序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 METHOD FOR PRODUCING ALKALI METAL NIOBATE PARTICLES, AND ALKALI METAL NIOBATE PARTICLES EP10761671.6 2010-04-05 EP2418174A1 2012-02-15 MURAMATSU, Atsushi; KANIE, Kiyoshi; TERABE, Atsuki; OKAMOTO, Yasuhiro; MIZUTANI, Hideto; SUEDA, Satoru; TAKAHASHI, Hirofumi

Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of the particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. One of specifically disclosed is a method of producing a substantially rectangular cuboid particulate alkali metal niobate represented by MNbO3 (1), wherein M represents one element selected from alkaline metals, including specific four steps. Another one of specifically disclosed is particulate alkali metal niobate represented by the formula (1) having a substantially rectangular cuboid shape, wherein the substantially rectangular cuboid shape has a longest side and a shortest side, the length of the longest side represented by an index Lmax is 0.10 to 25 µm, and the length of the shortest side represented by an index Lmin is 0.050 to 15 µm.

102 Verfahren zur Herstellung einer stabilisierten, wässrigen Alkalitetrathiocarbonatlösung und deren Verwendung EP93118429.5 1993-11-15 EP0600292B1 1996-10-09 zum Hebel, Peter, Dr.; Dillenburg, Helmut, Dr.; Ball, Susanne; Helgers, Michael
103 Verfahren zur Herstellung einer stabilisierten, wässrigen Alkalitetrathiocarbonatlösung und deren Verwendung EP93118429.5 1993-11-15 EP0600292A1 1994-06-08 zum Hebel, Peter, Dr.; Dillenburg, Helmut, Dr.; Ball, Susanne; Helgers, Michael

Die Erfindung betrifft ein Verfahren zur Herstellung einer stabilisierten, wäßrigen Alkalitetrathiocarbonatlösung durch Umsetzung mindestens eines Alkalidisulfids mit Schwefelkohlenstoff (CS₂) in wäßriger Lösung, wobei in einer ersten Stufe elementarer Schwefel mit einer 5 bis 55 gewichtsprozentigen wäßrigen Alkalihyroxidlösung in einem Molverhältnis von Schwefel zu Alkalihydroxid (berechnet als Feststoff) von 1 : 0,9 bis 1 : 1,1 bei Temperaturen von 45 bis 110°C umgesetzt und die erhaltene Lösung, die einen Gehalt an Alkalipolysulfid von mehr als 5 Gew.-% aufweist, auf eine Temperatur unter 40°C abgekühlt wird und nachfolgend in einer zweiten Stufe das gebildete Alkalipolysulfid, das nahezu vollständig aus Alkalidisulfid besteht, mit Schwefelkohlenstoff im quasi-stöchiometrischen Verhältnis zu Alkalitetrathiocarbonat umgesetzt und nach Beendigung der Reaktion die erhaltene wäßrige, Alkalitetrathiocarbonat enthaltende Lösung durch Zugabe einer wäßrigen Lösung mindestens einer alkalisch reagierenden Verbindung stabilisiert wird.

Die Erfindung betrifft des weiteren die Verwendung einer, vorzugsweise nach dem erfindungsgemäßen Verfahren hergestellten, insbesondere stabilisierten, wäßrigen Alkalitetrathiocarbonatlösung in einem Verfahren zur Behandlung von gelöste Schwermetalle enthaltenden wäßrigen Lösungen, insbesondere industriellen Abwässern.

104 Stabilized solid thiocarbonate compositions and methods for making same EP89313039.3 1989-12-13 EP0376550B1 1993-05-12 Pilling, Richard L.; Young, Donald C.
105 Stabilized solid thiocarbonate compositions and methods for making same EP89313039.3 1989-12-13 EP0376550A3 1990-08-01 Pilling, Richard L.; Young, Donald C.

Particles of thiocarbonate salts, thioesters or complexes are stabilized by being isolated from contact with water, CO₂ and oxygen and are encapsul­ated in a coating effective to prevent future contact of the particles with water, CO₂ and oxygen. The particles are preferably prepared in an environment from which water, CO₂ and oxygen are excluded. The coating may be a wax, a water-free oil or grease, sulfur or a natural or synthetic polymerizable resin. Various preparative and encapsulating techniques are disclosed.

