序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 内部隐含裂纹的砂浆体的模型制作方法 CN201710003337.1 2017-01-04 CN106699080A 2017-05-24 吉锋; 石豫川; 张宇; 郑罗斌
发明属于工程试验领域,具体涉及一种内部隐含裂纹的砂浆体模型制作方法,其主要解决在制作块体模型时,内部无法嵌入隐含特定形貌、且两壁紧密接触的刚性裂隙这一技术难题。本发明的核心技术要点是分别两次浇筑模型,第一次是在3D打印机制作出裂隙形貌的基础上,利用泥砂浆浇筑裂隙上下盘模型;第二次是在已凝固的裂隙模型基础上,浇筑周边紧密包裹的部分,从而保障试样外围是无缝接触,内部是具有特定形貌的刚性、紧密接触的裂缝。利用该模型制作工艺,可以保障剪切实验过程中所有的样品是完全统一,从而保障剪切实验机理成果的可靠性。
2 一种试验用孔隙岩体相似岩石及其制作方法 CN201710344334.4 2017-05-16 CN107226650A 2017-10-03 韩涛; 杨维好; 黄家会; 朱艳州
一种试验用孔隙岩体相似岩石,由1200~2400kg/m3石英砂、260~390kg/m3泥、102~178kg/m3水以及8~32kg/m3透水混凝土增强剂组成;其制备方法是按照配方称取原材料,将石英砂、水泥和透水混凝土增强剂混合均匀,逐渐加入水并搅拌均匀,拌和物装入模具压实成型,拆模养护。本发明可通过改变各组成部分的配比来适应不同种类岩体的相似模拟要求,能大大简化地质学模型试验研究工作的难度;能实现相似岩体与原岩应力‑应变全程相似和水理性相似,解决利用模型试验揭示地下结构与富水岩体固‑液耦合失效破坏模式的问题;同时,操作方法简单、高效、快捷、无复杂的后处理过程且安全无毒,应用范围广泛。
3 一种类岩爆相似材料试件及其制备方法 CN201610390713.2 2016-06-03 CN106064924A 2016-11-02 刘永胜; 吴云; 黄德昌; 吕少勇; 李进
发明公开了一种类岩爆相似材料试件及其制备方法。类岩爆相似材料试件组成为:石英砂、泥、石膏、水砂溶液;其中石英砂占总重量的65%,石膏占总重量的18%,水泥占总重量的9%,水硼砂溶液占总重量的8%;水硼砂溶液中硼砂浓度为1%。材料制备步骤为:(1)材料过筛称量;(2)材料拌合;(3)材料浇筑;(4)材料养护。类岩爆相似材料试件制备过程中控制材料的颗粒级配、依次加入的顺序、搅拌速率以及养护条件。试件采用三开模具制备,尺寸为直径61.8mm、高度为20mm的圆柱体试件。制备的试件具有强度高、易成型、脆性好、较高岩爆倾向等优点。
4 混凝土抗渗试验用密封材料及使用方法 CN201511027032.1 2015-12-29 CN105399378A 2016-03-16 王国臣
混凝土抗渗试验用密封材料及使用方法,混凝土抗渗试验用密封材料为由润滑黄油和泥按照重量百分比1:(2.4~2.6)混制成的糊状的混合物;使用方法为:S1将润滑黄油和水泥按照上述比例进行称重,并搅拌形成糊状的混合物;S2将混合物均匀涂覆在混凝土抗渗试件的侧面;S3将试模套在混凝土抗渗试件上,直至试模底面与混凝土抗渗试件的下表面齐平;S4将试模和混凝土抗渗试件一起安装到抗渗仪上进行试验;S5在试验结束后,将混凝土抗渗试件从试模中取出,将混凝土抗渗试件及粘附的混合物一同处理掉。本发明降低了抗渗试验成本、使混凝土抗渗试验的密封过程操作简便、避免了对试验人员的健康造成危害和对环境造成污染、提高了抗渗试验的密封性和抗压能
5 用于岩体裂隙非饱和渗流试验的毛细障碍材料及制作工艺 CN201610837562.0 2016-09-22 CN106630812A 2017-05-10 胡云进; 钟振; 杜时贵; 何智海; 雍睿; 黄曼
