccgc

gagtgccccccgccgctgtggagccactgctacctgctgcgcctggccaactacctggcctaccactcggacgtgatcga

ggacgtcagcggcgagggcctgctcgagtgccactgccgctgcaacctctgcacgccgcaccgctccctggcctgcaac

ccccagctgctgagcgagacccagatcatcggcaccttcgagttgcaagggcccagcgaaggcgagggttcagccgcc

aaggggggtctgaaactcaccccggggctgtggacctcggcctacttgcgcaagttcgtgcccgaggactaccatcccttc

gagatcaggttctacgaggaccaatcccatccgcccaaggccgagctgtcggcctgcgtcatcacccagggggcgatcc

tggcccaattgcaagccatccagaaatcccgccaagaattcttgctgaaaaagggccgcggggtctacctcgaccccca

gaccggtgaggagctcaaccccggcttcccccaggatgccccgaggaaacaagaagctgaaagtggagctgccgcc

cgtggaggatttggaggaagactgggagaacagcagtcaggcagaggaggaggagatggaggaagactgggacag

cactcaggcagaggaggacagcctgcaagacagtctggaggaagacgaggaggaggcagaggaggaggtggaag

aagcagccgccgccagaccgtcgtcctcggcgggggagaaagcaagcagcacggataccatctccgctccgggtcgg

ggtcccgctcgaccacacagtagatgggacgagaccggacgattcccgaaccccaccacccagaccggtaagaagg

agcggcagggatacaagtcctggcgggggcacaaaaacgccatcgtctcctgcttgcaggcctgcgggggcaacatct

ccttcacccggcgctacctgctcttccaccgcggggtgaactttccccgcaacatcttgcattactaccgtcacctccacagc

ccctactacttccaagaagaggcagcagcagcagaaaaagaccagcagaaaaccagcagctagaaaatccacagc

ggcggcagcaggtggactgaggatcgcggcgaacgagccggcgcaaacccgggagctgaggaaccggatctttccc

accctctatgccatcttccagcagagtcgggggcaggagcaggaactgaaagtcaagaaccgttctctgcgctcgctcac

ccgcagttgtctgtatcacaagagcgaagaccaacttcagcgcactctcgaggacgccgaggctctcttcaacaagtact

gcgcgctcactcttaaagagtagcccgcgcccgcccagtcgcagaaaaaggcgggaattacgtcacctgtgcccttcgc

cctagccgcctccacccatcatcatgagcaaagagattcccacgccttacatgtggagctaccagccccagatgggcctg

gccgccggtgccgcccaggactactccacccgcatgaattggctcagcgccgggcccgcgatgatctcacgggtgaatg

acatccgcgcccaccgaaaccagatactcctagaacagtcagcgctcaccgccacgccccgcaatcacctcaatccgc

gtaattggcccgccgccctggtgtaccaggaaattccccagcccacgaccgtactacttccgcgagacgcccaggccga

agtccagctgactaactcaggtgtccagctggcgggcggcgccaccctgtgtcgtcaccgccccgctcagggtataaagc

ggctggtgatccggggcagaggcacacagctcaacgacgaggtggtgagctcttcgctgggtctgcgacctgacggagt

cttccaactcgccggatcggggagatcttccttcacgcctcgtcaggccgtcctgactttggagagttcgtcctcgcagcccc

gctcgggtggcatcggcactctccagttcgtggaggagttcactccctcggtctacttcaaccccttctccggctcccccggc

cactacccggacgagttcatcccgaacttcgacgccatcagcgagtcggtggacggctacgattgaatgtcccatggtgg

cgcagctgacctagctcggcttcgacacctggaccactgccgccgcttccgctgcttcgctcgggatctcgccgagtttgcct

actttgagctgcccgaggagcaccctcagggcccggcccacggagtgcggatcgtcgtcgaagggggcctcgactccc

acctgcttcggatcttcagccagcgtccgatcctggtcgagcgcgagcaaggacagacccttctgactctgtactgcatctg

