首页 / 国际专利分类库 / 电学 / 基本电气元件 / 电开关;继电器;选择器;紧急保护装置 / 由物理状态的变化操作的开关 / .由加速度的变化操作的开关,例如由冲击和振动操作的开关、惯性开关(液体触点开关入H01H29/002)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
201 Beschleunigungsgrenzwertschalter EP95114278.5 1995-09-12 EP0708467A1 1996-04-24 Burmester, Heino

Beschrieben wird ein Beschleunigungsgrenzwertschalter mit einem kugelförmigen Trägheitskörper (6), der von einem Dauermagneten (5) gehalten wird. Bei einem Stoß über dem Grenzwert trifft der Trägheitskörper auf eine leitfähige Membran (3) und eine Leiterplatte (2) mit kammartig verzahnten Leiterbahnen.

Bei einem bekannten Schalter wird der Innenraum mit einem auf der Leiterplatte liegenden Deckel verschlossen, der Bohrungen zur Durchführung der Kontaktstifte aufweist. Zur Abdichtung hat der Deckel einen Kragen, der über einen O-Ring greift.

Die Ausführung zeichnet sich dadurch aus, daß der rotationssymmetrische Innenraum des SChalters (1e,1f) eine ringförmige Lagerfläche (1g1) für eine dünne Leitkunststoff-Matte (3) aufweist, daß die Leiterplatte (2) als Gehäusedeckel auf einem umlaufenden Gehäusesteg (1h) aufliegt, daß außerhalb dieses Steges (1h) ein Dichtungsring (4) liegt und daß die Leiterplatte (2) unter Deformation des Dichtungsringes (4) von gehäuseseitig angeformten, federnden Haken (1j,1k) gehalten ist.

202 Emergency inertial system for disconnecting a vehicle electric circuit from the electricity source EP95110660.8 1995-07-07 EP0701918A1 1996-03-20 Balbiano, Giuseppe; Rinaldi, Giuseppe

An emergency inertial system for disconnecting the electric circuit of a vehicle from the electricity source or battery (2) in the event of impact, to prevent sparks being generated by impact-induced shortcircuiting and so safeguard against fire; the system presenting a 360° active inertial switch (10) in series with the electric circuit (3); and the inertial switch presenting a floating mass (20), first electric contact means (21) connected to opposite terminals of the electric circuit and separated by an insulating means, and second electric contact means (22) cooperating with the floating mass so as to switch from a first operating position wherein they shortcircuit the first electric contact means via the insulating means, and a second operating position wherein they are detached from the first electric contact means; the first electric contact means being defined by respective carbon brushes (21) of the type used for the sliding contacts supplying the rotors of electric motors.

203 Inertia switch EP94107686.1 1994-05-18 EP0628979A1 1994-12-14 Rubboli, Gianmario

An inertia device for interrupting the current supplied by a vehicle battery and in particular for interrupting the hot lines and those connected to the gasoline pump, comprising an inertia switch (2), a relay (3, 9), a movable contact (4) for connecting together a fixed input contact (6) and a fixed output contact (7). The input contact (6) comprises a first part (6A) shaped to secure and electrically connect the end of a cable (15) for connecting the device to the battery (26), and a second part (6B) integral with the first and arranged to cooperate with said movable contact (4), the input contact being an integral part of the internal electrical circuit of the device.

204 Acceleration sensor EP89311939.6 1989-11-17 EP0375154B1 1994-08-24 Janotik, Adam Mario
205 Ansteuermechanismus für Rückstrammeinrichtungen in Fahrzeugen EP90107273.6 1990-04-17 EP0452521B1 1994-08-10 Föhl, Artur,
206 BESCHLEUNIGUNGSSENSOR UND VERFAHREN ZUR HERSTELLUNG EP92914345.0 1992-07-14 EP0597879A1 1994-05-25 ZABLER, Erich; WIDDER, Johannes
Détecteur d'accélération servant notamment à identifier un impact de véhicule automobile. Le détecteur comporte un système masse-ressort (1) avec une position de repos stable (4) et une position de déflexion stable (5). Lors d'une accélération dans le sens de mesure, le système masse-ressort ne subit dans un premier temps qu'une faible déflexion à partir de la position de repos (4). Toutefois, si une valeur d'accélération prédéfinie est dépassée, le système masse-ressort (1) passe dans la position de déflexion (5), provoquant ainsi la fermeture d'un contact électrique.
207 Helmet EP93402573.5 1993-10-20 EP0594501A1 1994-04-27 Rush, III, Gus A.

