序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 Steering assist for a rear caster wheel on a work machine US12399071 2009-03-06 US07918304B2 2011-04-05 Francine J. Perry; Shirish Chobhe; David V. Rotole
A steering arrangement for a work machine includes a frame, at least one caster wheel assembly carried by the frame, at least one turn assist cylinder, and a turn assist arrangement. Each turn assist cylinder is coupled between the frame and a corresponding caster wheel assembly. The turn assist arrangement includes a steering assembly, a steering assist valve and a transfer gear. The steering assembly includes an output gear which is positionable dependent upon an operator commanded degree of turn. The output gear has exterior teeth. The steering assist valve is configured to selectively operate at least one turn assist cylinder and thereby bias a corresponding caster wheel assembly during an operator commanded turn. The steering assist valve includes an input gear with exterior teeth. The transfer gear includes a first set of peripheral teeth enmeshed with the output gear and a second set of peripheral teeth enmeshed with the input gear. The transfer gear pivots about a common pivot point. The first set of peripheral teeth and the second set of peripheral teeth are each at a common radius from the common pivot point on opposite sides of the transfer gear.
162 HYBRID ELECTRIC TOOL CARRIER US12765336 2010-04-22 US20100199622A1 2010-08-12 Kenneth Edward Hunt; Jim Milton Shoemaker; Philip Eugene Ferree
A hybrid utility vehicle includes a tool-supporting frame and an electrical power source driven by an engine. Right and left rear wheels independently driven by permanent magnet electric motors and front wheels electrically steerable over a range of approximately 180 degrees operate under the control of a vehicle controller responsive to steering and speed input controls to provide zero turn radius operation with minimum slippage and tire scuffing. Space efficiency provided by the electric steering and an electrically driven tool deck facilitate a variety of tool mounting configurations including a rear discharge deck with a chute passing under the vehicle frame between the driven wheels. An inverter connected to the electrical power source provides 110/220 volt output. The power source also functions as a high powered, high rpm, low noise starter motor.
163 Hybrid Electric Tool Carrier US12275402 2008-11-21 US20090288381A1 2009-11-26 Kenneth Edward Hunt; Jim Milton Shoemaker; Philip Eugene Ferree
A hybrid utility vehicle includes a tool-supporting frame and an electrical power source driven by an engine. Right and left rear wheels independently driven by permanent magnet electric motors and front wheels electrically steerable over a range of approximately 180 degrees operate under the control of a vehicle controller responsive to steering and speed input controls to provide zero turn radius operation with minimum slippage and tire scuffing. Space efficiency provided by the electric. steering and an electrically driven tool deck facilitate a variety of tool mounting configurations including a rear discharge deck with a chute passing under the vehicle frame between the driven wheels. An inverter connected to the electrical power source provides 110/220 volt output. The power source also functions as a high powered, high rpm, low noise starter motor.
164 Multi-wheel vehicle US11690459 2007-03-23 US07493975B2 2009-02-24 Koji Irikura
A vehicle comprises a steering operation device, a pair of running-driving wheels, which differentially drive when the steering operation device is manipulated, a pair of steerable running wheels interlocking with the steering operation device, and a steering mechanism interposed between the steering operation device and the pair of running-driving wheels. The steering mechanism includes a pair of drive gears interlocking with the steering operation device and a pair of follower gears interlocking with the respective steerable running wheels. The drive gears mesh with the respective follower gears so as to control lateral turning of the respective steerable running wheels. A gear radius of the drive gear may be greater than that of the follower gear meshing with it. A gear ratio between the mutually meshing drive and follower gears may be variable. The lateral turning centers of both the steerable running wheels may coincide with each other, and further coincide with a lateral turning center of the vehicle body caused by differential rotation of the running-driving wheels.
165 VEHICLE WITH COORDINATED ACKERMAN AND DIFFERENTIAL STEERING US11760416 2007-06-08 US20080302593A1 2008-12-11 David Joseph Easton; Bruce Craig Newendorp
The invention relates to a vehicle with coordinated steering. There is a need for a vehicle wherein Ackerman steered front wheels are coordinated with differentially steered and driven rear wheels. Such a vehicle includes Ackerman steerable front wheels and differentially driven left and right rear wheels. A steered wheel angle sensor is coupled to the front wheels and generates a steered wheel angle value. A front steering unit steers the front wheels and a differential drive unit drives the rear wheels. A control unit is coupled to the steering input sensor, to the steered wheel angle sensor, and to the front steering unit and the differential drive unit. The control unit generates the front steering control signal and the rear drive/steering control signal, and coordinates the steering operation of the front wheels with the differential steering/driving of the rear wheels.