caaccaccccggcctgcatgaaagtctttgttgtctgctgtgtactgagtataataaaagctgagatcagcgactactccgg

acttccgtgtgttcctgaatccatcaaccagtctttgttcttcaccgggaacgagaccgagctccagctccagtgtaagcccc

acaagaagtacctcacctggctgttccagggctccccgatcgccgttgtcaaccactgcgacaacgacggagtcctgctg

agcggccctgccaaccttactttttccacccgcagaagcaagctccagctcttccaacccttcctccccgggacctatcagt

gcgtctcgggaccctgccatcacaccttccacctgatcccgaataccacagcgtcgctccccgctactaacaaccaaact

aacctccaccaacgccaccgtcgctaggccacaatacatgcccatattagactatgaggccgagccacagcgacccat

gctccccgctattagttacttcaatctaaccggcggagatgactgacccactggccaacaacaacgtcaacgaccttctcct

ggacatggacggccgcgcctcggagcagcgactcgcccaacttcgcattcgccagcagcaggagagagccgtcaag

gagctgcaggatgcggtggccatccaccagtgcaagagaggcatcttctgcctggtgaaacaggccaagatctcctacg

aggtcactccaaacgaccatcgcctctcctacgagctcctgcagcagcgccagaagttcacctgcctggtcggagtcaac

cccatcgtcatcacccagcagtctggcgataccaaggggtgcatccactgctcctgcgactcccccgactgcgtccacact

ctgatcaagaccctctgcggcctccgcgacctcctccccatgaactaatcacccccttatccagtgaaataaagatcatatt

gatgatgattttacagaaataaaaaataatcatttgatttgaaataaagatacaatcatattgatgatttgagtttaacaaaaa

aataaagaatcacttacttgaaatctgataccaggtctctgtccatgttttctgccaacaccacttcactcccctcttcccagctc

tggtactgcaggccccggcgggctgcaaacttcctccacacgctgaaggggatgtcaaattcctcctgtccctcaatcttcat

tttatcttctatcagatgtccaaaaagcgcgtccgggtggatgatgacttcgaccccgtctacccctacgatgcagacaacg

caccgaccgtgcccttcatcaacccccccttcgtctcttcagatggattccaagagaagcccctgggggtgttgtccctgcg

actggccgaccccgtcaccaccaagaacggggaaatcaccctcaagctgggagagggggtggacctcgattcctcgg

gaaaactcatctccaacacggccaccaaggccgccgcccctctcagtttttccaacaacaccatttcccttaacatggatca

ccccttttacactaaagatggaaaattatccttacaagtttctccaccattaaatatactgagaacaagcattctaaacacact

agctttaggttttggatcaggtttaggactccgtggctctgccttggcagtacagttagtctctccacttacatttgatactgatgg

aaacataaagcttaccttagacagaggtttgcatgttacaacaggagatgcaattgaaagcaacataagctgggctaaag

gtttaaaatttgaagatggagccatagcaaccaacattggaaatgggttagagtttggaagcagtagtacagaaacaggt

gttgatgatgcttacccaatccaagttaaacttggatctggccttagctttgacagtacaggagccataatggctggtaacaa

agaagacgataaactcactttgtggacaacacctgatccatcaccaaactgtcaaatactcgcagaaaatgatgcaaaa

ctaacactttgcttgactaaatgtggtagtcaaatactggccactgtgtcagtcttagttgtaggaagtggaaacctaaacccc

attactggcaccgtaagcagtgctcaggtgtttctacgttttgatgcaaacggtgttcttttaacagaacattctacactaaaaa

aatactgggggtataggcagggagatagcatagatggcactccatataccaatgctgtaggattcatgcccaatttaaaag

cttatccaaagtcacaaagttctactactaaaaataatatagtagggcaagtatacatgaatggagatgtttcaaaacctatg

cttctcactataaccctcaatggtactgatgacagcaacagtacatattcaatgtcattttcatacacctggactaatggaagc

