首页 / 国际专利分类库 / 化学;冶金 / 玻璃;矿棉或渣棉 / 制造、成型或辅助工艺 / 采用流出、推出{挤出}或从成型 狭道下拉或横拉或溢流口溢流法 的{熔融}玻璃成型
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种光学玻璃及制备方法、其制备的光学元件 CN201610583433.3 2016-07-22 CN106186668A 2016-12-07 张秉明
发明公开了一种光学玻璃及制备方法、其制备的光学元件。该光学玻璃包含以重量份计的以下组分:B2O3 25-35份;La2O3 20-30份;CaO 5-15份;SiO2 8-10份;Y2O3 8-10份;ZnO 8-10份;ZrO2 2-8份;Li2O 4-6份;SrO 0.5-1.5份;WO3 0.2-1份;Gd2O3 0.5-1份;SnO2 0.0005-0.002份。本发明中通过在配方设计时引入稀土元素化物,降低材料的软化温度,增加玻璃稳定性。制备得到的光学玻璃光学常数稳定,一致性好,且具有良好的压型性能和良好的加工性能,压制出的光学元件可以达到免加工的表面质量
2 平面面板显示器用玻璃基板及其制造方法 CN201280002422.1 2012-06-28 CN103153893A 2013-06-12 小山昭浩; 阿美谕; 市川学
发明的平面面板显示器用玻璃基板由下述玻璃构成,且热收缩率为75ppm以下;以摩尔%表示,上述玻璃含有55~80%的SiO2、3~20%的Al2O3、3~15%的B2O3、及3~25%的RO(MgO、CaO、SrO及BaO的总量),且SiO2、Al2O3及B2O3的以摩尔%表示的含有率满足(SiO2+Al2O3)/(B2O3)=7.5~17的关系,应变点为665℃以上,且失透温度为1250℃。其中,上述所谓热收缩率是指使用实施升降温速度为10℃/分、于550℃保持2小时的热处理后的玻璃基板的收缩量,利用下述式所求出的值。热收缩率(ppm)={热处理后的玻璃基板的收缩量/热处理前的玻璃基板的长度}×106。
3 平面面板显示器用玻璃基板及其制造方法 CN201280002422.1 2012-06-28 CN103153893B 2015-08-19 小山昭浩; 阿美谕; 市川学
发明的平面面板显示器用玻璃基板由下述玻璃构成,且热收缩率为75ppm以下;以摩尔%表示,上述玻璃含有55~80%的SiO2、3~20%的Al2O3、3~15%的B2O3、及3~25%的RO(MgO、CaO、SrO及BaO的总量),且SiO2、Al2O3及B2O3的以摩尔%表示的含有率满足(SiO2+Al2O3)/(B2O3)=7.5~17的关系,应变点为665℃以上,且失透温度为1250℃。其中,上述所谓热收缩率是指使用实施升降温速度为10℃/分、于550℃保持2小时的热处理后的玻璃基板的收缩量,利用下述式所求出的值。热收缩率(ppm)={热处理后的玻璃基板的收缩量/热处理前的玻璃基板的长度}×106。
4 PRODUCTION METHOD FOR OPTICAL LAMINATE US15743414 2016-07-13 US20180207906A1 2018-07-26 Junichi Inagaki; Takeshi Murashige; Kazuhito Hosokawa
Provided is a production method for an optical laminate, which is excellent in production efficiency even through use of a thin glass. The production method for an optical laminate includes: a thin glass production step of producing a thin glass having a thickness of 100 μm or less; and a lamination step of laminating an optical film on one surface, or each of both surfaces, of the thin glass, the thin glass production step and the lamination step being performed in an integrated line, the lamination step including applying an adhesive onto the optical film to form an application layer, and bonding the thin glass and the optical film through intermediation of the application layer, followed by curing the adhesive to form an adhesive layer between the optical film and the thin glass.
5 Methods and apparatus for additive manufacturing of glass US15365577 2016-11-30 US20170081236A1 2017-03-23 John Klein; Giorgia Franchin; Michael Stern; Markus Kayser; Chikara Inamura; Shreya Dave; Neri Oxman; Peter Houk
In illustrative implementations of this invention, a crucible kiln heats glass such that the glass becomes or remains molten. A nozzle extrudes the molten glass while one or more actuators actuate movements of the nozzle, a build platform or both. A computer controls these movements such that the extruded molten glass is selectively deposited to form a 3D glass object. The selective deposition of molten glass occurs inside an annealing kiln. The annealing kiln anneals the glass after it is extruded. In some cases, the actuators actuate the crucible kiln and nozzle to move in horizontal x, y directions and actuate the build platform to move in a z-direction. In some cases, fluid flows through a cavity or tubes adjacent to the nozzle tip, in order to cool the nozzle tip and thereby reduce the amount of glass that sticks to the nozzle tip.