106 Process for decomposing sodium hydroxide containing multiple salts EP83111930 1983-11-29 EP0114974A3 1984-09-05 Lohrengel, Gregor, Dr.; Steinbeisser, Hartmut, Dr.; Schade, Wolfgang, Dr.
Um sowohl eine konzentrierte, möglichst wenig gelöstes Salz enthaltende Natronlauge als auch ein Festsalz mit möglichst geringem Gehalt an NaOH zu erhalten, werden die beim Eindampfen und Abkühlen der Natronlauge aus der NaCl-Elektrolyse anfallenden Mehrfachsalze zersetzt. Dazu wird im Seitenstrom zum Lauge-Hauptstrom der Eindamp fanlage der entnommene Salzbrei zunächst eingedickt, und ein Teil der Natronlauge mit großem NaOH-Gehalt wird durch Lauge mit geringerem NaOH-Gehalt ersetzt. Die Mehrfachsalze werden in einem ebenfalls im Seitenstrom liegenden Zersetzer mittels Natronlauge mit weniger als 30 % NaOH-Gehalt zersetzt. Bei diesem Verfahren wird weder bereits auskristallisiertes Salz aufgelöst noch die Salzbela stung im Haupt-Laugestrom erhöht. Der Verlust an NaOH wird gegenüber den bisher üblichen Verfahren merklich herabgesetzt
107 Method for manufacturing nickel and cobalt mixed sulfide and nickel oxide ore hydrometallurgical method US15561695 2015-12-08 US10125408B2 2018-11-13 Tomoaki Yoneyama; Hiroyuki Mitsui; Manabu Enomoto
Provided is a method for manufacturing a nickel and cobalt mixed sulfide that is capable of stabilizing nickel and cobalt concentrations in the sulfidation end solution at low levels and of limiting decreases in nickel and cobalt recovery rates without increasing cost even when processing with a sulfuric acid acidic solution containing nickel and cobalt and a high iron ions concentration as the sulfidation start solution. This method generates a sulfidation reaction by blowing hydrogen sulfide gas into a sulfuric acid acidic solution comprising nickel and cobalt to obtain a mixed sulfide, wherein: the sulfuric acid acidic solution, which is the sulfidation start solution, contains iron ions at a rate of 1.0-4.0 g/L; and the sulfidation reaction is generated by blowing hydrogen sulfide gas into the sulfidation start solution and adding sodium hydrogensulfide (NaHS) obtained by absorbing hydrogen sulfide gas-containing exhaust gas, generated by the sulfidation, in an alkaline solution.
108 A PROCESS OF PRODUCTION OF POTASSIUM AMMONIUM SULFATE COMPOUND FERTILIZER IN COST-EFFECTIVE MANNER DIRECTLY FROM CONCENTRATED SEA BITTERN US15509419 2015-10-16 US20180230065A1 2018-08-16 Pratyush Maiti; Krishna Kanta Ghara; Pushpito Kumar Ghosh
The present invention provides process for production of potassium ammonium sulfate compound fertilizer through the reaction of Epsom salt, obtained in course of chilling of concentrated sea bittern (32-33° Be), with potassium bitartrate, precipitated from such bittern, and ammonium hydroxide. While process integration was achieved through utilisation of Epsom salt; partial desulphatation of bittern, through crystallization of Epsom salt, resulted in about 17% improvement in K+ precipitation efficiency.
109 Metal-organic framework electrodes for sodium ion batteries US15664507 2017-07-31 US20180053968A1 2018-02-22 Dorina F. Sava Gallis; Harry D. Pratt; Travis Mark Anderson; Nicholas Hudak
A sodium ion battery comprises a cathode having a porous redox active metal-organic framework material. The battery can be an organic electrolyte sodium ion battery wherein the electrolyte comprises a sodium salt dissolved in an organic solvent or mixture of organic solvents. Alternatively, the battery can comprise an aqueous sodium ion battery wherein the electrolyte comprises a sodium salt dissolved in an aqueous solvent. Battery performance is especially related to electrolyte and binder selection.
110 PROCESS FOR REMOVING IMPURITIES FROM ACETIC ACID US15553761 2016-02-23 US20180021692A1 2018-01-25 Roland Schmidt; Sebastiano Licciulli; Shahid Azam
A process of purifying acetic acid is provided. The process includes feeding a stream of acetic acid into a distillation column and distilling acetic acid in the presence of an oxidizing agent in the distillation column, to oxidize oxidizable impurities in the acetic acid, wherein the oxidizing agent is an oxidant capable of cleaving C═C bonds. The process further includes removing a distilled acetic acid stream from the distillation column. Further processes for purifying acetic acid and systems for purifying acetic acid are also provided.
