序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 Solution of alkali metal trithiocarbonate in dimethyl sulfoxide US3753918D 1972-03-21 US3753918A 1973-08-21 HAUGWITZ R
CARBON BISULFIDE IS REACTED WITH ALALKALI METAL HYDROXIDE IN DEMETHYL SULFOXIDE TO FORM A SOLUTION OF ALKALI METAL TRITHIOCARBONATE.
42 Process of manufacturing alkali and ammonium chlorosulphonates US17034737 1937-10-22 US2219103A 1940-10-22 ILER RALPH K
43 METHOD FOR MANUFACTURING NICKEL AND COBALT MIXED SULFIDE AND NICKEL OXIDE ORE HYDROMETALLURGICAL METHOD EP15887771.2 2015-12-08 EP3279344A1 2018-02-07 YONEYAMA, Tomoaki; MITSUI, Hiroyuki; ENOMOTO, Manabu

Provided is a method for manufacturing a nickel and cobalt mixed sulfide that is capable of stabilizing nickel and cobalt concentrations in the sulfidation end solution at low levels and of limiting decreases in nickel and cobalt recovery rates without increasing cost even when processing with a sulfuric acid acidic solution containing nickel and cobalt and a high iron ions concentration as the sulfidation start solution. This method for manufacturing a nickel and cobalt mixed sulfide is a method for generating a sulfidation reaction by blowing hydrogen sulfide gas into a sulfuric acid acidic solution comprising nickel and cobalt to obtain a mixed sulfide, wherein: the sulfuric acid acidic solution, which is the sulfidation start solution, contains iron ions at a rate of 1.0-4.0 g/L; and the sulfidation reaction is generated by blowing hydrogen sulfide gas into the sulfidation start solution and adding sodium hydrogensulfide (NaHS) obtained by absorbing hydrogen sulfide gas-containing exhaust gas, generated by the sulfidation, in an alkaline solution.

44 PRODUCTION OF A HEXAFLUOROPHOSPHATE SALT AND OF PHOSPHOROUS PENTAFLUORIDE EP14719106.8 2014-03-31 EP3126288A1 2017-02-08 LEKGOATHI, Mpho Diphago Stanley; LE ROUX, Johannes Petrus
A process for producing a hexafluorophosphate salt comprises neutralizing hexafluorophosphoric acid with an organic Lewis base, to obtain an organic hexafluorophosphate salt. The organic hexafluorophosphate salt is reacted with an alkali hydroxide selected from an alkali metal hydroxide (other than LiOH) and an alkaline earth metal hydroxide, in a non-aqueous suspension medium, to obtain an alkali hexafluorophosphate salt as a precipitate. A liquid phase comprising the non-aqueous suspension medium, any unreacted organic Lewis base and any water that has formed during the reaction to form the precipitate, is removed. Thereby, the alkali hexafluorophosphate salt is recovered.
45 METHOD FOR PRODUCING ALKALI METAL NIOBATE PARTICLES, AND ALKALI METAL NIOBATE PARTICLES EP10761671.6 2010-04-05 EP2418174B1 2016-10-05 MURAMATSU, Atsushi; KANIE, Kiyoshi; TERABE, Atsuki; OKAMOTO, Yasuhiro; MIZUTANI, Hideto; SUEDA, Satoru; TAKAHASHI, Hirofumi
Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of the particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. One of specifically disclosed is a method of producing a substantially rectangular cuboid particulate alkali metal niobate represented by MNbO 3 (1), wherein M represents one element selected from alkaline metals, including specific four steps. Another one of specifically disclosed is particulate alkali metal niobate represented by the formula (1) having a substantially rectangular cuboid shape, wherein the substantially rectangular cuboid shape has a longest side and a shortest side, the length of the longest side represented by an index L max is 0.10 to 25 µm, and the length of the shortest side represented by an index L min is 0.050 to 15 µm.
46 PROCESS FOR PRODUCTION OF HEXAFLUOROPHOSPHATES EP09804955.4 2009-08-04 EP2319800A1 2011-05-11 WAKI,Masahide; YABUNE,Tatsuhiro; MIYAMOTO,Kazuhiro; HIRANO,Kazutaka

An object is to provide a method of manufacturing a hexafluorophosphate, that can simply and easily manufacture an inexpensive and high-quality hexafluorophosphate while suppressing the manufacturing cost, an electrolytic solution containing a hexafluorophosphate, and an electricity storage device including the electrolytic solution. The present invention relates to a method of manufacturing a hexafluorophosphate, which comprises reacting at least a phosphorus compound with a fluoride represented by MFs·r(HF), wherein 0 ≤ r ≤ 6, 1 ≤ s ≤ 3, and M is at least one kind selected from the group consisting of Li, Na, K, Rb, Cs, NH4, Ag, Mg, Ca, Ba, Zn, Cu, Pb, Al and Fe, to produce a hexafluorophosphate represented by the chemical formula M(PF6)s.

