序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 Accélérateur d'électrons à nappe EP88401255.0 1988-05-24 EP0295981A1 1988-12-21 Gueguen, Jean-Pierre; N'Guyen, Annick; Pottier, Jacques

Selon l'invention, on utilise une cavité coaxiale (CC) résonnant selon le mode fondamental et on injecte les électrons dans le plan médian perpendiculaire à l'axe.

Application à l'irradiations de substances diverses en bande.

42 Small diameter standing-wave linear accelerator structure EP86303603 1986-05-12 EP0202097A3 1987-12-02 Tanabe, Eiji; Bayer, Matthew; Trail, Mark

@ A compact, small diameter, standing-wave linear accelerator structure suitable for industrial and medical applications is disclosed. The novel structure utilizes a new type of coupling cavity for Pi/2 mode, standing-wave operation. The coupling cavity fits into the webs between the accelerating cavities substantially within the diameter of the accelerating cavities. This is made possible by keeping the center section of the cavity thin to concentrate the electric field vector at the center of a section of the cavity and by enlarging the ends of a section of the coupling cavity to accommodate the magnetic field vector. This structure offers a significant reduction in overall diameter over the side-coupled, annular ring, and existing coaxial coupled structures, while maintaining a high shunt impedance and large nearest neighbor coupling (high group velocity). A prototype 4 MeV, 36 cm long, S-band accelerator incorporating the new structure has been built and tested.

43 Small diameter standing-wave linear accelerator structure EP86303603.4 1986-05-12 EP0202097A2 1986-11-20 Tanabe, Eiji; Bayer, Matthew; Trail, Mark

@ A compact, small diameter, standing-wave linear accelerator structure suitable for industrial and medical applications is disclosed. The novel structure utilizes a new type of coupling cavity for Pi/2 mode, standing-wave operation. The coupling cavity fits into the webs between the accelerating cavities substantially within the diameter of the accelerating cavities. This is made possible by keeping the center section of the cavity thin to concentrate the electric field vector at the center of a section of the cavity and by enlarging the ends of a section of the coupling cavity to accommodate the magnetic field vector. This structure offers a significant reduction in overall diameter over the side-coupled, annular ring, and existing coaxial coupled structures, while maintaining a high shunt impedance and large nearest neighbor coupling (high group velocity). A prototype 4 MeV, 36 cm long, S-band accelerator incorporating the new structure has been built and tested.

44 Standing wave linear accelerator having non-resonant side cavity EP86302405.5 1986-04-01 EP0196913A2 1986-10-08 Whitham, Kenneth

@ A linear accelerator includes cascaded standing wave main cavities with approximately the same resonant frequency and plural side cavities. A charged particle beam travels longitudinally through the main cavities. An electromagnetic wave excites the cavities with a frequency that is approximately the same as the resonant frequency of the main cavities. There is normally a fixed electromagnetic energy phase shift in adjacent main cavities. The resonant frequency of at least one side cavity is adjusted so it differs from the electromagnetic wave frequency. The detuned side cavity resonant frequency causes: (a) a change in the normal fixed phase shift of the main cavities adjacent the one side cavity and (b) a decrease in electric field strength in cavities electromagnetically downstream of the one side cavity relative to the electric field strength in cavities electromagnetically upstream of the one side cavity. In different embodiments, the electromagnetic wave is injected into a cavity where the particle beam is upstream and downstream of the one side cavity, respectively.