166 Vehicle with improved turning US11020173 2004-12-27 US07341121B2 2008-03-11 Michael J. Flowers; Stephen Jarema, III; Edward J. Dwyer, Jr.; Robert C. Hopely, Jr.; David S. Zaveloff; Robert M. Martin
A vehicle is disclosed having a reduced turning radius comprising a directional wheel assembly for turning the vehicle and a drive wheel assembly for driving the vehicle. The drive wheel assembly has a first and a second drive wheel independently driven by a first and a second motor through a control circuit. A counter-rotation circuit counter-rotates the first and second drive wheels upon a major turning position of the directional wheel assembly to enhance the turning of the vehicle. A reducing circuit reduces the speed of the motors upon a minor turning position of the directional wheel assembly. The vehicle may include a slide mechanism for providing a reduced wheelbase to further reduce the turning radius of the vehicle. One embodiment of the invention includes an improved steering device for controlling the directional wheel assembly.
167 Steer by brake control system US11127393 2005-05-12 US07318629B1 2008-01-15 Qiong Sun; Eric Schieb; David W. Weber; Frank Lubischer
A turn control system is provided having four wheels and a steering wheel that controls the vehicle steering. A steering wheel angle sensor senses an angle of rotation of the steering wheel. An acceleration sensing device senses an acceleration demand. A wheel speed sensing device senses a wheel speed for each of the four wheels. A turn control activation switch enables the turn control system and shifts a vehicle transmission to one of a low or reverse operating gear. A brake control module calculates a target vehicle speed, a vehicle turning geometry, and target wheel speeds. A braking torque command signal is generated for modulating the brake torque. An engine torque command signal is generated for modulating an engine torque for producing the target vehicle speed. A respective additional braking torque is applied to at least one of the wheels for reducing the vehicle turning radius while maintaining the vehicle target speed.
168 Differential steering type motorized vehicle US11810163 2007-06-05 US20080006455A1 2008-01-10 Hideki Torita
A differential steering type motorized vehicle is capable of directly steering a front wheel by the turning operation of handlebars, and performing on-the-spot turning around a central position of a vehicle body together with differential rotation type control of drive wheels, and comprises the front wheel as one wheel supported by a lower end of a handlebar shaft provided below the handlebars and located at a central position along the lateral axis, rear wheels as a pair of right and left omnidirectional wheels, a pair of drive wheels which are located between the front wheel and the rear wheels, and drive-controlled so as to perform the differential steering caused by differences in rotational direction and rotational speed between the rear wheels, a rotational position sensor for detecting the turn direction and the turn angle from the reference position of the handlebars to be turned in the right or left direction, and a motor drive wheel control means for controlling the rotational direction and the rotational speed of motors attached to the pair of right and left drive wheels according to the turn angle.
169 Vehicle Having Twin Transmissions For Driving Respective Wheels US11697568 2007-04-06 US20070175676A1 2007-08-02 Koji Irikura
A vehicle comprises a vehicle frame, a prime mover mounted on the vehicle frame, a laterally turnable wheel disposed at one side of the vehicle frame, a pair of drive wheels disposed at the other side of the vehicle frame, a steering operation device, a traveling operation device for setting the traveling speed and direction of the vehicle, and a pair of transmissions for controlling the rotary speed and direction of the respective drive wheels. The transmissions are operationally connected with the steering operation device so as to create a difference of rotary speed between the drive wheels according to operation of the steering operation device. The transmissions are operationally connected with the traveling operation device so as to drive the drive wheels in a common rotary direction from their stationary state according to operation of the traveling operation device. A clutch is interposed between the transmissions so as to connect the drive wheels with each other when the steering operation device is set in a straight traveling position. Based on setting of a switching device for switching the traveling direction of the vehicle between forward and rearward, a reverser decides the rotational direction of the drive wheels.
