序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 Spoiler for an Aircraft Bay US14203636 2014-03-11 US20160121996A1 2016-05-05 James Vincent Eveker; Patrick Dale Huhman; Cindy Lee Crites
A method for managing an airflow of an aircraft. A spoiler is moved into the airflow passing a bay of the aircraft when the bay is open. The airflow moving relative to the bay is changed to form a desired airflow using louvers physically associated with a frame system in the spoiler.
142 VEHICLE NOISE CONTROL AND COMMUNICATION US14494032 2014-09-23 US20160083073A1 2016-03-24 Brian C. Beckman
This disclosure is directed to an automated aerial vehicle (“AAV”) and systems, devices, and techniques pertaining to canceling noise, generating audible communications, and/or generating visible communications. The AAV may include one or more propellers utilized, in part, to produce sound that cancels noise generated by one or more other propellers. Additionally or alternatively, the AAV may utilize one or more propellers to generate audible and/or visible communications.
143 AUDIO COMMAND ADAPTIVE PROCESSING SYSTEM AND METHOD US14336181 2014-07-21 US20160019891A1 2016-01-21 Steven Martinez; Stephen Mead; Vasantha Selvi Paulraj
A system and method are provided for adaptively processing audio commands supplied by a user in an aircraft cabin, and includes receiving ambient noise in the aircraft cabin via one or more audio input device, sampling, with a processor, the received ambient noise, and analyzing, in the processor, the sampled ambient noise and, based on the analysis, selecting one or more filter functions and adjusting one or more filter parameters associated with the one or more selected filter functions. Audio and ambient noise are selectively received via the one or more audio input devices, and are filtered, through the selected one or more filter functions, to thereby supply filtered audio.
144 ACTIVE NOISE AND VIBRATION CONTROL SYSTEMS AND US14767215 2014-03-07 US20150370266A1 2015-12-24 Mark A. NORRIS; Doug A. SWANSON; Mark R. JOLLY
Active noise and vibration control (ANVC) systems and methods are provided. The systems and methods include providing sensors configured to detect vibration of a structure and a controller in electrical communication with the sensors. The controller includes a hardware processor and a memory element configured to process the vibration detected by the sensors, generate a force control command signal, and output the force control command signal via an interface. The systems and methods include provisions for at least one circular force generator (CFG) in electrical communication with the controller, the CFG is configured to execute the force control command signal output from the controller and produce a force that substantially cancels the vibration force. In some aspects, one or more CFGs control different vibration frequencies causing unwanted vibrations or acoustical tones. In some aspects, one or more CFG's control unwanted vibrations during some conditions and noise during other conditions.
145 PROPELLER SOUND FIELD MODIFICATION SYSTEMS AND METHODS US13919595 2013-06-17 US20150125268A1 2015-05-07 Gary H. KOOPMANN; Michael D. GRISSOM
A propeller system for an aircraft includes an assembly for modifying a sound field of the propeller system. The propeller system includes a rotor supported for rotation about a rotor axis. The rotor has a central hub and a plurality of blades each extending outwardly from the hub to a tip. The rotor and blades are operable to propel an aircraft to travel in a direction. The rotor blades define a rotor plane perpendicular to the rotor axis. The blade tips define a circumferential rotational path as the blades are rotated by the rotor. The propeller system includes an acoustic resonator or multiple resonators having openings disposed within a distance to the propeller blade tip that is small compared to the wavelength of the propeller's fundamental blade tone and proximate to the rotor plane. The resonators are excited by tip flow of the blade as it passes the opening. The acoustic resonators are configured and positioned so as to direct acoustic energy to modify the sound field of the propeller system at blade pass or higher harmonic frequency tones in a desired direction relative to the aircraft.
146 Active aircraft pylon noise control system US13214481 2011-08-22 US09022311B2 2015-05-05 Russell H. Thomas; Michael J Czech; Alaa A. Elmiligui
An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.
147 PROPELLER SOUND FIELD MODIFICATION SYSTEMS AND METHODS US14054792 2013-10-15 US20150056058A1 2015-02-26 Michael D. GRISSOM; Gary H. KOOPMAN
A propeller system for an aircraft includes an assembly for modifying a sound field of the propeller system. The propeller system includes a rotor supported for rotation about a rotor axis. The rotor has a central hub and a plurality of blades each extending outwardly from the hub to a tip. The rotor and blades are operable to propel an aircraft to travel in a direction. The rotor blades define a rotor plane perpendicular to the rotor axis. The blade tips define a circumferential rotational path as the blades are rotated by the rotor. The propeller system includes an acoustic resonator or multiple resonators having openings disposed within a distance to the propeller blade tip that is small compared to the wavelength of the propeller's fundamental blade tone and proximate to the rotor plane. The resonators are excited by tip flow of the blade as it passes the opening. The acoustic resonators are configured and positioned so as to direct acoustic energy to modify the sound field of the propeller system at blade pass or higher harmonic frequency tones in a desired direction relative to the aircraft.