45 Accélérateur linéaire de particules chargées comportant des tubes de glissement EP83400978.9 1983-05-16 EP0094889B1 1986-08-20 Pottier, Jacques
46 シンクロトロン用入射器システム、およびシンクロトロン用入射器システムの運転方法 JP2015550226 2013-11-26 JPWO2015079487A1 2017-03-16 山本 和男; 和男 山本; 定博 川崎; 博光 井上
シンクロトロン用入射器システムであって、第一のイオンを発生する第一イオン源と、第一のイオンの電荷質量比よりも小さい電荷質量比の第二のイオンを発生する第二イオン源と、第一のイオンと第二のイオンのいずれのイオンも加速可能な能を有するプリ加速器と、第一のイオンと第二のイオンのいずれかのイオンをプリ加速器に入射させるように構成された低エネルギビーム輸送路と、プリ加速器から出射される加速後の第一のイオンのみを加速する、自己収束型のポスト加速器とを備えるようにした。
47 Standing-wave electron linear accelerator apparatus, and method of operating the same JP2013264518 2013-12-20 JP2014130816A 2014-07-10 TANG CHUANXIANG; ZHANG ZHE; GEUN KIYOHIDE; SHI JIARU; CHEN HUAIBI; HUANG WENHUI; ZHENG SHUXIN; LIU YAOHONG
PROBLEM TO BE SOLVED: To provide a standing-wave electron linear accelerator apparatus capable of continuously adjusting an energy and whose output electron energy covers a predetermined energy section (e.g., from 0.5 MeV to 2 MeV), and to provide a method of operating the same.SOLUTION: A standing-wave electron linear accelerator apparatus comprises: a direct current high voltage electron gun 5 configured to generate an electron beam; a pulse power source 1 configured to supply a main-pulse power signal 9; a power divider 2 connected to the pulse power source 1, and dividing the main-pulse power signal 9 supplied from the pulse power source 1 into a first pulse power signal and a second pulse power signal; a first accelerator tube 6 arranged on a downstream side of the direct current high voltage electron gun 5, connected to the power divider 2, and receiving the first pulse power signal to accelerate the electron beam; a second accelerator tube 7 arranged on a downstream side of the first accelerator tube, and accelerating the electron beam on the basis of the second pulse power signal; and a phase shifter 3 connected between the power divider 2 and the second accelerator tube 7, and continuously adjusting a phase difference between the first pulse power signal and the second pulse power signal.
48 Linear accelerator JP2008501399 2006-03-10 JP5015131B2 2012-08-29 ケビン、ブラウン; テリー、アーサー、ラージ
49 Linear accelerator JP2008501399 2006-03-10 JP2008533679A 2008-08-21 ケビン、ブラウン; テリー、アーサー、ラージ
線形加速器は、複数の加速キャビティであって、隣り合う一対の加速キャビティが連結キャビティを介して連結され、少なくとも1つの連結キャビティが、当該連結キャビティにより得られる連結を変化させるよう回転自在な回転非対称部材を有するような、複数の加速キャビティを備えている。 線形加速器の制御手段は、線形加速器の動作および回転非対称部材の回転を制御するよう設置されている。 この制御手段は、パルス方式により線形加速器を作動し、一対のパルス間で回転非対称部材を回転させて連続するパルスのエネルギーを制御するようになっている。 実行することによる有益な方法は、線形加速器が作動する間に回転非対称部材を連続的に回転させることである。 そして、制御手段は、連続するパルスの位相を調整することのみを必要とし、パルスの短い期間の間、回転非対称部材は所定位置にあるようにみえる。 回転非対称部材は、線形加速器の真空部分内に設置され、当該回転非対称部材は、真空部分の外側にある部分によって電磁相互作用により回転させられる。 真空シールを通過するような、駆動に関連する部材を設ける必要がない。 このことは、回転非対称部材上にある少なくとも1つの磁気的に偏極した部材と、真空部分の外部にある少なくとも1つの電気コイルを設けることにより達成される。
50 Standing wave acceleration tube JP2326184 1984-02-09 JPH0756839B2 1995-06-14 勇 上冨; 正一 小倉; 勝一 木村
51 Linear accelerator with improved incidence cavity structure JP5799393 1993-02-24 JPH0668989A 1994-03-11 EIJI TANABE
PURPOSE: To generate electron beams of high output by maximizing the number of electrons in a beam, and minimizing the backward impact quantity of electrons at the incidence tip of an accelerator. CONSTITUTION: A standing-wave type microwave linear accelerator 40 is put into action in a standing-wave mode and has a chain of microwave cavities 42, 43, 44 having drift conduits 31, 32, 33 which enable beams of charged particles, accelerated in the electric field in the respective cavities, to pass through among them. The first cavity 42 where particles enter has a conduit 30 described by a reentry nose 3 extending in the first cavity 42 and formed of a drift region connected to an opening 2. The drift conduit 31 between the first and second cavities 42, 43 has a tapered interior, and its diameter at the upper reaches end is smaller than the diameter of the conduit 30 in the reentry node 3 of the first cavity 42. This structure markedly reduces backward impact of particles running backwards through the opening 2 and enhances the converging and focusing effects of particles in the first cavity 42.