6 Methods and apparatus for additive manufacturing of glass US15878167 2018-01-23 US20180148364A1 2018-05-31 John Klein; Giorgia Franchin; Michael Stern; Markus Kayser; Chikara Inamura; Shreya Dave; Neri Oxman; Peter Houk
In illustrative implementations of this invention, a crucible kiln heats glass such that the glass becomes or remains molten. A nozzle extrudes the molten glass while one or more actuators actuate movements of the nozzle, a build platform or both. A computer controls these movements such that the extruded molten glass is selectively deposited to form a 3D glass object. The selective deposition of molten glass occurs inside an annealing kiln. The annealing kiln anneals the glass after it is extruded. In some cases, the actuators actuate the crucible kiln and nozzle to move in horizontal x, y directions and actuate the build platform to move in a z-direction. In some cases, fluid flows through a cavity or tubes adjacent to the nozzle tip, in order to cool the nozzle tip and thereby reduce the amount of glass that sticks to the nozzle tip.
7 Methods and apparatus for additive manufacturing of glass US15365577 2016-11-30 US09896368B2 2018-02-20 John Klein; Giorgia Franchin; Michael Stern; Markus Kayser; Chikara Inamura; Shreya Dave; Neri Oxman; Peter Houk
In illustrative implementations of this invention, a crucible kiln heats glass such that the glass becomes or remains molten. A nozzle extrudes the molten glass while one or more actuators actuate movements of the nozzle, a build platform or both. A computer controls these movements such that the extruded molten glass is selectively deposited to form a 3D glass object. The selective deposition of molten glass occurs inside an annealing kiln. The annealing kiln anneals the glass after it is extruded. In some cases, the actuators actuate the crucible kiln and nozzle to move in horizontal x, y directions and actuate the build platform to move in a z-direction. In some cases, fluid flows through a cavity or tubes adjacent to the nozzle tip, in order to cool the nozzle tip and thereby reduce the amount of glass that sticks to the nozzle tip.
8 METHOD FOR 3D PRINTING OF BUILDINGS AND A DEVICE FOR IMPLEMENTATION THEREOF US15418697 2017-01-28 US20170283297A1 2017-10-05 ANUAR RAYKHANOVICH KULMAGAMBETOV
3D printing of buildings consisting in deposition of the material of walls by a print head as the print head is moved along the 3D coordinates of future walls is achieved by simultaneous utilization of several print heads, simultaneous loading the material into the print heads, melting the material in print heads, dosed feeding of the melted material through an opening in the print heads as the heads are moved along the 3D coordinates, as the building is constructed.
9 フラットパネルディスプレイ用ガラス基板およびその製造方法 JP2012529839 2012-06-28 JPWO2013005401A1 2015-02-23 小山 昭浩; 昭浩 小山; 諭 阿美; 学 市川
本発明のフラットパネルディスプレイ用ガラス基板は、モル%表示で、SiO2を55〜80%、Al2O3を3〜20%、B2O3を3〜15%、RO(MgO、CaO、SrO、BaOの合量)を3〜25%を含有し、SiO2、Al2O3およびB2O3のモル%で表す含有率が(SiO2+Al2O3)/(B2O3)=7.5〜17の関係を満たし、歪点が665℃以上であり、かつ、失透温度が1250℃以下であるガラスから構成され、熱収縮率が75ppm以下である。ただし、前記熱収縮率とは、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後のガラス基板の収縮量を用いて、次式にて求められる値である。熱収縮率(ppm)={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}?106
10 Methods and apparatus for additive manufacturing of glass US14697564 2015-04-27 US20150307385A1 2015-10-29 John Klein; Giorgia Franchin; Michael Stern; Markus Kayser; Chikara Inamura; Shreya Dave; Neri Oxman; Peter Houk
In illustrative implementations of this invention, a crucible kiln heats glass such that the glass becomes or remains molten. A nozzle extrudes the molten glass while one or more actuators actuate movements of the nozzle, a build platform or both. A computer controls these movements such that the extruded molten glass is selectively deposited to form a 3D glass object. The selective deposition of molten glass occurs inside an annealing kiln. The annealing kiln anneals the glass after it is extruded. In some cases, the actuators actuate the crucible kiln and nozzle to move in horizontal x, y directions and actuate the build platform to move in a z-direction. In some cases, fluid flows through a cavity or tubes adjacent to the nozzle tip, in order to cool the nozzle tip and thereby reduce the amount of glass that sticks to the nozzle tip.
