序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 带有非均匀地间隔开的激波突起的空气动结构 CN200980106432.8 2009-02-17 CN101959755A 2011-01-26 诺曼·伍德
一种空气动结构,该空气动力结构包括从其表面延伸的一系列激波突起(3)。所述激波突起以相邻突起之间的中心和/或边缘之间具有非均匀间隔(d1,d2)的方式分布在所述结构上。突起之间的非均匀间隔可被设置成基于横跨翼展的冲击强度,针对最少数量突起获得最大波阻衰减,以使对于给定量的波阻衰减来说翼重增加最小。
2 利用流体流的推进装置 CN201080040037.7 2010-09-07 CN102481968A 2012-05-30 金洛桧
发明涉及一种利用流体流的推进装置,该推进装置快速地将该推进装置的上表面上产生的涡流排出到外部,以改进设置有该推进装置的产品的推进。为此,本发明的推进装置包括:流体储存单元,其中向下弯曲的流体储存面形成在第一入口管线与第一出口管线之间,使得在流体储存面上形成流体储存空间;以及流体流单元,其中在第二入口管线与第二出口管线之间形成向下弯曲的流体流面,第二入口管线和第二出口管线向外且向后倾斜,使得在流体流面上形成流体流空间,其中,与第二出口管线相邻的流体流面随着该流体流面向外延伸而逐渐变平。本发明的推进装置的上述构造的优点在于:引入到流体储存空间和流体流空间中的流体成涡流流动以增大压力,并且流体流空间随着该流体流空间朝着流体流面的末端延伸而逐渐变窄,以快速将流体向流体流面的末端排出,从而增加流体流速度并改进设置有该推进装置的运输工具的推进力和推力。
3 冲击突起阵列 CN200980106279.9 2009-02-17 CN101965291A 2011-02-02 诺曼·伍德
一种包括从其表面伸出的冲击突起阵列(3、10)的气动结构,该冲击突起阵列包括:第一系列的冲击突起;和位于第一系列冲击突起后面的一个或者更多个冲击突起。优选地,位于第一系列冲击突起后面的所述一个或更多个冲击突起中的至少一个冲击突起发生偏移,从而不直接位于第一系列中的任何一个冲击突起的后面。通过提供冲击突起阵列而不是一行冲击突起,可以设置第一系列冲击突起和位于第一系列后面的一个或者更多个冲击突起,以修改在各种不同条件下形成的冲击的结构。
4 激波突起 CN200980106626.8 2009-02-17 CN101959756A 2011-01-26 诺曼·伍德
一种激波突起(10),该激波突起包括发散前部(20)和收敛后部。所述后部具有至少一个平面形式的等高线,该等高线具有一对凹入的相对侧边(22,23)。所述激波突起提供具有较低阻的改善的形状。另外,所述后部的凹入形状旨在促进纵向漩涡的形成,该纵向漩涡在某些操作条件下减少产生激波的冲击。
5 一种基于激波控制的高超声速飞行器降热方法 CN201610845681.0 2016-09-23 CN106184743A 2016-12-07 王林; 罗振兵; 周岩; 夏智勋; 蒋浩
发明公开了一种基于激波控制的高超声速飞行器降热方法,涉及流体学流动控制领域、等离子体物理应用领域。该方法采用高压气源喷气装置或等离子体合成射流装置,对高超声速飞行器流场中的激波进行控制,使得高超飞行器前缘头激波抬起、侧翼前缘激波消除或产生往复摆动,从而消除或控制激波干扰区域,降低关键时段、关键区域的热流,实现飞行器的热防护。该方法通过外流场控制的方式防止或控制高热流产生的“因”,从源头上减弱热流的产生来实现降热防热,相比于传统针对高热流的“果”进行被动热防护的方式具有本质变革,是一种新的主动式热防护控制技术。
6 冲击突起阵列 CN200980106279.9 2009-02-17 CN101965291B 2014-07-02 诺曼·伍德
一种包括从其表面伸出的冲击突起阵列(3、10)的气动结构,该冲击突起阵列包括:第一系列的冲击突起;和位于第一系列冲击突起后面的一个或者更多个冲击突起。优选地,位于第一系列冲击突起后面的所述一个或更多个冲击突起中的至少一个冲击突起发生偏移,从而不直接位于第一系列中的任何一个冲击突起的后面。通过提供冲击突起阵列而不是一行冲击突起,可以设置第一系列冲击突起和位于第一系列后面的一个或者更多个冲击突起,以修改在各种不同条件下形成的冲击的结构。
7 利用流体流的推进装置 CN201080040037.7 2010-09-07 CN102481968B 2014-06-18 金洛桧
发明涉及一种利用流体流的推进装置,该推进装置快速地将该推进装置的上表面上产生的涡流排出到外部,以改进设置有该推进装置的产品的推进。为此,本发明的推进装置包括:流体储存单元,其中向下弯曲的流体储存面形成在第一入口管线与第一出口管线之间,使得在流体储存面上形成流体储存空间;以及流体流单元,其中在第二入口管线与第二出口管线之间形成向下弯曲的流体流面,第二入口管线和第二出口管线向外且向后倾斜,使得在流体流面上形成流体流空间,其中,与第二出口管线相邻的流体流面随着该流体流面向外延伸而逐渐变平。本发明的推进装置的上述构造的优点在于:引入到流体储存空间和流体流空间中的流体成涡流流动以增大压力,并且流体流空间随着该流体流空间朝着流体流面的末端延伸而逐渐变窄,以快速将流体向流体流面的末端排出,从而增加流体流速度并改进设置有该推进装置的运输工具的推进力和推力。
8 激波突起 CN200980106626.8 2009-02-17 CN101959756B 2013-08-07 诺曼·伍德
一种激波突起(10),该激波突起包括发散前部(20)和收敛后部。所述后部具有至少一个平面形式的等高线,该等高线具有一对凹入的相对侧边(22,23)。所述激波突起提供具有较低阻的改善的形状。另外,所述后部的凹入形状旨在促进纵向漩涡的形成,该纵向漩涡在某些操作条件下减少产生激波的冲击。
9 具有非对称激波突起的空气动学结构 CN200980106076.X 2009-02-17 CN101970294A 2011-02-09 诺曼·伍德
一种具有从其表面延伸出的激波突起(3)的空气动学结构。该激波突起关于一不对称平面是不对称的,其中该不对称平面经过激波突起的中心(6),与该空气动力学结构上的气流的主方向平行,并与该空气动力学结构的表面成直地延伸。
10 具有一系列激波凸起的空气动结构 CN200980103812.6 2009-02-17 CN101932507A 2010-12-29 诺曼·伍德
一种空气动结构(1),包括从其表面延伸的一系列激波凸起(3a,3b,3c)。激波凸起沿着一条线(7)布置,该线的平均掠比非扰动激波(4)的平均掠角小,所述非扰动激波是指在所述结构没有所述激波凸起的情况下、在所述结构的跨音速运动过程中接近所述表面形成的激波。激波凸起沿着掠角比非扰动激波的平均掠角小的线布置,而不是沿着非扰动激波的线布置。当该结构以跨音速运动时,在其表面附近形成激波,激波凸起使该激波(9)扰动,以减小其掠角。
11 Aerodynamic structure having a non-regular intervals of shock bump JP2010548187 2009-02-17 JP5478516B2 2014-04-23 ウッド ノーマン
12 Body molding and spike-like built-in body of supersonic aircraft for the control and reduction of the sonic boom JP2003563897 2003-01-30 JP4220393B2 2009-02-04 ジミー・ハンコック・ジュニア; ドナルド・ハウ; プレストン・ヘン; ロバート・ウォルツ