52 JPH0345520B2 - JP14216880 1980-10-13 JPH0345520B2 1991-07-11 EIJI TANABE; BIKUTAA AREKUSEI BAGAIN
53 Array electron accelerator JP12403188 1988-05-23 JPS646400A 1989-01-10 JIYANNPIEERU GEGEN; ANITSUKU NIYUEN; JIYATSUKU POCHIE
PURPOSE: To radiate beam of uniform quality by providing a circular opening, centered on the axis of a cavity in outward and inward cylinders for the coaxial cavity formed with an outward cylindrical conductor and an inward cylindrical conductor with the same axis for passing the beam therethrough. CONSTITUTION: A device comprises a cathode K, a coaxial cavity CC formed by an outward cylindrical conductor 10, and an inward cylindrical conductor 20 with a same axis A. The cathode is formed in a circular shape, to be centered on the axis A of the cavity and arranged itself on a center plane Pm. The cathode K emits electron beam Fe, directed to the center plane Pm of the coaxial cavity CC, and the beam passes through a slot opening 11, formed in the outward conductor, into the cavity. The electron beam Fe is accelerated by an electric field in the coaxial cavity CC and passes through a slot opening 12 formed in the outward conductor 10 opposite to the diameter of the opening 11, into the cavity CC for irradiating a band strip 5. In this way, the beam with uniform quality is irradiated.
54 Stationary linear accelerator JP12967185 1985-06-14 JPS61288400A 1986-12-18 KAZUSA CHUDO; YONEDA MASAHARU
55 Standing wave acceleration tube JP2326184 1984-02-09 JPS60167241A 1985-08-30 UETOMI ISAMU; KIMURA KATSUICHI; OGURA SHIYOUICHI
PURPOSE: To make energy variable while reducing power leakage by a method in which when detuning the prescribed combination cabities of a standing wave acceleration tube, said combination cavities are formed while being provided with a detuning rod, which makes said combination cavities to contact with the cylindrical surface on the opposite side while crossing the post part. CONSTITUTION: A side cavity combination type standing wave acceleration tube is formed including a beam pass hole 6, a microwave power supply waveguide 5, acceleration cavities A 1WA 30, combination cavities S 1WS 29, a gap G for forming an electric field etc. And, when making the microwave power not to be propagated to the acceleration cavities A 16WA 30 in the rear by detuning the combination cavity S 15, the combination cavity S 15 is so constituted that a detuning rod 11 may be made to pass the post part 10 and to be inserted into and brought in contact with the hole 13 provided on the cylindrical surface 9 on the opposite while forming the contact end part 12 as a metal different from the metal forming the cylindrical surface 9. Accordingly, when energy is made variable, a low energy beam can be effectively obtained due to reduced leakage power. COPYRIGHT: (C)1985,JPO&Japio
56 Variable energy standing wave linear accelerator JP14216880 1980-10-13 JPS5663800A 1981-05-30 EIJI TANABE; BIKUTAA AREKUSEI BAGAIN
57 JPS5415120B2 - JP13698074 1974-11-28 JPS5415120B2 1979-06-12
58 Heavy ion accelerator JP5366078 1978-05-04 JPS5416097A 1979-02-06 JIYATSUKU POTSUTEIEERU
59 Stationary wave linear accelerator and grooved input coupler JP2461478 1978-03-06 JPS53113996A 1978-10-04 ARUBAATO HARII MATSUKUYUUEN; BIKUTAA AREKUSEI BAGIN
60 Senkeikasokuki JP8627075 1975-07-16 JPS5135896A 1976-03-26 SUTANREI OO SHURAIBAA
QQ群二维码
意见反馈