148 Aircraft with reduced environmental impact US13973688 2013-08-22 US08714475B2 2014-05-06 Pierre-Emmanuel Gall; Guillaume Gallant
An aircraft with reduced environmental impact includes two turboprop engines mounted on the back of the aircraft at the rear thereof, and one acoustic masking device per turboprop engine. The acoustic masking device includes a masking element, such as a flap, which can move between a position in which it is retracted into the wing, and a position in which it is extended toward the rear of the wing. In the extended position, the flap intercepts the noise area generated toward the front by the turboprop engine, so as to reduce the perception of noise on the ground.
149 Landing gear door liners for airframe noise reduction US13417349 2012-03-12 US08708272B1 2014-04-29 Michael G. Jones; Brian M. Howerton; Thomas Van De Ven
A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.
150 AIRCRAFT WITH REDUCED ENVIRONMENTAL IMPACT US13973688 2013-08-22 US20130334365A1 2013-12-19 Pierre-Emmanuel Gall; Guillaume Gallant
An aircraft with reduced environmental impact includes two turboprop engines mounted on the back of the aircraft at the rear thereof, and one acoustic masking device per turboprop engine. The acoustic masking device includes a masking element, such as a flap, which can move between a position in which it is retracted into the wing, and a position in which it is extended toward the rear of the wing. In the extended position, the flap intercepts the noise area generated toward the front by the turboprop engine, so as to reduce the perception of noise on the ground.
151 APPARATUS AND METHOD FOR IMPROVING THE DAMPING OF ACOUSTIC WAVES US12668630 2008-07-10 US20100276225A1 2010-11-04 Stefan Busse; Claus Heuwinkel; Lars Enghardt; Ingo Röhle
An apparatus for damping acoustic waves that includes a volume of fluid having actively excited acoustic waves, an enclosure disposed in the volume of fluid including delimiting surfaces which define a cavity, at least one of the delimiting surfaces being permeable to the fluid, such that fluid may be exchanged between the cavity and the volume, and at least one sound producer disposed proximate the cavity to actively excite the actively excited acoustic waves in the fluid disposed in the cavity such that acoustic waves are damped in the volume.
152 NOISE CONTROL DEVICE US12528181 2008-12-24 US20100027804A1 2010-02-04 Hiroyuki Kano
To provide a noise control device capable of eliminating a possibility that a noise arriving at a control point is increased as compared to a case where the noise control is not performed and capable of reducing the circuit scale thereof. The noise control device according to the present invention includes: a controlling noise detector for detecting a given arriving noise to output a controlling noise signal; a controlling filter section for signal-processing the controlling noise signal outputted from the controlling noise detector, by using a fixed filter coefficient which is preset, to output a control signal; a control speaker for reducing the given noise arriving at the control point, by emitting toward the control point a control sound based on the control signal outputted from the controlling filter section; a noise determination section for determining whether or not the given noise arriving at the control point is a noise corresponding to the fixed filter coefficient; and an output control section for stopping output of the control signal from the controlling filter section when the noise determination section determines that the given noise is not a noise corresponding to the fixed filter coefficient.
153 Method for creating an aeronautic sound shield having gas distributors arranged on the engines, wings, and nose of an aircraft US11288052 2005-11-14 US07407131B1 2008-08-05 Stephen Corda; Mark Stephen Smith; David Daniel Myre
The present invention blocks and/or attenuates the upstream travel of acoustic disturbances or sound waves from a flight vehicle or components of a flight vehicle traveling at subsonic speed using a local injection of a high molecular weight gas. Additional benefit may also be obtained by lowering the temperature of the gas. Preferably, the invention has a means of distributing the high molecular weight gas from the nose, wing, component, or other structure of the flight vehicle into the upstream or surrounding air flow. Two techniques for distribution are direct gas injection and sublimation of the high molecular weight solid material from the vehicle surface. The high molecular weight and low temperature of the gas significantly decreases the local speed of sound such that a localized region of supersonic flow and possibly shock waves are formed, preventing the upstream travel of sound waves from the flight vehicle.
154 Active cancellation and vibration isolation with feedback and feedfoward control for an aircraft engine mount US11312410 2005-12-21 US20070138338A1 2007-06-21 Huageng Luo; Craig Young
An engine mount structure is provided with active vibration mechanisms which are attached in the vicinity of the engine mount to prevent engine vibrations from propagating into the engine mounting structure, for example, the wing or fuselage structure of an aircraft. Additionally, sensors are provided on the engine and/or wing/fuselage structure to provide control signals to the active vibration mechanisms so that the active vibration mechanism react to the sensed data to minimize the vibration transmissibility from the engine into the wing/fuselage.
155 Method for damping rear extension arm vibrations of rotorcrafts and rotorcraft with a rear extension arm vibration damping device US10543389 2003-12-13 US20070001052A1 2007-01-04 Henning Strehlow; Heiner Rottmayr; Johannes Duerr; Helmut Zaglauer
A method for damping vibrations in a tail boom of a rotary-wing aircraft includes the steps of detecting tail boom vibrations induced by external vibration excitation, and generating and introducing strains into the tail boom based on the detected tail boom vibrations. The strains are applied over a surface area and are out-of-phase with respect to the detected tail boom vibrations so as to damp the externally excited induced tail boom vibrations. In addition, a rotary-wing aircraft, includes a fuselage, a cockpit area integrated into the fuselage, a tail boom arranged on the fuselage and a tail boom vibration-damping device. The vibration-damping device has at least one sensor element configured to detect tail boom vibrations induced by external vibration excitation and at least one actuator configured to generate and introduce strains into the tail boom that are out-of-phase with respect to the induced tail boom vibrations, the actuator being functionally coupled to the sensor element, engaging with a tail boom structure at one side of the tail boom, and forming a flat-surfaced bond with the tail boom.