tatgttggagcaacatttggggctaactcttataccttctcatacatcgcccaagaatgaacactgtatcccaccctgcatgcc

aacccttcccaccccactctgtggaacaaactctgaaacacaaaataaaataaagttcaagtgttttattgattcaacagtttt

acaggattcgagcagttatttttcctccaccctcccaggacatggaatacaccaccctctccccccgcacagccttgaacat

ctgaatgccattggtgatggacatgcttttggtctccacgttccacacagtttcagagcgagccagtctcgggtcggtcaggg

agatgaaaccctccgggcactcccgcatctgcacctcacagctcaacagctgaggattgtcctcggtggtcgggatcacg

gttatctggaagaagcagaagagcggcggtgggaatcatagtccgcgaacgggatcggccggtggtgtcgcatcaggc

cccgcagcagtcgctgccgccgccgctccgtcaagctgctgctcagggggtccgggtccagggactccctcagcatgat

gcccacggccctcagcatcagtcgtctggtgcggcgggcgcagcagcgcatgcggatctcgctcaggtcgctgcagtac

gtgcaacacagaaccaccaggttgttcaacagtccatagttcaacacgctccagccgaaactcatcgcgggaaggatgc

tacccacgtggccgtcgtaccagatcctcaggtaaatcaagtggtgccccctccagaacacgctgcccacgtacatgatct

ccttgggcatgtggcggttcaccacctcccggtaccacatcaccctctggttgaacatgcagccccggatgatcctgcgga

accacagggccagcaccgccccgcccgccatgcagcgaagagaccccgggtcccggcaatggcaatggaggaccc

accgctcgtacccgtggatcatctgggagctgaacaagtctatgttggcacagcacaggcatatgctcatgcatctcttcag

cactctcaactcctcgggggtcaaaaccatatcccagggcacggggaactcttgcaggacagcgaaccccgcagaaca

gggcaatcctcgcacagaacttacattgtgcatggacagggtatcgcaatcaggcagcaccgggtgatcctccaccaga

gaagcgcgggtctcggtctcctcacagcgtggtaagggggccggccgatacgggtgatggcgggacgcggctgatcgt

gttcgcgaccgtgtcatgatgcagttgctttcggacattttcgtacttgctgtagcagaacctggtccgggcgctgcacaccga

tcgccggcggcggtctcggcgcttggaacgctcggtgttgaaattgtaaaacagccactctctcagaccgtgcagcagatc

tagggcctcaggagtgatgaagatcccatcatgcctgatggctctgatcacatcgaccaccgtggaatgggccagaccca

gccagatgatgcaattttgttgggtttcggtgacggcgggggagggaagaacaggaagaaccatgattaacttttaatcca

aacggtctcggagtacttcaaaatgaagatcgcggagatggcacctctcgcccccgctgtgttggtggaaaataacagcc

aggtcaaaggtgatacggttctcgagatgttccacggtggcttccagcaaagcctccacgcgcacatccagaaacaaga

caatagcgaaagcgggagggttctctaattcctcaatcatcatgttacactcctgcaccatccccagataattttcatttttcca

gccttgaatgattcgaactagttcCtgaggtaaatccaagccagccatgataaagagctcgcgcagagcgccctccacc

ggcattcttaagcacaccctcataattccaagatattctgctcctggttcacctgcagcagattgacaagcggaatatcaaaa

tctctgccgcgatccctgagctcctccctcagcaataactgtaagtactctttcatatcctctccgaaatttttagccataggacc

accaggaataagattagggcaagccacagtacagataaaccgaagtcctccccagtgagcattgccaaatgcaagact

gctataagcatgctggctagacccggtgatatcttccagataactggacagaaaatcgcccaggcaatttttaagaaaatc

aacaaaagaaaaatcctccaggtggacgtttagagcctcgggaacaacgatgaagtaaatgcaagcggtgcgttccag

catggttagttagctgatctgtagaaaaaacaaaaatgaacattaaaccatgctagcctggcgaacaggtgggtaaatcgt