111 PRODUCTION OF A HEXAFLUOROPHOSPHATE SALT AND OF PHOSPHOROUS PENTAFLUORIDE US15300738 2014-03-31 US20170015563A1 2017-01-19 Mpho Diphago Stanley Lekgoathi; Johannes Petrus Le Roux
A process for producing a hexafluorophosphate salt comprises neutralizing hexafluorophosphoric acid with an organic Lewis base, to obtain an organic hexafluorophosphate salt. The organic hexafluorophosphate salt is reacted with an alkali hydroxide selected from an alkali metal hydroxide (other than LiOH) and an alkaline earth metal hydroxide, in a non-aqueous suspension medium, to obtain an alkali hexafluorophosphate salt as a precipitate. A liquid phase comprising the non-aqueous suspension medium, any unreacted organic Lewis base and any water that has formed during the reaction to form the precipitate, is removed. Thereby, the alkali hexafluorophosphate salt is recovered.
112 Method for producing alkali metal niobate particles, and alkali metal niobate particles US14192399 2014-02-27 US09272921B2 2016-03-01 Atsushi Muramatsu; Kiyoshi Kanie; Atsuki Terabe; Yasuhiro Okamoto; Hideto Mizutani; Satoru Sueda; Hirofumi Takahashi
Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of the particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. One of specifically disclosed is a method of producing a substantially rectangular cuboid particulate alkali metal niobate represented by MNbO3 (1), wherein M represents one element selected from alkaline metals, including specific four steps. Another one of specifically disclosed is particulate alkali metal niobate represented by the formula (1) having a substantially rectangular cuboid shape, wherein the substantially rectangular cuboid shape has a longest side and a shortest side, the length of the longest side represented by an index Lmax is 0.10 to 25 μm, and the length of the shortest side represented by an index Lmin is 0.050 to 15 μm.
113 Complexometric precursors formulation methodology for industrial production of high performance fine and ultrafine powders and nanopowders for specialized applications US13839374 2013-03-15 US09136534B2 2015-09-15 Teresita Frianeza-Kullberg
A method of forming a powder MjXp wherein Mj is a positive ion or several positive ions selected from alkali metal, alkaline earth metal or transition metal; and Xp is a monoatomic or a polyatomic anion selected from Groups IIIA, IVA, VA, VIA or VIIA; called complexometric precursor formulation or CPF. The method includes the steps of: providing a first reactor vessel with a first gas diffuser and an first agitator; providing a second reactor vessel with a second gas diffuser and a second agitator; charging the first reactor vessel with a first solution comprising a first salt of Mj; introducing gas into the first solution through the first gas diffuser, charging the second reactor vessel with a second solution comprising a salt of Mp; adding the second solution to the first solution to form a complexcelle; drying the complexcelle, to obtain a dry powder; and calcining the dried powder of said MjXp.
114 Complexometric Precursors Formulation Methodology for Industrial Production of High Performance Fine and Ultrafine Powders and Nanopowders for Specialized Applications US13839374 2013-03-15 US20140272132A1 2014-09-18 Teresita Frianeza-Kullberg
A method of forming a powder MjXp wherein Mj is a positive ion or several positive ions selected from alkali metal, alkaline earth metal or transition metal; and Xp is a monoatomic or a polyatomic anion selected from Groups IIIA, IVA, VA, VIA or VIIA; called complexometric precursor formulation or CPF. The method includes the steps of:providing a first reactor vessel with a first gas diffuser and an first agitator; providing a second reactor vessel with a second gas diffuser and a second agitator; charging the first reactor vessel with a first solution comprising a first salt of Mj; introducing gas into the first solution through the first gas diffuser, charging the second reactor vessel with a second solution comprising a salt of Mp; adding the second solution to the first solution to form a complexcelle; drying the complexcelle, to obtain a dry powder; and calcining the dried powder of said MjXp.