发明涉及一种用于岩体裂隙非饱和渗流试验的毛细障碍材料及制作工艺,由:水泥:砂:透水混凝土增强剂=130~150:100:400~600:3~4混合浇筑而成的透水砂浆,砂粒径范围为0.315~0.63mm,水泥为普通酸盐水泥,透水混凝土增强剂选用德昌伟业品牌;制作工艺包括:利用120目和60目筛网,筛分出粒径范围为0.315~0.63mm的砂子;将水泥、砂、透水混凝土增强剂按上述配比投入到混合处理器内混合搅拌均匀。本发明材料具有进气值适中、渗透系数大、取材方便、制作简单、成本低等优点,有较好的应用前景。
6 一种大型混凝土结构仿真模型材料及其制备方法 CN201610723305.4 2016-08-26 CN106365530A 2017-02-01 王铭明; 马荣峰; 陈志强; 李春雷
发明涉及一种大型混凝土结构仿真模型材料及其制备方法,属于建筑工程领域。本发明的仿真模型材料包括质量百分比计的以下成分:泥1.0~3.0%,水8.0~10.0%,矿石粉10.0~15.0%,重晶石粉20~30%,重晶砂45~55%,其制备方法为先将配置好的矿石粉、重晶石粉、重晶石砂和水泥放入搅拌机拌合均匀,再加入配置好的水继续搅拌均匀即可倒入模具浇筑成型,养护24h就可以进行振动台模型试验。本发明的仿真模型材料不仅可以做线弹性范围内的动模型试验,还可以完成非线性范围内的动力破坏模型试验,并且制备该仿真模型材料的成本不高,与生产普通混凝土的成本差不多。
7 一种利用渣进行石膏增强增韧的方法及其制品 CN201610676899.8 2016-08-17 CN106278100A 2017-01-04 郭伟; 王春
发明公开了一种利用渣进行石膏增强增韧的方法及其制品,所述方法为:将钢渣、工业石膏、含废弃物和含废弃物,混合均匀,加研磨,水灰比为0.4~0.55,研磨20min,将混合料倒入模具中,成型后脱模,得到试样;将上述试样标准养护至3~5d后,再进行热养护,养护温度为50~135℃,养护时间为3~24h,得到钢渣自增强增韧制品。采用本发明所提供的方法制得的钢渣自增强增韧制品具有韧性好,抗压强度高的优点,无需添加对人体有害的有机物,也无需掺加纤维
8 混凝土芯样补平用硫磺胶泥及其制备方法 CN201610548812.9 2016-07-13 CN106145828A 2016-11-23 熊芳; 邵海东; 袁慧萍; 黄兴; 刘鹏; 宁立飞
一种混凝土芯样补平用硫磺胶泥,包括砂、泥和硫磺,且在预定的配置温度下将砂、水泥和硫磺混合配置而最终获得混凝土芯样补平用硫磺胶泥,其中配制温度为160℃~170℃,所述砂、所述水泥和所述硫磺之间的重量比为1:1:4。本发明还提供一种混凝土芯样补平用硫磺胶泥的制备方法。
9 一种软岩相似模型试验材料及其制备方法 CN201610331744.0 2016-05-18 CN106007484A 2016-10-12 周小平; 程浩; 李兵; 毕靖; 寿云东; 王允腾
发明涉及一种软岩相似模型试验材料及其制备方法,软岩相似模型试验材料采用细河砂、重晶石粉、橡胶、环树脂‑聚酰胺和酒精为原料,通过不同的质量配比,获得具有软岩应‑应变特性的相似模型材料;该材料强度较低,便于模型试验中的加载,小型加载设备便可;该材料的力学性能稳定。其原材料来源广,非常易于加工、养护方便,力学性能在室温下较稳定,可用于模拟软岩材的相似模型材料,有利于解决岩体工程中的实际问题。其制备方法简单、价格低廉、实用性强。
10 Filter casting nanoscale porous materials US11594522 2006-11-07 US08226861B2 2012-07-24 Joel Ryan Hayes; Gregory Walker Nyce; Joshua David Kuntz
A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing a monolith.