tctctccagcaccaggcaggccacggggtctccggcgcgaccctcgtaaaaattgtcgctatgattgaaaaccatcacag

agagacgttcccggtggccggcgtgaatgattcgacaagatgaatacacccccggaacattggcgtccgcgagtgaaa

aaaagcgcccgaggaagcaataaggcactacaatgctcagtctcaagtccagcaaagcgatgccatgcggatgaagc

acaaaattctcaggtgcgtacaaaatgtaattactcccctcctgcacaggcagcaaagcccccgatccctccaggtacac

atacaaagcctcagcgtccatagcttaccgagcagcagcacacaacaggcgcaagagtcagagaaaggctgagctct

aacctgtccacccgctctctgctcaatatatagcccagatctacactgacgtaaaggccaaagtctaaaaatacccgccaa

ataatcacacacgcccagcacacgcccagaaaccggtgacacactcaaaaaaatacgcgcacttcctcaaacgccca

aaactgccgtcatttccgggttcccacgctacgtcatcaaaacacgactttcaaattccgtcgaccgttaaaaacgtcaccc

gccccgcccctaacggtcgcccgtctctcagccaatcagcgccccgcatccccaaattcaaacGcctcatttgcatattaa

cgcgcacaaaaagtttgaggtatattattgatgatgg

SEQ ID NO: 64. Amino Acid Sequence Comprising an Immunogenic PSA,

PSMA, and PSCA Polypeptide (Encoded by Plasmid 457 and Vector AdC68X-733)

MASIVGGWECEKHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRNKSVILLGRH

SLFHPEDTGQVFQVSHSFPHPLYDMSLLKNRFLRPGDDSSHDLMLLRLSEPAELTDAV

KVMDLPTQEPALGTTCYASGWGSIEPEEFLTPKKLQCVDLHVISNDVCAQVHPQKVTK

FMLCAGRWTGGKSTCSGDSGGPLVCNGVLQGITSWGSEPCALPERPSLYTKVVHYR

KWIKDTIVANPGSQTLNFDLLKLAGDVESNPGPMASARRPRWLCAGALVLAGGFFLLG

FLFGWFIKSSNEATNITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQI

QSQWKEFGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPGYENVS

DIVPPFSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKIVIARYGKVFRGNKV

KNAQLAGAKGVILYSDPADYFAPGVKSYPDGWNLPGGGVQRGNILNLNGAGDPLTPG

YPANEYAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMGGSAPPDSSWRGSLKVPYNV

GPGFTGNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDP

QSGAAVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERG

VAYINADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKKSPSPE

FSGMPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYETYELVE

KFYDPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQE

MKTYSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLG

LPDRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTV

QAAAETLSEVAGSEGRGSLLTCGDVEENPGPASKAVLLALLMAGLALQPGTALLCYSC

KAQVSNEDCLQVENCTQLGEQCWTARIRAVGLLTVISKGCSLNCVDDSQDYYVGKKNI

TCCDTDLCNASGAHALQPAAAILALLPALGLLLWGPGQL

SEQ ID NO: 65. Nucleotide Sequence Encoding the Amino Acid Sequence

of SEQ ID NO: 64

ATGGCTAGCATCGTCGGAGGGTGGGAGTGCGAAAAGCACTCACAGCCATGGCAG

GTCCTGGTCGCCTCGCGCGGACGCGCCGTGTGTGGAGGTGTGCTGGTCCACCCG

CAGTGGGTGTTGACTGCGGCCCATTGCATCAGAAATAAGTCCGTGATCCTCTTGGG

GAGACATTCCCTGTTTCACCCCGAAGATACTGGACAGGTGTTCCAAGTGAGCCACT

CCTTCCCGCATCCACTGTACGACATGAGCCTGCTGAAGAACCGCTTTCTGCGGCC

AGGGGACGACTCATCACACGATTTGATGCTGCTTCGGCTCTCGGAACCGGCCGAG

CTCACCGACGCAGTGAAGGTCATGGACCTCCCTACGCAAGAGCCTGCTCTCGGTA

CCACTTGTTACGCATCGGGATGGGGCTCCATCGAGCCGGAAGAATTCCTGACCCC

GAAAAAGCTGCAGTGCGTGGATCTGCACGTGATTTCGAATGACGTGTGCGCGCAA

GTGCATCCACAAAAGGTCACTAAGTTCATGCTGTGCGCCGGAAGGTGGACCGGCG

GAAAATCGACCTGTTCCGGCGACAGCGGAGGCCCACTCGTGTGCAACGGTGTGCT

GCAGGGCATCACTAGCTGGGGATCAGAACCGTGCGCGCTTCCGGAGCGGCCCTC

GCTCTACACGAAGGTGGTGCACTACCGCAAATGGATTAAAGATACCATCGTCGCAA

ACCCTggatcccagaccctgaactttgatctgctgaaactggcaggcgatgtggaaagcaacccaggcccaATGG

CTAGCGCTCGCAGACCGCGGTGGCTGTGTGCAGGGGCGCTCGTCCTGGCGGGTG

GCTTCTTTTTGCTCGGCTTTCTTTTCGGATGGTTCATCAAATCGTCAAACGAAGCTA

CCAATATCACCCCGAAGCACAACATGAAGGCCTTTCTGGATGAGCTGAAGGCTGA

GAACATTAAGAAGTTCCTCTACAACTTCACCCAGATCCCACATTTGGCGGGCACTG

AGCAGAACTTTCAGTTGGCTAAGCAGATCCAGAGCCAGTGGAAGGAATTCGGCCT

GGACTCCGTCGAGCTGGCGCATTACGATGTGCTGCTGAGCTACCCTAATAAGACT

CATCCGAACTATATCTCGATTATCAATGAGGACGGAAACGAAATCTTTAACACGTCC

CTCTTCGAGCCGCCACCGCCTGGATACGAGAACGTGTCAGATATCGTGCCTCCGT

TCTCGGCCTTCTCGCCCCAGGGAATGCCCGAAGGGGACCTGGTGTACGTGAACTA

CGCAAGGACCGAGGACTTCTTCAAGTTGGAGCGGGATATGAAGATCAATTGCAGC

GGAAAGATCGTCATCGCCCGCTACGGCAAAGTGTTCCGCGGCAACAAGGTGAAGA