47 High purity lithium polyhalogenated boron cluster salts useful in lithium batteries EP08151796.3 2008-02-22 EP1964813A3 2010-04-07 Ivanov, Sergei Vladimirovich; Casteel, Jr., William Jack; Bailey, III, Wade Hampton

The present invention relates to lithium secondary batteries comprising a negative electrode, a positive electrode, a separator and a lithium-based electrolyte carried in an aprotic solvent, and to the electrolyte compositions, and to methods for purifying battery active materials. The electrolyte comprises at least one solvent and a lithium salt of the formula:



         Li2B12FxH12-x-yZy



where x+y is from 3 to 12, and x and y are independently from 0 to 12, and Z comprises at least one of Cl and Br.

48 METHOD FOR PRODUCING HEXAFLUOROPHOSPHATE SALT EP08704433.5 2008-02-05 EP2123601A1 2009-11-25 WAKI, Masahide; MIYAMOTO, Kazuhiro; AOKI, Kenji

In the manufacturing method of hexafluorophosphate (MPF6: M = Li, Na, K, Rb, Cs, NH4, and Ag) of the present invention, at least a HxPOyFz aqueous solution, a hydrofluoric acid aqueous solution, and MF · r (HF) are used as raw materials (wherein, r ≥ 0, 0 ≤ x ≤ 3, 0 ≤ y ≤ 4, and 0 ≤ z ≤ 6). According to the above description, a manufacturing method of hexafluorophosphate can be provided which is capable of manufacturing hexafluorophosphate (GPF6: G = Li, Na, K, Rb, Cs, NH4, and Ag) at a low cost in which the raw materials can be easily obtained, the control of the reaction is possible, and the workability is excellent.

49 High Purity Lithium Polyhalogenated Boron Cluster Salts Useful in Lithium Batteries EP08151796.3 2008-02-22 EP1964813A2 2008-09-03 Ivanov, Sergei Vladimirovich; Casteel, Jr., William Jack; Bailey, III, Wade Hampton

The present invention relates to lithium secondary batteries comprising a negative electrode, a positive electrode, a separator and a lithium-based electrolyte carried in an aprotic solvent, and to the electrolyte compositions, and to methods for purifying battery active materials. The electrolyte comprises at least one solvent and a lithium salt of the formula:



         Li2B12FxH12-x-yZy



where x+y is from 3 to 12, and x and y are independently from 0 to 12, and Z comprises at least one of Cl and Br.

50 Verfahren zum Zersetzen natronhaltiger Mehrfachsalze EP83111930.0 1983-11-29 EP0114974A2 1984-08-08 Lohrengel, Gregor, Dr.; Steinbeisser, Hartmut, Dr.; Schade, Wolfgang, Dr.

Um sowohl eine konzentrierte, möglichst wenig gelöstes Salz enthaltende Natronlauge als auch ein Festsalz mit möglichst geringem Gehalt an NaOH zu erhalten, werden die beim Eindampfen und Abkühlen der Natronlauge aus der NaCl-Elektrolyse anfallenden Mehrfachsalze zersetzt. Dazu wird im Seitenstrom zum Lauge-Hauptstrom der Eindamp-_- fanlage der entnommene Salzbrei zunächst eingedickt, und ein Teil der Natronlauge mit großem NaOH-Gehalt wird durch Lauge mit geringerem NaOH-Gehalt ersetzt. Die Mehrfachsalze werden in einem ebenfalls im Seitenstrom liegenden Zersetzer mittels Natronlauge mit weniger als 30 % NaOH-Gehalt zersetzt. Bei diesem Verfahren wird weder bereits auskristallisiertes Salz aufgelöst noch die Salzbelastung im Haupt-Laugestrom erhöht. Der Verlust an NaOH wird gegenüber den bisher üblichen Verfahren merklich herabgesetzt.