170 Automatic braking-enhanced steering system US11000877 2004-12-01 US07188011B2 2007-03-06 Michael L. Shirley; Christopher R. Pardue
A system for enabling a vehicle with a conventional steering system to make tighter right and left turns. The vehicle has one or more computers that monitor the steering angle and that are also capable of independently controlling a right braking unit and a left braking unit. When the computers detect that the steering angle is near the rightmost steering angle, the computers actuate the right braking unit to a greater extent than the left braking unit to allow the vehicle to make a tighter right turn. When the computers detect that the steering angle is near the leftmost steering angle, the computers actuate the left braking unit to a greater extent than the right braking unit to allow the vehicle to make a tighter left turn.
171 Turn brake for multi-track vehicles US10305799 2002-11-26 US07182353B2 2007-02-27 Ross Divers
A turn brake includes a cylinder assembly coupled to a conventional front-wheel steering system of a multi-track vehicle. The cylinder assembly generates fluid power for applying differential braking force to left and right wheels of the vehicle in response to turning of a steering wheel of the steering system, thereby compensating for a loss of steering traction. Pressure generated in the cylinder assembly can exert a reaction force on the steering wheel to provide tactile feedback to the driver, which may help to avoid oversteer. An optional shutoff mechanism may be provided for selectively disabling or disconnecting the turn brake.
172 Four-wheel drive work vehicle US10823532 2004-04-13 US07152704B2 2006-12-26 Katsuhiko Uemura; Hiroyuki Ogasawara; Hiroki Nagai
A four-wheel drive work vehicle includes an engine, a pair of right and left steerable wheels rotatably driven by receiving power from the engine via a differential mechanism, a pair of right and left non-steerable wheels rotatably driven by receiving power from the engine via right and left side clutches and a pivotal cam mechanism for operating a clutch operating member for controlling the side clutch based on a steered displacement of the steerable wheels. The pivotal cam mechanism includes a cam member which is displaced based on the steered displacement and a cam follower member operably associated with the cam member. The clutch operating member is displaced via the pivotal cam mechanism by a predetermined amount in response to a steering operation of the steerable wheels by an angle exceeding a predetermined angle from a straight traveling condition and in association with the displacement of the clutch operating member by the predetermined amount, one side clutch for one of the non-steerable wheels located on the inner side of the vehicle turn is automatically disengaged against an engaging urging force.
173 Running power transmission mechanism for a vehicle US11038810 2005-01-19 US07137469B2 2006-11-21 Toshiyuki Hasegawa
A running power transmission mechanism for a vehicle for transmitting drive power from a driving source to a pair of steering wheels and a pair of non-steering wheels. A main-HST outputs synchronized drive power to the steering and non-steering wheels. The non-steering wheels are driven differentially by the main-HST through a gear mechanism. A sub-HST changes the speed of the drive power inputted via a steering-wheel drive output shaft and outputs the drive power to the steering wheels. The steering wheels are driven differentially by the sub-HST through a gear mechanism.
174 Method for operating the brake system of a vehicle powered by electric motor, in particular a floor trolley US11400917 2006-04-10 US20060231300A1 2006-10-19 Peter Streipardt
A method for operating the brake system of an electric motor powered vehicle, in particular a floor trolley, in which a driving axle (1) comprises a brake mechanism for each drive output side (3, 4), is such that the two brake mechanisms of the driving axle (1) are controlled separately as a function of the steering angle in such a manner that a smaller turning circle radius (R1) is obtained by virtue of the different rotation speeds of the wheels (5, 6) of the driving axle (1).
175 Automatic braking-enhanced steering system US11000877 2004-12-01 US20060116801A1 2006-06-01 Michael Shirley; Christopher Pardue
A system for enabling a vehicle with a conventional steering system to make tighter right and left turns. The vehicle has one or more computers that monitor the steering angle and that are also capable of independently controlling a right braking unit and a left braking unit. When the computers detect that the steering angle is near the rightmost steering angle, the computers actuate the right braking unit to a greater extent than the left braking unit to allow the vehicle to make a tighter right turn. When the computers detect that the steering angle is near the leftmost steering angle, the computers actuate the left braking unit to a greater extent than the right braking unit to allow the vehicle to make a tighter left turn.
