序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 裂纹釉精密陶瓷珠宝饰品的制作工艺 CN201510718894.2 2015-10-28 CN105384451A 2016-03-09 廖文宏
发明公开了裂纹釉精密陶瓷珠宝饰品的制作工艺,该制作工艺包括1)高温烧结:将精密陶瓷原料加工成坯体后,将坯体置于1550-1700℃高温下烧结成型,得到坯体;2)上釉料:将裂紋色釉在上述坯体表面上施釉至少两次以上;每次施釉后待坯体上的釉料干燥后再进行下一次施釉;每次施釉釉料的厚度为1-2mm;3)烧成:将步骤2)之后的坯体在温度为1190-1250℃的烧结炉中进行烧结,烧结完成后采取逐步冷却的方式,最后让冰裂纹色釉自然开片产生裂纹的效果。本发明是通过对加工成型的精密陶瓷表面进行处理,然后通过上冰裂纹色釉的获得不同釉色的冰裂纹釉精密陶瓷珠宝饰品。
2 用于减少腔室微粒的关键腔室部件表面改良 CN201580010199.9 2015-01-30 CN106458769A 2017-02-22 段仁官; J·C·罗查-阿尔瓦雷斯; R·萨卡拉克利施纳
本文描述的实施例大体而言涉及用于热处理在紫外线半导体处理腔室中使用的腔室部件的设备和方法。包含单式陶瓷或玻璃制品的腔室部件的热处理可以减少当腔室部件曝露于腐蚀性环境、诸如曝露于紫外光和臭/氧自由基时产生微粒的可能性。一种热处理腔室部件的方法包括:以可接受的变温速率将单式制品加热到期望的温度并持续期望的时间周期,并且随后以所述变温速率冷却所述单式制品。
3 一种改性特种陶瓷材料及其制备方法 CN201611251172.1 2016-12-30 CN106630955A 2017-05-10 不公告发明人
发明公开了一种改性特种陶瓷材料,所述改性特种陶瓷材料,以重量份计,由以下原料组成:化锆5‑8份、10‑20份、碳酸氢钠2‑6份、氧化4‑7份、酒石酸钠7‑11份、磷酸二氢锌2‑4份、异塞唑啉0.53‑0.87份、来酸酐5‑10份、谷酸4‑6份、丙烯酸异丙酯3‑6份、二甲基硅油2‑4份、陶瓷粉末40‑50份。本发明制备的改性特种陶瓷材料,经测试,破坏强度≥2560N,断裂模数≥80MPa,强度高,经久耐用,满足市场需求。
4 用于粉末形式材料的热处理装置以及对应的热处理方法 CN201380055120.5 2013-10-02 CN104755635A 2015-07-01 M·雷伊; P·德布瓦; C·昂; S·洛努瓦
发明涉及一种用于粉末形式材料的热处理装置,该装置包括一个具有加热区的热处理炉(2)以及一个淬火储箱(3)。该淬火储箱(3)包括至少部分地填充有多个预冷却的固体元件的一个容器(10),并且该热处理炉是以可移动的方式安装的以允许该热处理炉(2)的内容物被转移至该淬火储箱(3)。本发明还涉及对应的热处理方法并且涉及该方法在制造层状化锂锰镍镁中的应用。
5 具有残余压应的蓝宝石组件 CN201410012221.0 2014-01-10 CN103924304A 2014-07-16 K·邝
本公开涉及具有残余压应的蓝宝石组件。具体公开了一种方法,该方法包括以下步骤:将陶瓷材料成形成电子装置的组件。该组件具有第一主表面和第二主表面。将该第一主表面和第二主表面中的一个或两个的选定区域加热至退火温度。接着,将该选定区域冷却至退火温度之下,从而在该选定区域中产生残余压应力
6 一种夜光导向砖 CN200310105545.0 2003-11-27 CN1544386A 2004-11-10 高红军
发明公开了一种夜光导向砖,先用网板将地砖或盲道砖依次印底釉,印发光釉,印面釉,再将印好釉的地砖或盲道砖,放入砖窑中的预热带预热,然后预热后的地砖或盲道砖进入烧成带烧成,烧成温度为700℃-1200℃,烧成时间为1至4小时,在烧成后将地砖或盲道砖置入温度为450℃-600℃的退火带退火,退火后将地砖或盲道砖置入冷却带冷却。它具有发光亮度高、余辉时间长、耐酸及潮湿、价格低廉和使用寿命长等优点。
7 粉体の状態の材料のための熱処理装置及びそれに対応する熱処理方法 JP2015535089 2013-10-02 JP2015534033A 2015-11-26 マルレーネ レイ,; フィリップ デボワ,; セドリック ハオン,; セバスチャン ローノワ,
本発明は、加熱領域を有する熱処理加熱炉(2)及び焼き入れタンク(3)を備える、粉体の状態の材料のための熱処理装置に関する。焼き入れタンク(3)は、少なくとも部分的に複数の固体要素で満たされた容器(10)を備え、かつ熱処理加熱炉は、熱処理加熱炉(2)の内容物が焼き入れタンク(3)へ移送されることができるように、動かすことができるように設置される。本発明はまた、対応する熱処理方法、及び方法の層状リチウムマンガンニッケルマグネシウム酸化物への適用に関する。【選択図】図1
8 SAPPHIRE COMPONENT WITH RESIDUAL COMPRESSIVE STRESS EP14150764.0 2014-01-10 EP2754739B1 2016-12-14 Kwong, Kelvin
A method comprises shaping an aluminum oxide ceramic material into a component (12) for an electronic device (10). The component has first and second major surfaces (56A,56B). A selected region (52) of one or both of the first and second major surfaces is heated to an annealing temperature. The selected region (52) is then cooled below the annealing temperature, so that residual compressive stress is generated in the selected region (52).
