首页 / 国际专利分类库 / 作业;运输 / 飞行器;航空;宇宙航行 / 飞机;直升飞机 / 其他类目不包含的影响流经飞机表面的空气流
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
221 AERODYNAMIC STRUCTURE WITH ASYMMETRICAL SHOCK BUMP US12735536 2009-02-17 US20100301173A1 2010-12-02 Norman Wood
An aerodynamic structure comprising a shock bump (3) extending from its surface. The shock bump is asymmetrical about a plane of asymmetry, and the plane of asymmetry: passes through a centre (6) of the shock bump, is parallel with a principal direction of air flow over the structure, and extends at a right angle to the surface of the structure.
222 BLUFF BODY NOISE CONTROL US12734334 2008-10-23 US20100288876A1 2010-11-18 Leung Choi Chow; Matthew Spiteri; Xin Zhang; David Angland; Michael Goodyer
An aircraft noise-reduction apparatus comprise a flow-facing element (1) and a flow control device (2) positioned downstream of the flow-facing element (1). The flow control device (2) is arranged, in use, to reduce noise induced by unsteady flow downstream of the flow-facing element (1).
223 Design of viscoelastic coatings to reduce turbulent friction drag US11054719 2005-02-10 USRE41398E1 2010-06-29 Carol L. May; Gennadiy A. Voropayev
A method is provided to select appropriate material properties for turbulent friction drag reduction, given a specific body configuration and freestream velocity. The method is based on a mathematical description of the balance of energy at the interface between the viscoelastic surface and the moving fluid, and permits determination of the interaction of turbulent boundary layer fluctuations with a viscoelastic layer by solving two subtasks—i.e., a hydrodynamic problem and an elasticity problem, which are coupled by absorption and compliancy coefficients. Displacement, velocity, and energy transfer boundary conditions on a viscoelastic surface are determined, and a Reynolds stress type turbulence model is modified to account for redistribution of turbulent energy in the near-wall region of the boundary layer. The invention permits drag reduction by a coating with specified density, thickness, and complex shear modulus to be predicted for a given body geometry and freestream velocity. For practical applications, viscoelastic coatings may be combined with additional structure, including underlying wedges to minimize edge effects for coatings of finite length, and surface riblets, for stabilization of longitudinal vortices.
224 Conformal aero-adaptive nozzle/aftbody US11226033 2005-09-14 US07686256B2 2010-03-30 Daniel N. Miller; David D. Young
The present invention provides flow field control techniques that adapt the aft body region flow field to eliminate or mitigate the development of massive separated flow field zones and associated unsteady vortical flow field structures. Embodiments of the present invention use one or more distributed arrays of flow control devices (submerged in the boundary layer) to create disturbances in the flow field that inhibit the growth of larger vortical structures and/or to energize the aft body shear layer to keep the shear layer attached the aft body surface. These undesirable aerodynamic phenomena produce increased vehicle drag which harms vehicle range, persistence, and loiter capabilities. Additionally, the unsteady nature of the turbulent vortical structures shed in the aft body wake region may produce increased dynamic buffeting and aft body heating by entraining nozzle jet exhaust (a.k.a. jet wash) —requiring additional structural support, shielding, and vehicle weight.
225 Boundary layer propulsion airship with related system and method US12068667 2008-02-08 US20090200416A1 2009-08-13 Yee-Chun Lee
Systems, method, devices and apparatus are provided for reducing drag and increasing the flight efficiency characteristics of aircraft and airships including hybrid aircraft utilizing distributed boundary layer control and propulsion means. Boundary layer control includes passive systems such as riblet films and boundary layer propulsion means includes a divided and distributed propulsion system disposed in the curved aft sections of aircraft and airships including hybrid aircraft susceptible to boundary layer drag due to degree of curvatures, speed and density of the surrounding air. Distributed propulsion propulsion means includes constructing propellers and riblets from shape memory alloys, piezoelectric materials and electroactive polymer (EAP) materials to change the shape and length of the distributed propulsion means.
226 Device to reduce the lateral force generated by aerial refueling boom cross-section US11893107 2007-08-14 US20080308679A1 2008-12-18 Luis Pablo Ruiz Calavera; Francisco Javier Mariscal Sanchez
Device to reduce the lateral force generated by an aerial refueling boom (11) of an aircraft characterized in that it comprises at least one plate (31), said plate (31) comprising two cantilevered wings (32, 33), said wings (32, 33) comprising perforations (34), so that the wake produced in the boom (11) has a lower dynamic pressure than that of the free stream.