Method and arrangement for reducing the effects of a sonic boom created by an aerospace vehicle when said vehicle is flown at supersonic speed. The method includes providing the aerospace vehicle with a first spike extending from the nose thereof substantially in the direction of normal flight of the aerospace vehicle, the first spike having a second section aft of a first section that is aft of a leading end portion, the first and second sections having a second transition region therebetween and each of the sections having different cross-sectional areas, the leading end portion of the first spike tapering toward a predetermined cross-section with a first transition region between the predetermined cross-section and the first section. The first transition region is configured so as to reduce the coalescence of shock waves produced by the first spike during normal supersonic flight of the aerospace vehicle. A spike may also be included that extends from the tail of the aerospace vehicle to reduce the coalescence of shock waves produced by the spike during normal supersonic flight of the aerospace vehicle.
13 Aerodynamic characteristic control method of spike missile, and spike missile JP2006169679 2006-06-20 JP2008002693A 2008-01-10 KOBAYASHI HIROAKI; FUKIBA KATSUYOSHI; HONGO MOTOYUKI
PROBLEM TO BE SOLVED: To provide an aerodynamic characteristic control method of a spike missile for controlling aerodynamic characteristic of a spike by a simple method without using a complicated variable mechanism and a fluid energy supply system. SOLUTION: A plurality of injection orifices 23 communicated with an internal flow channel 22 are formed at a tip portion of a hollow shaft 2, a valve 3 for opening and closing an outlet portion 24 is disposed at the outlet portion 24 of the hollow shaft 2, and the aerodynamic characteristic of the hollow shaft 2 is properly controlled by changing one or both of an opening/closing speed Vf and a duty ratio DR of the valve 3 by a valve driver 5. COPYRIGHT: (C)2008,JPO&INPIT
14 Airfoil having stall suppressing function due to forcing vibration JP17773298 1998-06-24 JPH1159594A 1999-03-02 WYGNANSKY ISRAEL; GREENBLATT DAVID; SEIFERT AVI
PROBLEM TO BE SOLVED: To achieve a more adequate method for suppressing stall of an airfoil by flowing fluid through at least one section on the airfoil in the application of a rotary-wing aircraft. SOLUTION: An airfoil 10 moves through a fluid medium 24 using a front fringe 16 thereof in the head and a rear fringe 18 thereof at the back. When the medium 24 passes the airfoil 10, it is possible to suppress stall of the airfoil 10 by forcing the vibration on the medium 24 at several sections on a surface thereof, for example, the front fringe 16, the rear fringe 18, a position 26 on a top face 12 within one-fourth from the front fringe 16 in a chord 22, a position 28 which exceeds one-fourth, a position 30 on a bottom face 14 within one- fourth, and a position 32 which exceeds one-fourth. This forced vibration is generated by flowing fluid from the inside 20 to the medium 24 at, for example, positions 16, 18, 26, 28, 30, or 32. This stream may be a stream having a net amount of zero. At this time, forcing vibration is done at a frequency of which stall-hull ratio exceeds substantially 1 to modulate the force of the fluid in the frequency or amplitude.