ATGCACAGTTGGCAGGCGCCAAGGGCGTCATCCTCTACTCGGATCCTGCCGACTA

CTTCGCTCCTGGCGTGAAATCCTACCCTGATGGTTGGAATCTGCCAGGAGGAGGG

GTGCAGAGGGGAAATATCCTGAACCTGAACGGTGCCGGTGACCCACTTACTCCGG

GTTACCCGGCCAACGAATACGCGTACAGGCGGGGTATCGCGGAAGCCGTCGGAC

TGCCGTCCATCCCGGTCCATCCGATTGGTTACTACGACGCCCAGAAGCTCCTCGA

AAAGATGGGAGGCAGCGCCCCTCCGGACTCGTCATGGAGAGGCTCGCTGAAGGT

GCCATACAACGTGGGACCCGGATTCACTGGAAATTTCAGCACTCAAAAAGTGAAGA

TGCACATTCACTCCACTAACGAAGTCACCAGGATCTACAACGTCATCGGAACCCTC

CGGGGAGCGGTGGAACCGGACCGCTACGTGATCCTCGGTGGACACCGGGATAGC

TGGGTGTTCGGAGGAATCGATCCTCAATCGGGCGCAGCCGTCGTCCATGAAATCG

TCAGGTCCTTTGGTACTCTTAAGAAGGAGGGCTGGCGCCCTAGACGCACTATTCTG

TTCGCCTCGTGGGATGCCGAAGAATTTGGTCTGCTCGGCAGCACCGAATGGGCTG

AGGAAAACTCCCGCCTGCTCCAAGAACGCGGAGTGGCGTACATCAATGCCGACTC

ATCCATCGAAGGAAACTACACGCTGCGGGTGGACTGCACTCCACTGATGTACTCG

CTCGTGCACAACCTGACCAAAGAACTCAAATCCCCAGACGAAGGATTCGAGGGAA

AATCGCTGTACGAGTCGTGGACCAAGAAGAGCCCATCCCCGGAGTTCAGCGGGAT

GCCGCGGATCTCAAAGCTCGGATCAGGAAATGATTTCGAAGTGTTCTTTCAGAGGC

TGGGAATTGCGTCGGGAAGGGCTCGGTACACGAAAAACTGGGAAACTAACAAGTT

CTCGGGATACCCGCTGTACCACTCGGTGTATGAAACTTACGAACTGGTGGAGAAAT

TCTACGATCCTATGTTTAAGTACCACCTGACTGTGGCCCAAGTGAGAGGCGGAATG

GTGTTCGAGTTGGCCAATTCAATTGTGCTGCCATTCGATTGCCGCGACTACGCCGT

GGTGCTGAGAAAGTACGCAGACAAAATCTACTCAATCAGCATGAAGCACCCACAAG

AGATGAAAACCTACTCAGTCTCCTTCGACTCCCTCTTCTCCGCGGTGAAGAACTTC

ACCGAGATCGCGAGCAAATTCTCGGAGCGCCTTCAAGATTTTGACAAATCCAATCC

GATCGTCCTCCGCATGATGAATGACCAGCTCATGTTTCTCGAACGGGCCTTCATCG

ATCCACTGGGACTTCCGGACCGGCCGTTTTACCGCCACGTGATCTACGCGCCCTC

GTCGCATAACAAGTATGCTGGAGAGAGCTTCCCGGGTATCTACGACGCATTGTTCG

ACATTGAGTCCAAGGTGGATCCGTCCAAAGCCTGGGGTGAAGTGAAGCGCCAAAT

CTACGTGGCGGCCTTTACCGTCCAGGCGGCAGCAGAAACCTTGAGCGAGGTGGCT

ggatccgaaggtaggggttcattattgacctgtggagatgtcgaagaaaacccaggacccGCTAGCAAAGCAG

TGCTGCTGGCGCTCCTGATGGCTGGACTCGCGCTGCAGCCTGGAACCGCCCTGCT

CTGTTACTCGTGCAAGGCCCAAGTCTCGAATGAGGACTGTTTGCAAGTGGAAAACT

GCACCCAGCTCGGAGAACAATGCTGGACTGCACGGATCCGCGCTGTCGGCCTGCT

GACCGTGATCTCCAAAGGGTGCTCATTGAACTGCGTGGACGATAGCCAGGACTAC

TACGTGGGAAAGAAGAATATCACTTGTTGCGACACGGATCTTTGCAACGCGTCCGG

AGCGCACGCCCTGCAGCCAGCAGCCGCCATTCTGGCCCTGCTTCCGGCCCTGGG