227 Deflection device for a stream body US11183475 2005-07-18 US20080142640A9 2008-06-19 Damien Lejeau; Petra Aumann; Detlev Schwetzler
The present application describes to a deflection device, for example, for a blunt stream body. The deflection device has an edge, which, for example, can be mounted to the stream body. In an advantageous manner, the deflection device allows an influencing of the slipstream in such a way that turbulences, which are connected with the slipstream and form downstream of blunt stream bodies, have as little influence as possible on the dragged object in order to avoid the formation of building-up motions of the dragged object, which lead to instabilities.
228 Airflow control devices with planar surfaces US11436314 2006-05-18 US07147271B2 2006-12-12 Jan H. Aase; Alan L. Browne; Nancy L. Johnson; John C. Ulicny
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as a shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as the need for increased airflow through the radiator due to increases in engine coolant temperature. As such, the device improves vehicle fuel economy while maintaining proper engine cooling. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
229 Landing gear assembly US10552097 2004-04-07 US20060243856A1 2006-11-02 Leung Chow; Christopher Wood
An aircraft landing gear (9) includes a wheel (1) having a wheel rim (3) on which a tyre (4) is held. The gap (6) between the rim (3) and tyre (4) is bridged and covered by a sealing element (7), which thereby presents a smooth surface to the air flowing over the wheel during flight of the aircraft (8). Thus, noise that would otherwise be generated by the interaction of air and the parts of the wheel (1) and/or tyre (4) defining the gap (6) is reduced. Such noise reduction benefits may also be achieved by providing a tyre (4) and wheel (1) so shaped that there is no gap (6) between the tyre (4) and wheel rim (3).
230 Conformal aero-adaptive nozzle/aftbody US11226033 2005-09-14 US20060219847A1 2006-10-05 Daniel Miller; David Young
The present invention provides flow field control techniques that adapt the aft body region flow field to eliminate or mitigate the development of massive separated flow field zones and associated unsteady vortical flow field structures. Embodiments of the present invention use one or more distributed arrays of flow control devices (submerged in the boundary layer) to create disturbances in the flow field that inhibit the growth of larger vortical structures and/or to energize the aft body shear layer to keep the shear layer attached the aft body surface. These undesirable aerodynamic phenomena produce increased vehicle drag which harms vehicle range, persistence, and loiter capabilities. Additionally, the unsteady nature of the turbulent vortical structures shed in the aft body wake region may produce increased dynamic buffeting and aft body heating by entraining nozzle jet exhaust (a.k.a. jet wash)—requiring additional structural support, shielding, and vehicle weight.
231 Airflow control devices based on active materials US11436314 2006-05-18 US20060214469A1 2006-09-28 Jan Aase; Alan Browne; Nancy Johnson; John Ulicny
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as a shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as the need for increased airflow through the radiator due to increases in engine coolant temperature. As such, the device improves vehicle fuel economy while maintaining proper engine cooling. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
232 Airflow control devices based on active materials US11436315 2006-05-18 US20060202508A1 2006-09-14 Jan Aase; Alan Browne; Nancy Johnson; John Ulicny
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as a shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as the need for increased airflow through the radiator due to increases in engine coolant temperature. As such, the device improves vehicle fuel economy while maintaining proper engine cooling. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
233 Airflow control devices based on active materials US10872327 2004-06-18 US07059664B2 2006-06-13 Jan H. Aase; Alan L. Browne; Nancy L. Johnson; John C. Ulicny
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as a shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as the need for increased airflow through the radiator due to increases in engine coolant temperature. As such, the device improves vehicle fuel economy while maintaining proper engine cooling. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
234 Airflow control devices based on active materials US10983330 2004-11-05 US06991280B2 2006-01-31 Geoffrey P. McKnight; Cameron Massey; Guillermo A. Herrera; William Barvosa-Carter; Nancy L. Johnson; Alan L. Browne
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
235 Airflow control devices based on active materials US10983330 2004-11-05 US20050121946A1 2005-06-09 Geoffrey McKnight; Cameron Massey; Guillermo Herrera; William Barvosa-Carter; Nancy Johnson; Alan Browne
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as weather, ground clearance and speed, while reducing maintenance and the level of failure modes. As such, the device reduces vehicle damage due to inadequate ground clearance, while increasing vehicle stability and fuel economy. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
236 Airflow control devices based on active materials US10872327 2004-06-18 US20050121240A1 2005-06-09 Jan Aase; Alan Browne; Nancy Johnson; John Ulicny
An airflow control device comprises a body and an active material in operative communication with the body. The active material, such as a shape memory material, is operative to change at least one attribute in response to an activation signal. The active material can change its shape, dimensions and/or stiffness producing a change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness to control vehicle airflow to better suit changes in driving conditions such as the need for increased airflow through the radiator due to increases in engine coolant temperature. As such, the device improves vehicle fuel economy while maintaining proper engine cooling. An activation device, controller and sensors may be employed to further control the change in at least one feature of the airflow control device such as shape, dimension, location, orientation, and/or stiffness of the device. A method for controlling vehicle airflow selectively introduces an activation signal to initiate a change of at least one feature of the device that can be reversed upon discontinuation of the activation signal.