11 Glass substrate for flat panel display and manufacturing method thereof US13537615 2012-06-29 US09096459B2 2015-08-04 Akihiro Koyama; Satoshi Ami; Manabu Ichikawa
A flat panel display glass substrate includes a glass comprising, in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, and 3-25% RO (the total amount of MgO, CaO, SrO, and BaO). The contents in mol % of SiO2, Al2O3, and B2O3 satisfy a relationship (SiO2+Al2O3)/(B2O3)=7.5-17. The strain point of the glass is 665° C. or more. The devitrification temperature of the glass is 1250° C. or less. The substrate has a heat shrinkage rate of 75 ppm or less. The rate of heat shrinkage is calculated from the amount of shrinkage of the substrate measured after a heat treatment which is performed at a rising and falling temperature rate of 10° C./min and at 550° C. for 2 hours by the rate of heat shrinkage (ppm)={the amount of shrinkage of the substrate after the heat treatment/the length of the substrate before the heat treatment}×106.
12 GLASS SUBSTRATE FOR FLAT PANEL DISPLAY US14314922 2014-06-25 US20140309098A1 2014-10-16 Akihiro KOYAMA; Satoshi AMI; Manabu ICHIKAWA
A flat panel display glass substrate includes a glass comprising, in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, and 3-25% RO (the total amount of MgO, CaO, SrO, and BaO). The contents in mol % of SiO2, Al2O3, and B2O3 satisfy a relationship (SiO2+Al2O3)/(B2O3)=7.5-17. The strain point of the glass is 665° C. or more. The devitrification temperature of the glass is 1250° C. or less. The substrate has a heat shrinkage rate of 75 ppm or less. The rate of heat shrinkage is calculated from the amount of shrinkage of the substrate measured after a heat treatment which is performed at a rising and falling temperature rate of 10° C./min and at 550° C. for 2 hours by the rate of heat shrinkage (ppm)={the amount of shrinkage of the substrate after the heat treatment/the length of the substrate before the heat treatment}×106.
13 GLASS SUBSTRATE FOR FLAT PANEL DISPLAY AND MANUFACTURING METHOD THEREOF US13537615 2012-06-29 US20130065748A1 2013-03-14 Akihiro KOYAMA; Satoshi Ami; Manabu Ichikawa
A flat panel display glass substrate includes a glass comprising, in mol %, 55-80% SiO2, 3-20% Al2O3, 3-15% B2O3, and 3-25% RO (the total amount of MgO, CaO, SrO, and BaO). The contents in mol % of SiO2, Al2O3, and B2O3 satisfy a relationship (SiO2+Al2O3)/(B2O3)=7.5-17. The strain point of the glass is 665° C. or more. The devitrification temperature of the glass is 1250° C. or less. The substrate has a heat shrinkage rate of 75 ppm or less. The rate of heat shrinkage is calculated from the amount of shrinkage of the substrate measured after a heat treatment which is performed at a rising and falling temperature rate of 10° C./min and at 550° C. for 2 hours by the rate of heat shrinkage (ppm)={the amount of shrinkage of the substrate after the heat treatment/the length of the substrate before the heat treatment}×106.
14 Method of working glass and articles produced thereby US65668733 1933-02-09 US2037853A 1936-04-21 EDWARD DANNER