9 CRITICAL CHAMBER COMPONENT SURFACE IMPROVEMENT TO REDUCE CHAMBER PARTICLES US14623402 2015-02-16 US20150251961A1 2015-09-10 Ren-Guan DUAN; Juan Carlos ROCHA-ALVAREZ; Ramprakash SANKARAKRISHNAN
Embodiments described herein generally relate to apparatus and methods for thermally treating chamber components for use in ultraviolet semiconductor processing chambers. Thermal treatment of chamber components comprising unitary ceramic or glass articles may reduce the probability of particle generation when the chamber components are exposed to corrosive environments, such as exposure to ultraviolet light and ozone/oxygen radicals. A method of thermally treating chamber components includes heating the unitary article at an acceptable ramp rate to a desired temperature for a desired time period and subsequently cooling the unitary article at the ramping rate.
10 Germicidal product and method of producing same US48970743 1943-06-04 US2423261A 1947-07-01 SOWA FRANK J
11 Art of treating seeds US1970163D US1970163A 1934-08-14
12 Process for bonding cement and gypsum US25034128 1928-01-28 US1874170A 1932-08-30 CHAPMAN CLOYD M
13 Method of mothproofing US72814124 1924-07-25 US1594631A 1926-08-03 ROSS JOSEPH M
14 Ipany of america US1572475D US1572475A 1926-02-09
15 Claude p US1480561D US1480561A 1924-01-15
16 DISPOSITIF DE TRAITEMENT THERMIQUE POUR MATÉRIAU EN POUDRE ET PROCÉDÉ DE TRAITEMENT THERMIQUE CORRESPONDANT EP13782782.0 2013-10-02 EP2904123A1 2015-08-12 REY, Marlène; DESBOIS, Philippe; HAON, Cédric; LAUNOIS, Sébastien
The invention relates to a heat treatment device for a material in powder form, comprising a heat treatment furnace (2) having a heating zone and a quenching tank (3). The quenching tank (3) comprises a container (10) at least partially filled with a plurality of precooled solid elements, and the heat treatment furnace is mounted in a mobile manner so as to allow the content of the heat treatment furnace (2) to be transferred to the quenching tank (3). The invention also relates to the corresponding heat treatment method and to the application of the method to the manufacture of lamellar lithium manganese nickel magnesium oxide.
17 Sapphire component with residual compressive stress EP14150764.0 2014-01-10 EP2754739A1 2014-07-16 Kwong, Kelvin

A method comprises shaping an aluminum oxide ceramic material into a component (12) for an electronic device (10). The component has first and second major surfaces (56A,56B). A selected region (52) of one or both of the first and second major surfaces is heated to an annealing temperature. The selected region (52) is then cooled below the annealing temperature, so that residual compressive stress is generated in the selected region (52).

18 ULTRA-HIGH STRENGTH HOT-PRESSED GEOPOLYMERIC COMPOSITION AND PRODUCTION METHOD THEREOF US15964734 2018-04-27 US20180244572A1 2018-08-30 Navid Ranjbar
A hot-pressed geopolymeric composition and producing method for making the ultra-high strength geopolymer are disclosed. The hot-pressed geopolymeric composition may include at least one aluminosilicate source and at least one alkali activator and optionally any kind of fillers. The ultra-high strength geopolymer with various densities can be produced by applying low hot-pressing pressure in a short time.
19 SOLAR REFLECTIVE COMPOSITE GRANULES AND METHOD OF MAKING SOLAR REFLECTIVE COMPOSITE GRANULES US15855095 2017-12-27 US20180194684A1 2018-07-12 Tracy H. Panzarella; Ryan Koseski; Todd P. Dinoia; Bojana Lante
A method of making a plurality of composite granules can include: forming green body granules comprising an aluminosilicate; heating the green body granules to form sintered granules; cooling the sintered granules according to a cooling regime, wherein the cooling regime comprises a temperature hold between 700° C. and 900° C. for at least one hour. In a particular embodiment, the aluminosilicate for making the composite granules can have a particle size less than 150 μm. The composite granules are particularly suitable as roofing granules and can have a desired combination of high solar reflectance SR and low lightness L*, a low bulk density, good weather resistance and strength.
20 Sapphire component with residual compressive stress US13738200 2013-01-10 US09623628B2 2017-04-18 Kelvin Kwong
A method comprises shaping an aluminum oxide ceramic material into a component for an electronic device. The component has first and second major surfaces. A selected region of one or both of the first and second major surfaces is heated to an annealing temperature. The selected region is then cooled below the annealing temperature, so that residual compressive stress is generated in the selected region.
QQ群二维码
意见反馈