51 ヘキサフルオロリン酸塩の、および五フッ化リンの製造 JP2016560341 2014-03-31 JP6366732B2 2018-08-01 レクゴアティ、モホ、ディファゴ、スタンレー; ル・ルー、ヨハネス、ペトリュス
52 窒化物蛍光体の製造方法 JP2016243269 2016-12-15 JP2018095769A 2018-06-21 涌井 貞一; 吉田 茂希; 細川 昌治
【課題】より高い発光強度を有する窒化物蛍光体が得られる、窒化物蛍光体の製造方法を提供する。
【解決手段】Sr、Ca、Ba及びMgからなる群より選択される少なくとも1種の元素Maと、Li、Na及びKからなる群より選択される少なくとも1種の元素Mbと、Eu、Ce、Tb及びMnからなる群より選択される少なくとも1種の元素Mcと、Alと、Nとを含む組成を有する窒化物蛍光体の製造方法であって、前記窒化物蛍光体の組成を構成する各元素を含有する原料混合物に、フラックスとしてSrF2及び/又はLiFを添加して熱処理することを含み、前記原料混合物とフラックスとの合計量100質量%に対して、フラックスが5.0質量%以上15質量%以下である、窒化物蛍光体の製造方法である。
【選択図】図1
53 全固体二次電池用の正極、その製造方法及び全固体二次電池 JP2016555235 2015-10-20 JPWO2016063877A1 2017-08-31 晃敏 林; 辰巳砂 昌弘; 昌弘 辰巳砂
A2S・AXで表される正極活物質を含み、前記Aは、アルカリ金属であり、前記Xは、I、Br、Cl、F、BF4、BH4、SO4、BO3、PO4、O、Se、N、P、As、Sb、PF6、AsF6、ClO4、NO3、CO3、CF3SO3、CF3COO、N(SO2F)2及びN(CF3SO2)2から選択される全固体二次電池用の正極。
54 フッ素化剤 JP2015540558 2014-10-02 JPWO2015050229A1 2017-03-09 原 正治; 正治 原; 洋介 岸川; 淳 白井; 敬 並川; 寿美 石原
本発明は、フッ素化剤として強い反応性を有し、各種のフッ素化反応に有効に利用でき、しかも空気中でも安全に取り扱うことが可能な新規な物質を提供することを課題とする。本発明は、前記課題の解決手段として、ハロゲン化金属及びハロゲン化素金属からなる群から選択される少なくとも一種の金属ハロゲン化物と、三フッ化臭素とを非極性溶媒中で反応させて得られる複合体を提供する。当該複合体は、優れたフッ素化性能を有するフッ素化剤であって、空気中で安定な物質である。
55 Na−Si−B組成を有するホウ化物、ホウ化物の多結晶反応焼結体及びその製造方法 JP2012529604 2011-08-17 JP5907532B2 2016-04-26 森戸 春彦; 山根 久典
56 METHOD FOR PRODUCING niobate alkali metal salt particles, and niobate alkali metal salt particles JP2009095013 2009-04-09 JP5582281B2 2014-09-03 淳司 村松; 澄志 蟹江; 敦樹 寺部; 康寛 岡本; 英人 水谷; 学 末田; 弘文 高橋
Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of the particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. One of specifically disclosed is a method of producing a substantially rectangular cuboid particulate alkali metal niobate represented by MNbO 3 (1), wherein M represents one element selected from alkaline metals, including specific four steps. Another one of specifically disclosed is particulate alkali metal niobate represented by the formula (1) having a substantially rectangular cuboid shape, wherein the substantially rectangular cuboid shape has a longest side and a shortest side, the length of the longest side represented by an index L max is 0.10 to 25 µm, and the length of the shortest side represented by an index L min is 0.050 to 15 µm.
57 Method of manufacturing a hexafluorophosphate JP2007029405 2007-02-08 JP5148125B2 2013-02-20 雅秀 脇; 和博 宮本; 謙治 青木
58 Method for producing alkali metal niobate particle and alkali metal niobate particle JP2009095013 2009-04-09 JP2010241658A 2010-10-28 MURAMATSU JUNJI; KANIE KIYOSHI; TERABE ATSUKI; OKAMOTO YASUHIRO; MIZUTANI HIDETO; SUEDA MANABU; TAKAHASHI HIROFUMI
<P>PROBLEM TO BE SOLVED: To provide a method for producing fine alkali metal niobate particles in a liquid phase system, wherein the size and shape of fine alkali metal niobate particles can be controlled, and to provide fine alkali metal niobate particles which have a controlled size and shape. <P>SOLUTION: The method for producing fine alkali metal niobate particles expressed by formula (1):MNbO<SB>3</SB>(where M represents one kind of element selected from alkali metals) is a method for producing approximately rectangular parallelepiped particles of an alkali metal niobate, including specific four steps. The alkali metal niobate particles are expressed by the formula (1) and have an approximately rectangular parallelepiped shape, in which the longest side of the approximately rectangular parallelepiped has a length L<SB>max</SB>of 0.10 to 25 μm and the shortest side has a length L<SB>min</SB>of 0.050 to 15 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT
59 Method for producing hexafluorophosphate salt JP2007029405 2007-02-08 JP2008195547A 2008-08-28 WAKI MASAHIDE; MIYAMOTO KAZUHIRO; AOKI KENJI
<P>PROBLEM TO BE SOLVED: To provide a method for producing a hexafluorophosphate salt (GPF<SB>6</SB>: G=Li, Na, K, Rb, Cs, NH<SB>4</SB>, Ag) having excellent workability at low cost from easily available raw materials, and the reaction can be controlled in this method. <P>SOLUTION: Disclosed is a method for producing a hexafluorophosphate salt (MPF<SB>6</SB>: M=Li, Na, K, Rb, Cs, NH<SB>4</SB>, Ag), which uses at least an aqueous H<SB>x</SB>PO<SB>y</SB>F<SB>z</SB>solution, an aqueous hydrofluoric acid solution and MF r(HF) as raw materials, wherein 0≤x≤3, 0≤y≤4, 0≤z≤6, and r≥0. <P>COPYRIGHT: (C)2008,JPO&INPIT
60 Stabilized particles and methods for controlling the preparation and pests JP33523789 1989-12-26 JP3046033B2 2000-05-29 シー ヤング ドナルド; エル ピリング リチャード
QQ群二维码
意见反馈