115 METHOD FOR PRODUCING IMIDE SALT US14352175 2012-09-25 US20140241973A1 2014-08-28 Atsushi Fukunaga; Shinji Inazawa; Koji Nitta; Shoichiro Sakai
A mixture of sulphamic acid, a halogenated sulphonic acid and thionyl chloride is heated to allow the reaction to proceed, to thereby produce first intermediate products. The first intermediate products are then subjected to reaction with an alkali metal fluoride MF to produce second intermediate products. The second intermediate products is then subjected to reaction with the alkali metal fluoride MF in a polar solvent to obtain a desired product MN(SO2F)2 (where M is an alkali metal).
116 Method for producing alkali metal niobate particles, and alkali metal niobate particles US13262770 2010-04-05 US08771618B2 2014-07-08 Atsushi Muramatsu; Kiyoshi Kanie; Atsuki Terabe; Yasuhiro Okamoto; Hideto Mizutani; Satoru Sueda; Hirofumi Takahashi
Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of the particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. One of specifically disclosed is a method of producing a substantially rectangular cuboid particulate alkali metal niobate represented by MNbO3 (1), wherein M represents one element selected from alkaline metals, including specific four steps. Another one of specifically disclosed is particulate alkali metal niobate represented by the formula (1) having a substantially rectangular cuboid shape, wherein the substantially rectangular cuboid shape has a longest side and a shortest side, the length of the longest side represented by an index Lmax is 0.10 to 25 μm, and the length of the shortest side represented by an index Lmin is 0.050 to 15 μm.
117 BORIDE HAVING CHEMICAL COMPOSITION Na-Si-B, AND POLYCRYSTALLINE REACTION SINTERED PRODUCT OF BORIDE AND PROCESS FOR PRODUCTION THEREOF US13817646 2011-08-17 US20130266499A1 2013-10-10 Haruhiko Morito; Hisanori Yamane
Provided are: a novel bonds useful as a highly-functional material; and a novel production method for a polycrystalline sintered product of a bonds, of which the energy cost is low, which does not require a sintering promoter, which enables the product to be worked into complicated forms and which enables a development to a polynary boride.Provided are a boride having a composition Na—Si—B, and a polycrystalline reaction-sintered product thereof. A mixed compact of boron and an element, M (M means Si and/or C) is heated along with metal sodium to give a polycrystalline reaction-sintered product.
118 Titanate and titania nanostructures and nanostructure assemblies, and methods of making same US12004105 2007-12-18 US08440162B1 2013-05-14 Stanislaus S. Wong; Yuanbing Mao
The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.
119 Process for the purification of lithium salts US11710116 2007-02-23 US07981388B2 2011-07-19 Sergei Vladimirovich Ivanov; William Jack Casteel, Jr.; Wade H. Bailey, III
The present invention relates to lithium secondary batteries comprising a negative electrode, a positive electrode, a separator and a lithium-based electrolyte carried in an aprotic solvent, and to the electrolyte compositions, and to methods for purifying battery active materials. The electrolyte comprises at least one solvent and a lithium salt of the formula: Li2B12FxH12-x-yZy where x+y is from 3 to 12, and x and y are independently from 0 to 12, and Z comprises at least one of Cl and Br.
120 MANUFACTURING METHOD OF HEXAFLUOROPHOSPHATE US12525900 2008-02-05 US20100317511A1 2010-12-16 Masahide Waki; Kazuhiro Miyamoto; Kenji Aoki
In the manufacturing method of hexafluorophosphate (MPF6: M=Li, Na, K, Rb, Cs, NH4, and Ag) of the present invention, at least a HxPOyFz aqueous solution, a hydrofluoric acid aqueous solution, and MF.r (HF) are used as raw materials (wherein, r≧0, 0≦x≦3, 0≦y≦4, and 0≦z≦6). According to the above description, a manufacturing method of hexafluorophosphate can be provided which is capable of manufacturing hexafluorophosphate (GPF6: G=Li, Na, K, Rb, Cs, NH4, and Ag) at a low cost in which the raw materials can be easily obtained, the control of the reaction is possible, and the workability is excellent.
QQ群二维码
意见反馈