176 Vehicle having twin transmissions for driving respective wheels US11327415 2006-01-09 US20060108155A1 2006-05-25 Koji Irikura
A vehicle comprises a vehicle frame, a prime mover mounted on the vehicle frame, a laterally turnable wheel disposed at one side of the vehicle frame, a pair of drive wheels disposed at the other side of the vehicle frame, a steering operation device, a traveling operation device for setting the traveling speed and direction of the vehicle, and a pair of transmissions for controlling the rotary speed and direction of the respective drive wheels. The transmissions are operationally connected with the steering operation device so as to create a difference of rotary speed between the drive wheels according to operation of the steering operation device. The transmissions are operationally connected with the traveling operation device so as to drive the drive wheels in a common rotary direction from their stationary state according to operation of the traveling operation device. A clutch is interposed between the transmissions so as to connect the drive wheels with each other when the steering operation device is set in a straight traveling position. Based on setting of a switching device for switching the traveling direction of the vehicle between forward and rearward, a reverser decides the rotational direction of the drive wheels.
177 Joystick controlled scrubber US10709252 2004-04-23 US07041029B2 2006-05-09 Trent A. Fulghum; Emert R. Whitaker
An apparatus and method for a floor maintenance vehicle comprises a transaxle rear drive system and a powered front wheel steering system; and a joystick control system providing integrated control of the transaxle rear drive system and the powered steering system by controlling the traverse speed of the transaxle drive with respect to the steering angle such that the sharper the steering angle the lower the maximum traverse speed. A joystick control process for controlling a floor maintenance vehicle comprises receiving a turn signal to a steering control function from a joystick representing an operator desired turn angle, and outputting from the steering control function a turn angle signal; and receiving a speed signal to a traverse control function from a joystick representing an operator desired speed, and receiving the turn angle signal and outputting a transaxle speed control signal based on the speed signal and the turn angle signal.
178 Hybrid electric tool carrier US11273141 2005-11-14 US20060090437A1 2006-05-04 Kenneth Hunt; Jim Shoemaker; Philip Ferree
A hybrid utility vehicle includes a tool-supporting frame and an electrical power source driven by an engine. Right and left rear wheels independently driven by permanent magnet electric motors and front wheels electrically steerable over a range of approximately 180 degrees operate under the control of a vehicle controller responsive to steering and speed input controls to provide zero turn radius operation with minimum slippage and tire scuffing. Space efficiency provided by the electric steering and an electrically driven tool deck facilitate a variety of tool mounting configurations including a rear discharge deck with a chute passing under the vehicle frame between the driven wheels. An inverter connected to the electrical power source provides 110/220 volt output. The power source also functions as a high powered, high rpm, low noise starter motor.
179 Hybrid electric tool carrier US10732634 2003-12-10 US07017327B2 2006-03-28 Kenneth Edward Hunt; Jim Milton Shoemaker; Philip Eugene Ferree
A hybrid utility vehicle includes a tool-supporting frame and an electrical power source driven by an engine. Right and left rear wheels independently driven by permanent magnet electric motors and front wheels electrically steerable over a range of approximately 180 degrees operate under the control of a vehicle controller responsive to steering and speed input controls to provide zero turn radius operation with minimum slippage and tire scuffing. Space efficiency provided by the electric steering and an electrically driven tool deck facilitate a variety of tool mounting configurations including a rear discharge deck with a chute passing under the vehicle frame between the driven wheels. An inverter connected to the electrical power source provides 110/220 volt output. The power source also functions as a high powered, high rpm, low noise starter motor.
180 Vehicle having twin transmissions for driving respective wheels US10455306 2003-06-06 US07004268B2 2006-02-28 Koji Irikura
A vehicle comprises a vehicle frame, a prime mover mounted on the vehicle frame, a laterally turnable wheel disposed at one side of the vehicle frame, a pair of drive wheels disposed at the other side of the vehicle frame, a steering operation device, a traveling operation device for setting the traveling speed and direction of the vehicle, and a pair of transmissions for controlling the rotary speed and direction of the respective drive wheels. The transmissions are operationally connected with the steering operation device so as to create a difference of rotary speed between the drive wheels according to operation of the steering operation device. The transmissions are operationally connected with the traveling operation device so as to drive the drive wheels in a common rotary direction from their stationary state according to operation of the traveling operation device. A clutch is interposed between the transmissions so as to connect the drive wheels with each other when the steering operation device is set in a straight traveling position. Based on setting of a switching device for switching the traveling direction of the vehicle between forward and rearward, a reverser decides the rotational direction of the drive wheels.
QQ群二维码
意见反馈