15 유체 흐름을 이용한 추진기구 KR1020100087061 2010-09-06 KR101005661B1 2011-01-05 김낙회
PURPOSE: A propulsion device using a fluid flow is provided to increase the flowing speed of fluid flowing into a fluid storage space and a fluid flow space by increasing pressure. CONSTITUTION: A propulsion device using a fluid flow comprises a fluid storage part(10) and a fluid flow part(20). The fluid storage part forms a downward bent fluid storage surface(13) between a first inflow line(11) and a first outflow line(12). A fluid storage space is formed on the top of the fluid storage surface. A partition(15) is formed in one side of the fluid storage surface. The fluid flow part has a second inflow line(21), a second outflow line(22), and a fluid flow surface. The second inflow line is in contact with the end of the first inflow line and is inclined. The second outflow line is in contact with the end of the second outflow line and is inclined. The fluid flow surface is formed between the second inflow and outflow lines and is downward bent. A fluid flow space is formed on the top of the fluid flow surface.
16 초음속 비행기를 위한 수동적 공기역학적 음속 폭음 억제 KR1020027010169 2000-12-22 KR1020020079835A 2002-10-19 하트만,톰; 모겐스턴,존,엠.
볼록한상부면과평평한하부면을가진기수부분, 비행기의동체(106) 또는날개(104) 상의슬롯부분, 비행기의엔진부분(108)에포함된충격소거표면, 및영역/양력배치맞춤을포함하며, 바람직하게는이들모두가동시에사용되는항공기용음속폭음억제장치.
17 飛行中の航空機周辺の圧場を制御するシステムおよび方法 JP2017507432 2015-02-26 JP2017523089A 2017-08-17 コナーズ,ティモシー; ナイト,マイケル; カワート,ロバート
本明細書では、飛行中の航空機周辺の圧場を制御するシステムが開示される。非限定的実施形態では、システムは、圧力場を測定するように航空機に配置された複数の圧力センサを備えるが、それらに限定されない。システムは更に、複数の圧力センサと通信可能に結合されたコントローラを備えるが、それに限定されない。コントローラは、複数の圧力センサから圧力場を示す情報を受信するように構成される。コントローラはまた、その情報に基づいて、圧力場が所望の圧力場からずれるタイミングを判定するように構成される。コントローラはまた、航空機に搭載された可動構成要素に、そのずれを減少させるような形で可動構成要素を動かす指示を送信するように構成される。【選択図】図1
18 Shock bump array JP2010548189 2009-02-17 JP2011513118A 2011-04-28 ウッド ノーマン
An aerodynamic structure comprising an array shock bumps (3, 10) extending from its surface, the array comprising: a first series of shock bumps; and one or more shock bumps positioned aft of the first series. Preferably at least one of the one or more shock bumps positioned aft of the first series is offset so that it is not positioned directly aft of any of the shock bumps in the first series. By providing an array of shock bumps instead of a single line, the first series of shock bumps and the one or more shock bumps positioned aft of the first series can be positioned to modify the structure of a shock which forms under a different respective condition.
19 Aerodynamic structure having an asymmetric shock bumps JP2010548188 2009-02-17 JP2011513117A 2011-04-28 ウッド ノーマン
An aerodynamic structure comprising a shock bump (3) extending from its surface. The shock bump is asymmetrical about a plane of asymmetry, and the plane of asymmetry: passes through a centre (6) of the shock bump, is parallel with a principal direction of air flow over the structure, and extends at a right angle to the surface of the structure.
20 Aerodynamic structure having a non-regular intervals of shock bump JP2010548187 2009-02-17 JP2011513116A 2011-04-28 ウッド ノーマン
An aerodynamic structure comprising a series of shock bumps (3) extending from its surface. The shock bumps are distributed across the structure with a non-uniform spacing (d1, d2) between the centres and/or edges of adjacent bumps. The non-uniform spacing between the bumps can be arranged to give maximum wave drag alleviation for the minimum number of bumps as a function of the shock strength across the span, leading to minimum wing weight penalties for a given amount of wave drag alleviation.
QQ群二维码
意见反馈