15 フラットパネルディスプレイ用ガラス基板およびその製造方法 JP2015239040 2015-12-08 JP6149094B2 2017-06-14 小山 昭浩; 阿美 諭; 市川 学
16 光学積層体の製造方法 JP2015141265 2015-07-15 JP2017019255A 2017-01-26 稲垣 淳一; 村重 毅; 細川 和人
【課題】薄ガラスを用いながらも、製造効率に優れる光学積層体の製造方法を提供すること。
【解決手段】光学積層体の製造方法は、厚みが100μm以下の薄ガラスを製造する薄ガラス製造工程と、該薄ガラスの片面または両面に光学フィルムを積層する積層工程とを含み、該薄ガラス製造工程と、該積層工程とが一貫ラインで行われ、該積層工程において、該光学フィルムに接着剤を塗工して塗工層を形成し、該塗工層を介して該薄ガラス該と光学フィルムとを貼り合わせ、その後、該接着剤を硬化させて、光学フィルムと薄ガラスとの間に接着剤層を形成させる。
【選択図】図1
17 フラットパネルディスプレイ用ガラス基板およびその製造方法 JP2015239040 2015-12-08 JP2016094339A 2016-05-26 小山 昭浩; 阿美 諭; 市川 学
【課題】高いTgおよび歪点と、良好な耐失透性とを両立して備え、ディスプレイに用いられても画素のピッチズレの問題を生じさせないガラス基板を提供する
【解決手段】本発明のディスプレイ用ガラス基板は、モル%表示で、SiO2を55〜80%、Al2O3を3〜20%、B2O3を3〜15%、RO(MgO、CaO、SrO、BaOの合量)を3〜25%を含有し、SiO2、Al2O3およびB2O3のモル%で表す含有率が(SiO2+Al2O3)/(B2O3)=7.5〜17の関係を満たし、歪点が665℃以上であり、かつ、失透温度が1250℃以下であるガラスから構成され、熱収縮率が75ppm以下である。ただし、熱収縮率とは、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後のガラス基板の収縮量を用いて、次式にて求められる値である。熱収縮率(ppm)={熱処理後のガラス基板の収縮量/熱処理前のガラス基板の長さ}×106
【選択図】なし
18 평판 디스플레이용 유리 기판 및 그의 제조 방법 KR1020127021416 2012-06-28 KR101409534B1 2014-06-19 고야마,아키히로; 아미,사토시; 이치카와,마나부
본 발명의 평판 디스플레이용 유리 기판은, 몰% 표시로 SiO 2 를 55 내지 80 %, Al 2 O 3 을 3 내지 20 %, B 2 O 3 을 3 내지 15 %, RO(MgO, CaO, SrO, BaO의 합계량)를 3 내지 25 % 함유하고, SiO 2 , Al 2 O 3 및 B 2 O 3 의 몰%로 표시되는 함유율이 (SiO 2 +Al 2 O 3 )/(B 2 O 3 )=7.5 내지 17의 관계를 만족시키고, 변형점이 665 ℃ 이상이고, 실투 온도가 1250 ℃ 이하인 유리로 구성되고, 열 수축률이 75 ppm 이하이다. 단, 상기 열 수축률이란, 승강온 속도 10 ℃/분, 550 ℃에서 2 시간 동안 유지하는 열 처리가 실시된 후의 유리 기판의 수축량을 이용하여, 이하의 수학식으로 구해지는 값이다.
열 수축률(ppm)={열 처리 후의 유리 기판의 수축량/열 처리 전의 유리 기판의 길이}×10 6
19 평판 디스플레이용 유리 기판 및 그의 제조 방법 KR1020127021416 2012-06-28 KR1020130056203A 2013-05-29 고야마,아키히로; 아미,사토시; 이치카와,마나부
본 발명의 평판 디스플레이용 유리 기판은, 몰% 표시로 SiO 2 를 55 내지 80 %, Al 2 O 3 을 3 내지 20 %, B 2 O 3 을 3 내지 15 %, RO(MgO, CaO, SrO, BaO의 합계량)를 3 내지 25 % 함유하고, SiO 2 , Al 2 O 3 및 B 2 O 3 의 몰%로 표시되는 함유율이 (SiO 2 +Al 2 O 3 )/(B 2 O 3 )=7.5 내지 17의 관계를 만족시키고, 변형점이 665 ℃ 이상이고, 실투 온도가 1250 ℃ 이하인 유리로 구성되고, 열 수축률이 75 ppm 이하이다. 단, 상기 열 수축률이란, 승강온 속도 10 ℃/분, 550 ℃에서 2 시간 동안 유지하는 열 처리가 실시된 후의 유리 기판의 수축량을 이용하여, 이하의 수학식으로 구해지는 값이다.
열 수축률(ppm)={열 처리 후의 유리 기판의 수축량/열 처리 전의 유리 기판의 길이}×10 6
20 영구적 원적외선 방출용 유리상물질 및 그 제품 KR1020080085543 2008-08-29 KR1020100026514A 2010-03-10 정승준; 정웅철
PURPOSE: A glassy material emitting far-infrared rays and a product using the same are provided to improve durability of the material in emission intensity of the far-infrared rays after the material is used at a high temperature or room temperature. CONSTITUTION: A manufacturing method of a far-infrared rays emitting material includes the following steps: putting silicon oxide 45~65 weight%, feldspar oxide 7~9 weight%, borax 10~20 weight%, boric acid 4~6 weight%, potassium carbonate 2~4 weight%, sodium nitrate 1~1.2 weight%, alumina hydroxide 3.3~6.8 weight%, limestone 1.4~1.8 weight%, barium carbonate 0.8~1 weight%, lithium 0.7~0.8 weight%, zircon1~1.3 weight%, phosphoric acid 0.2~0.4 weight%, carbon 3~3.5 weight%, magnesium carbonate 0.4~0.5 weight% and porcelain color 0.2~0.22 weight% in a mixing container; homogenizing a mixture by a stirrer for 30 ~ 60 minutes; and melting a carbonization material in the mixture for 19 ~ 21 hours.
QQ群二维码
意见反馈