11 Filter casting nanoscale porous materials US11594522 2006-11-07 US20070296103A1 2007-12-27 Joel Ryan Hayes; Gregory Walker Nyce; Joshua David Kuntz
A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing a monolith.
12 Method of producing ceramic raw material and ceramic molded body US11635009 2006-12-07 US20070138447A1 2007-06-21 Atsushi Yamada; Tomoyasu Watanabe; Akihiko Tsunekawa; Makoto Nakae
A method of producing a ceramic raw material has steps of adding water into ceramic particles in order to produce a ceramic particle dispersed liquid, adding water into resin component in order to produce a resin component dispersed liquid, mixing the ceramic particle dispersed liquid and the resin component dispersed liquid in order to produce a mixed slurry, and freezing and drying the mixed slurry. In particular, the method further has filtering the ceramic particle dispersed liquid and the resin component dispersed liquid to eliminate coarse particles of not less than 100 μm from each liquid. Further, a method of producing a ceramic molded body has steps of adding water into the above ceramic raw material and then extruding the mixed material by applying a pressure of a range of 1 to 50 MPa.
13 Ceramic raw material and method for producing ceramic molding JP2006236351 2006-08-31 JP2007191381A 2007-08-02 YAMADA ATSUSHI; WATANABE HOUTAI; TSUNEKAWA AKIHIKO; NAKAE MAKOTO
<P>PROBLEM TO BE SOLVED: To provide a method for producing a ceramic raw material being an even mixture of ceramic particles with a resin component and to provide a method for producing a ceramic molding. <P>SOLUTION: The method for producing the ceramic raw material comprises a ceramic particle dispersion step, a resin component dispersion step, a mixing step, and a drying step. In the ceramic particle dispersion step, ceramic particles are mixed with water to prepare a ceramic particle dispersion. In the resin component dispersion step, a resin component is mixed with water to prepare a resin component dispersion. In the mixing step, the ceramic particle dispersion is mixed with the resin component dispersion to prepare mixed slurry. In the drying step, the mixed slurry is lyophilized to prepare the ceramic raw material. The method for producing the ceramic molding comprises molding a mixture prepared by kneading the ceramic raw material after the addition of water thereto under applied pressure of 1 to 50 MPa. <P>COPYRIGHT: (C)2007,JPO&INPIT
14 Porous film forming method of the ceramic body JP9749296 1996-03-27 JP3594726B2 2004-12-02 征親 伊藤; 昭夫 水谷; 孝昭 長曽我部
15 PASSIVE CERAMIC SAMPLER FOR MEASURING WATER CONTAMINATION EP16813780.0 2016-06-21 EP3311914A1 2018-04-25 LACORTE BRUGUERA, Silvia; FRANQUET GRIELL, Helena; SILVA TREVIÑO, Jorge; ORERA CLEMENTE, Victor Manuel

The invention relates to a passive ceramic sampler for measuring water contamination, comprising a porous ceramic casing and an adsorbent filler material. The casing has a porous structure combining mechanical stiffness with good permeation to solutions and retention of the adsorbent filler material. The invention also relates to the method for the production of the sampler, as well as to the use of same for the detection of contaminants, such as pesticides, cytostatics, polycyclic aromatic hydrocarbons or plasticisers.