156 System for active noise reduction US09621950 2000-07-21 US06832973B1 2004-12-21 William A. Welsh
An apparatus and method to minimize acoustic vibration in a vehicle due to impulsive gear clash loads. Sensors are mounted on the vehicle and are used to sense vehicle vibration generated by the gear clash loads. A first gear, having a plurality of teeth and a second gear, also having a plurality of teeth, are disposed such that upon rotation of the first and second gears, certain ones of the second gear teeth mesh with certain ones of the first gear teeth. An actuator, which is coupled to the first gear, drives the first gear and generates torque pulses. A controller is coupled to the actuator and controls the torque pulses that are transmitted to the first gear. The torque pulses generated by the actuator are adjusted in magnitude and phase so that the first gear teeth vibrate at a predetermined frequencies thereby reducing vibrations and peak tooth loading caused by the meshing of the first gear teeth and the second gear teeth.
157 System for control of active system for vibration and noise reduction US10144625 2002-05-13 US20020153451A1 2002-10-24 John C. Kiss; Michael H. Silverberg
An adaptive controller is used to adaptively generate vibration cancellation signals driving a controlled device which effects an associated vibration and noise-producing plant. The adaptive controller has multiple control paths to generate the control signal. In a vibration attenuation control path(s), an adaptive control signal is generated by plant compensation and adaptive filtering techniques to cancel vibrations. In a position control, saturation prevention path, the available operational extents of the controlled device are monitored and compensation signals are generated which direct the movement of the controlled device in such a manner as to prevent the controlled device from reaching the extents of control. The control signals from the multiple paths are then combined and transmitted to the controlled device which alters in some fashion the noise and vibration being generated or transmitted by the associated vibrating plant.
158 Active system and method for vibration and noise reduction US09952412 2001-09-14 US20020128072A1 2002-09-12 Gregory Weston Terpay; George G. Zipfel; William Welsh
An active mount is provided for use in a rotary wing aircraft between each of the gearbox and airframe mounting locations for mechanically suspending the airframe from the gearbox. The active mount comprises first and second linear hydraulic actuators each having a principal axis. The length of the actuators is variable along the principal axis for providing relative movement between the airframe and the gearbox. The principal axes of the actuators are adapted to lie in the directional planes of the primary forces necessary for supporting the airframe and acting on the transmission gearbox mounting locations for providing movement of the gearbox relative to the airframe in the planes at a frequency for reducing the transfer of vibration through the active mount to the airframe. A system for reducing vibration in the rotary wing aircraft further comprises a hydraulic system for supplying a controlled flow of pressurized hydraulic fluid to the actuators.
159 System for control of active system for vibration and noise reduction US09798420 2001-03-02 US06402089B1 2002-06-11 John C. Kiss; Michael H. Silverberg
An adaptive controller is used to adaptively generate vibration cancellation signals driving a controlled device which effects an associated vibration and noise-producing plant. The adaptive controller has multiple control paths to generate the control signal. In a vibration attenuation control path(s), an adaptive control signal is generated by plant compensation and adaptive filtering techniques to cancel vibrations. In a position control, saturation prevention path, the available operational extents of the controlled device are monitored and compensation signals are generated which direct the movement of the controlled device in such a manner as to prevent the controlled device from reaching the extents of control. The control signals from the multiple paths are then combined and transmitted to the controlled device which alters in some fashion the noise and vibration being generated or transmitted by the associated vibrating plant.
160 Lifting surface with active variable tip member and method for influencing lifting surface behavior therewith US09730702 2000-12-06 US06394397B1 2002-05-28 Hieu T. Ngo; Lisa E. Barlow
A tip member is movable mount at the outboard end of a main lifting member such as a wing or rotor blade. The main lifting member at least at the outboard end has an internal cavity defined therein between pressure-side and suction-side surfaces of the main lifting member. The tip member is movable relative to the main lifting member between a neutral position in which the tip member presents substantially no obstacle to a spanwise component of flow over either suction-side or pressure-side surfaces at the outboard end of the main lifting member, and a position in which a portion of the tip member extends beyond on of the pressure-side and suction-side surfaces of the main lifting member so as to present an obstacle to the spanwise component of flow over that surface at the outboard end of the main lifting member and thereby locally affect the flow at the outboard end. An actuation system for the tip member is disposed in the cavity of the main lifting member and coupled with the tip member for moving the tip member so as to vary a distance by which the tip member extends beyond the surface of the main lifting member. The tip member can be placed in stationary positions, or can be cyclically moved for achieving various effects such a vibration abatement, noise suppression, or lift augmentation.
QQ群二维码
意见反馈