237 Method for generating surface plasma US10061408 2002-01-31 US06570333B1 2003-05-27 Paul A. Miller; Ben P. Aragon
A method for generating a discharge plasma which covers a surface of a body in a gas at pressures from 0.01 Torr to atmospheric pressure, by applying a radio frequency power with frequencies between approximately 1 MHz and 10 GHz across a plurality of paired insulated conductors on the surface. At these frequencies, an arc-less, non-filamentary plasma can be generated to affect the drag characteristics of vehicles moving through the gas. The plasma can also be used as a source in plasma reactors for chemical reaction operations.
238 Design of viscoelastic coatings to reduce turbulent friction drag US09546380 2000-04-10 US06516652B1 2003-02-11 Carol L. May; Gennadiy A. Voropayev
A method is provided to select appropriate material properties for turbulent friction drag reduction, given a specific body configuration and freestream velocity. The method is based on a mathematical description of the balance of energy at the interface between the viscoelastic surface and the moving fluid, and permits determination of the interaction of turbulent boundary layer fluctuations with a viscoelastic layer by solving two subtasks—i.e., a hydrodynamic problem and an elasticity problem, which are coupled by absorption and compliancy coefficients. Displacement, velocity, and energy transfer boundary conditions on a viscoelastic surface are determined, and a Reynolds stress type turbulence model is modified to account for redistribution of turbulent energy in the near-wall of the boundary layer. The invention permits drag reduction by a coating with specified density, thickness, and complex shear modulus to be predicted for a given body geometry and freestream velocity. For practical applications, viscoelastic coatings may be combined with additional structure, including underlying wedges to minimize edge effects for coatings of finite length, and surface riblets, for stabilization of longitudinal vortices.
239 Modification of fluid flow about bodies and surfaces through virtual aero-shaping of airfoils with synthetic jet actuators US10094194 2002-03-08 US20020190165A1 2002-12-19 Ari Glezer; Michael Amitay
The present invention involves a system for altering the aerodynamic shape and/or fluid flow about a solid body. The preferred embodiment comprises an obstruction disposed on the solid body and extending outwardly from the solid body into the fluid flowing over the solid body and a synthetic jet actuator embedded in the solid body such that said fluid flowing over the solid body encounters the obstruction before the synthetic jet actuator. The synthetic jet actuator includes a jet housing defined by walls, the jet housing having an internal chamber with a volume of fluid and an opening in the jet housing connecting the chamber to an external environment having the fluid, and a volume changing means for periodically changing the volume within the internal chamber so that a series of fluid vortices are generated and projected in the external environment out from the opening of the jet housing. A synthetic jet stream is formed by the fluid vortices entraining the fluid of the external environment and is projected outwardly from the solid body. The fluid flowing over the solid body contacts the synthetic jet stream forming a recirculation region, thereby modifying both the flow field and the pressure distribution and similarly modifying both the lift and drag characteristics of the solid body.
240 Aircraft air conditioner energy recovery method US09643369 2000-08-22 US06289665B1 2001-09-18 Manuel Munoz Saiz
The device involves the placement of an air pump turbine and the aircraft outflow valve in a duct through which all the air flows, with the turbine shaft attached to that of an electric generator, to a hydraulic pump, and to the N2 and accessory gearbox inside the engine, the air is also sent through a duct to strike inclined against the tips of the fan blades and against the tips of the first stage of the low speed compressor blades of the turbine engine.
QQ群二维码
意见反馈