16 Porous film formation for ceramic body JP9749296 1996-03-27 JPH09264871A 1997-10-07 ITOU MASACHIKA; CHIYOUSOKABE TAKAAKI; MIZUTANI AKIO
PROBLEM TO BE SOLVED: To farm a ceramic porous film which is superior in reaction activity by bringing a platinum solution containing oxygen into contact with the surface of a ceramic body, adding a reducing agent for precipitating a banded platinum nucleus, and thermally processing after plating with a plating solution whose main component is platinum complex salt. SOLUTION: A platinum solution containing oxygen such as hydrochloric acid, etc., is brought into contact with the surface of a ceramic body such as a zirconia solid electrolyte, etc. A reducing agent such as hydrazine, etc., is added to the platinum solution to precipitate a banded platinum nucleus on the surface of the ceramic body. Since the hydrochloric acid is contained, the larger banded platinum is formed. A plating solution whose main component is platinum complex salt is brought into contact with its surface, and a banded plating film is formed. Then, the ceramic body is thermally processed to form a platinum porous film. In this manufacturing method, the porous film which is superior in adhesion between itself and the ceramic body, and superior in reaction activity as an electrode, is formed. COPYRIGHT: (C)1997,JPO
17 Production of powder for porous sintered compact JP13278795 1995-05-01 JPH08301672A 1996-11-19 UCHIDA MASANOBU; FUJIMA YOSHIHIKO; HAMAYA NORIAKI; YOSHIDA AKIHIKO
PURPOSE: To provide a method for producing a powder for a porous sintered compact containing a raw material powder and a cellulating agent uniformly distributed in order to afford a sintered compact having a uniform distribution of pores. CONSTITUTION: A graphite powder or a crystalline cellulose powder or both as a cellulating agent are added to a raw material powder and an organic binder as a binder is then added to the resultant mixed powder. The prepared mixed powder is then kneaded according to a wet process and subsequently dried. The resultant dried material is mechanically pulverized. COPYRIGHT: (C)1996,JPO
18 Manufacturing Method of Big-model Low-Permeability Microcrack Core US15749780 2017-02-14 US20190002344A1 2019-01-03 Ping GUO; Shuai WU; Yijian CHEN; Huimin ZHANG; Wanbo ZHANG; Yuhong DU; Zhouhua WANG; Jianfen DU; Yisheng HU; Huang LIU; Hongmei REN
A manufacturing method of a big-model low-permeability microcrack core includes: (1) determining the size of a microcrack core to be manufactured; (2) placing stones in a baking oven to bake for 24 h under 120° C., placing the stones into a mixer, mixing and spraying oil, enabling the oil to seep into the stone, evenly forming a thin oil film on stone's surface; (3) mixing the oil sprayed stone with quartz sand and cement, adding water to mix evenly to obtain cement paste; (4) spreading butter on core mould's inner surface to form a thin butter film, pouring the cement paste into the core mould to obtain a cement sample; (5) loading confining pressure outside the core according to the requirements of porosity and permeability of the mould to adjust a pore permeability value; (6) obtaining the big-model core with microcrack after the cement sample is dried and formed.
19 Settable cement compositions for terminating water flow and associated methods US15505268 2014-10-16 US10023498B2 2018-07-17 Kyriacos Agapiou; Thomas J. Pisklak; Larry Eoff
Compositions and methods for terminating water flow in a subterranean formation are described. The compositions include a calcium aluminate cement, a Portland cement, a non-aqueous carrier fluid, and a polyphosphate. The cement compositions, upon making contact with water, form a viscous gel that sets into a hardened mass with extraordinary compressive strengths in a short period of time.
20 HIGHLY SENSITIVE AND SELECTIVE GAS SENSING MATERIAL TO METHYLBENZENE, METHODS FOR PREPARING THE GAS SENSING MATERIAL AND GAS SENSOR INCLUDING THE GAS SENSING MATERIAL US15612510 2017-06-02 US20170350871A1 2017-12-07 Jong-Heun Lee; Jae-Hyeok Kim; Hyun-Mook Jeong; Tae-Hyung Kim; Hyung-Sik Woo
Disclosed is a gas sensing material for methylbenzene detection. Specifically, the gas sensing material includes a nanocomposite of Cr2O3 and ZnCr2O4. The content of Cr in the nanocomposite is from 67.0 at. % to 90.0 at. %, based on the sum of the contents of Cr and Zn atoms. The gas sensing material is highly selective to methylbenzenes over other gases and is highly sensitive to methylbenzenes. Also disclosed are methods for preparing the gas sensing material. The methods facilitate control over the composition of the gas sensing material and enable rapid synthesis of the gas sensing material at low temperature. Also disclosed is a gas sensor including the gas sensing material.
QQ群二维码
意见反馈