GTTGCTGCTCTGGGGTCCGGGCCAGCTC

SEQ ID NO: 66. Nucleotide Sequence of the Multi-antigen Construct (PSCA-

F2A-PSMA-mIRES-PSA) Incorporated in Plasmid 459 and Vector AdC68X-735

ATGGCTAGCAAAGCAGTGCTGCTGGCGCTCCTGATGGCTGGACTCGCGCTGCAGC

CTGGAACCGCCCTGCTCTGTTACTCGTGCAAGGCCCAAGTCTCGAATGAGGACTG

TTTGCAAGTGGAAAACTGCACCCAGCTCGGAGAACAATGCTGGACTGCACGGATC

CGCGCTGTCGGCCTGCTGACCGTGATCTCCAAAGGGTGCTCATTGAACTGCGTGG

ACGATAGCCAGGACTACTACGTGGGAAAGAAGAATATCACTTGTTGCGACACGGAT

CTTTGCAACGCGTCCGGAGCGCACGCCCTGCAGCCAGCAGCCGCCATTCTGGCC

CTGCTTCCGGCCCTGGGGTTGCTGCTCTGGGGTCCGGGCCAGCTCggatcccagaccct

gaactttgatctgctgaaactggcaggcgatgtggaaagcaacccaggcccaATGGCTAGCGCTCGCAGA

CCGCGGTGGCTGTGTGCAGGGGCGCTCGTCCTGGCGGGTGGCTTCTTTTTGCTC

GGCTTTCTTTTCGGATGGTTCATCAAATCGTCAAACGAAGCTACCAATATCACCCCG

AAGCACAACATGAAGGCCTTTCTGGATGAGCTGAAGGCTGAGAACATTAAGAAGTT

CCTCTACAACTTCACCCAGATCCCACATTTGGCGGGCACTGAGCAGAACTTTCAGT

TGGCTAAGCAGATCCAGAGCCAGTGGAAGGAATTCGGCCTGGACTCCGTCGAGCT

GGCGCATTACGATGTGCTGCTGAGCTACCCTAATAAGACTCATCCGAACTATATCT

CGATTATCAATGAGGACGGAAACGAAATCTTTAACACGTCCCTCTTCGAGCCGCCA

CCGCCTGGATACGAGAACGTGTCAGATATCGTGCCTCCGTTCTCGGCCTTCTCGC

CCCAGGGAATGCCCGAAGGGGACCTGGTGTACGTGAACTACGCAAGGACCGAGG

ACTTCTTCAAGTTGGAGCGGGATATGAAGATCAATTGCAGCGGAAAGATCGTCATC

GCCCGCTACGGCAAAGTGTTCCGCGGCAACAAGGTGAAGAATGCACAGTTGGCAG

GCGCCAAGGGCGTCATCCTCTACTCGGATCCTGCCGACTACTTCGCTCCTGGCGT

GAAATCCTACCCTGATGGTTGGAATCTGCCAGGAGGAGGGGTGCAGAGGGGAAAT

ATCCTGAACCTGAACGGTGCCGGTGACCCACTTACTCCGGGTTACCCGGCCAACG

AATACGCGTACAGGCGGGGTATCGCGGAAGCCGTCGGACTGCCGTCCATCCCGG

TCCATCCGATTGGTTACTACGACGCCCAGAAGCTCCTCGAAAAGATGGGAGGCAG

CGCCCCTCCGGACTCGTCATGGAGAGGCTCGCTGAAGGTGCCATACAACGTGGGA

CCCGGATTCACTGGAAATTTCAGCACTCAAAAAGTGAAGATGCACATTCACTCCAC

TAACGAAGTCACCAGGATCTACAACGTCATCGGAACCCTCCGGGGAGCGGTGGAA

CCGGACCGCTACGTGATCCTCGGTGGACACCGGGATAGCTGGGTGTTCGGAGGA

ATCGATCCTCAATCGGGCGCAGCCGTCGTCCATGAAATCGTCAGGTCCTTTGGTAC

TCTTAAGAAGGAGGGCTGGCGCCCTAGACGCACTATTCTGTTCGCCTCGTGGGAT

GCCGAAGAATTTGGTCTGCTCGGCAGCACCGAATGGGCTGAGGAAAACTCCCGCC

TGCTCCAAGAACGCGGAGTGGCGTACATCAATGCCGACTCATCCATCGAAGGAAA

CTACACGCTGCGGGTGGACTGCACTCCACTGATGTACTCGCTCGTGCACAACCTG

ACCAAAGAACTCAAATCCCCAGACGAAGGATTCGAGGGAAAATCGCTGTACGAGTC

GTGGACCAAGAAGAGCCCATCCCCGGAGTTCAGCGGGATGCCGCGGATCTCAAA

GCTCGGATCAGGAAATGATTTCGAAGTGTTCTTTCAGAGGCTGGGAATTGCGTCGG

GAAGGGCTCGGTACACGAAAAACTGGGAAACTAACAAGTTCTCGGGATACCCGCT

GTACCACTCGGTGTATGAAACTTACGAACTGGTGGAGAAATTCTACGATCCTATGTT

TAAGTACCACCTGACTGTGGCCCAAGTGAGAGGCGGAATGGTGTTCGAGTTGGCC

AATTCAATTGTGCTGCCATTCGATTGCCGCGACTACGCCGTGGTGCTGAGAAAGTA

CGCAGACAAAATCTACTCAATCAGCATGAAGCACCCACAAGAGATGAAAACCTACT

CAGTCTCCTTCGACTCCCTCTTCTCCGCGGTGAAGAACTTCACCGAGATCGCGAGC

AAATTCTCGGAGCGCCTTCAAGATTTTGACAAATCCAATCCGATCGTCCTCCGCAT

GATGAATGACCAGCTCATGTTTCTCGAACGGGCCTTCATCGATCCACTGGGACTTC

CGGACCGGCCGTTTTACCGCCACGTGATCTACGCGCCCTCGTCGCATAACAAGTA

TGCTGGAGAGAGCTTCCCGGGTATCTACGACGCATTGTTCGACATTGAGTCCAAG

GTGGATCCGTCCAAAGCCTGGGGTGAAGTGAAGCGCCAAATCTACGTGGCGGCCT

TTACCGTCCAGGCGGCAGCAGAAACCTTGAGCGAGGTGGCTTGAagatctgaccccctaa

cgttactggccgaagccgcttggaataaggccggtgtgcgtttgtctatatgttattttccaccatattgccgtcttttggcaatgt

gagggcccggaaacctggccctgtcttcttgacgagcattcctaggggtctttcccctctcgccaaaggaatgcaaggtctg

ttgaatgtcgtgaaggaagcagttcctctggaagcttcttgaagacaaacaacgtctgtagcgaccctttgcaggcagcgg

aaccccccacctggcgacaggtgcctctgcggccaaaagccacgtgtataagatacacctgcaaaggcggcacaacc

ccagtgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtattcaacaaggggctgaagga

tgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcgaggttaaaaaa

cgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataatATGGCTAGCATCGTCG

GAGGGTGGGAGTGCGAAAAGCACTCACAGCCATGGCAGGTCCTGGTCGCCTCGC

GCGGACGCGCCGTGTGTGGAGGTGTGCTGGTCCACCCGCAGTGGGTGTTGACTG

CGGCCCATTGCATCAGAAATAAGTCCGTGATCCTCTTGGGGAGACATTCCCTGTTT

CACCCCGAAGATACTGGACAGGTGTTCCAAGTGAGCCACTCCTTCCCGCATCCACT

GTACGACATGAGCCTGCTGAAGAACCGCTTTCTGCGGCCAGGGGACGACTCATCA

CACGATTTGATGCTGCTTCGGCTCTCGGAACCGGCCGAGCTCACCGACGCAGTGA

AGGTCATGGACCTCCCTACGCAAGAGCCTGCTCTCGGTACCACTTGTTACGCATCG

GGATGGGGCTCCATCGAGCCGGAAGAATTCCTGACCCCGAAAAAGCTGCAGTGCG

TGGATCTGCACGTGATTTCGAATGACGTGTGCGCGCAAGTGCATCCACAAAAGGTC

ACTAAGTTCATGCTGTGCGCCGGAAGGTGGACCGGCGGAAAATCGACCTGTTCCG

GCGACAGCGGAGGCCCACTCGTGTGCAACGGTGTGCTGCAGGGCATCACTAGCT

GGGGATCAGAACCGTGCGCGCTTCCGGAGCGGCCCTCGCTCTACACGAAGGTGG

TGCACTACCGCAAATGGATTAAAGATACCATCGTCGCAAACCCT

QQ群二维码
意见反馈