A helmet (20) has attached to its lower rim (32) an inflatable bag (40) which normally is folded so as not to restrict normal head and neck movements of the wearer but on inflation will fill the gap between the helmet rim and shoulders of a wearer. Carried by the helmet (20) and preferably packed with the bag (40) is a package (44) including a conventional gas generator, igniter and battery. A switch (46) to operate the igniter is located on the crown area of the exterior surface of the helmet (20) and is closable on an impact with a predetermined force on the crown of the helmet (20). When closed the bag (40) is almost instantaneously inflated and fills the gap to transfer most if not all of the impact force to the shoulders and relieve the cervical spine of a damaging axial compressive force. In another version, shoulder pads (112) are provided in which there is an attachment in the form of an inflatable bag (114) on the inner rim encircling the neck of the wearer. The inflatable bag (114) inflates upon the impact upon the crown area of the exterior surface of the helmet to extend inwards, just enough to instantaneously broaden the foundation on which the helmet attachment can rest when deployed upon impact without harming the wearer's neck.

208 Impact sensor for vehicle safety restraint system EP93115414.0 1993-09-23 EP0589466A1 1994-03-30 Meister, Jack B.

A vehicle restraint system (20) that includes an impact sensor (22) coupled by fiber optics (50,64,66) to an igniter (26) for inflating an air bag (28). The impact sensor includes a permanent magnet (32) disposed within a cavity (34) and biased by magnetic force toward one end of the cavity, motion of the magnet in the cavity being sensed by a weigand wire (44) or Hall (86) sensor for igniting the air bag. Facility (72) is disposed externally of the cavity for selectively adjusting the bias of the sensor and/or moving the magnet into proximity with the Hall effect or weigand wire sensor to test operative condition of the sensor.

209 CRASH SENSING SWITCH EP92919842.0 1992-09-11 EP0557505A1 1993-09-01 NORTON, Peter
Détecteur de collision frontale (10) d'automobiles, dont la conception présente une masse mobile (20) amortie par la viscosité de l'air et possédant des contacts de commutateurs (32, 80, 90) compensant les variations de la viscosité de l'air en fonction de la température, un clapet de dégazage (22, 36, 38) permettant d'améliorer la fermeture du contact et de simplifier l'étanchéité entre la masse mobile et un tube dans lequel elle se déplace, ainsi qu'une conception générale simplifiée. La masse mobile incorpore le clapet de dégazage ci-dessus mentionné, ainsi que des conduits (120) servant à effectuer le transport visqueux de l'air déplacé par le mouvement de ladite masse. L'écoulement d'air à travers les conduits peut être, de plus, régulé par un clapet (25). Les contacts de commutateurs sont constitués par un matériau à réaction thermique. La distance sur laquelle la masse se déplace avant d'atteindre les contacts varie en fonction de la température. Les contacts sont branchés électriquement sur des fils de plomb (68, 78) et sur une résistance de diagnostic (138) au moyen d'une liaison à des conducteurs de passage (60, 70). Les positions des contacts non soumises à des contraintes sont réglées pendant la fabrication, de façon à déterminer avec précision le déplacement nécessaire à la fermeture du commutateur. Le détecteur de collision frontale est étalonné pendant la fabrication au moyen du réglage du nombre de conduits.
210 Dispositif de déclenchenent d'un signal à la suite d'un choc EP92810383.7 1992-05-21 EP0515314A1 1992-11-25 Boyer, Jean Louis

La présente invention concerne un capteur de chocs qui est capable de déclencher un signal d'alarme lors de l'apparition d'un choc venant d'une direction définie et en supprimant la production d'un signal d'alarme pour tout choc venant d'une direction autre que celles qui ont été définies.

Afin d'obtenir la sélection directionnelle d'un capteur de chocs, celui-ci comporte un moyen de contact ayant une partie fixe (2) en forme torique ou autre, et une partie mobile (3) qui est élastiquement suspendue au centre de la partie fixe (2) par un ensemble de suspension qui permet une élongation de la partie mobile (3) dans le sens parallèle au plan de la partie fixe (2) torique, uniquement lors de l'apparition d'un choc venant d'une direction parallèle au plan de la partie fixe (2) et supprimant tout mouvement aléatoire dans le sens parallèle à ce plan lors de l'apparition d'un choc agissant dans un sens perpendiculaire au plan de la partie fixe (2).

211 Accelerometer with dualmagnet sensing mass EP90302192.1 1990-03-01 EP0386942A3 1992-11-25 Behr, Leonard W.; Duda, Donald A.

An acceleration sensor comprises a tube (14) formed of an electrically-conductive non-magnetic material; a magnetically-permeable element, such as a iron washer (32), proximate with the passage (24); and a sensing mass (34) in the passage (24) comprising a pair of permanent magnets (36) and a spacer (38) whose magnetic permeability increases with increasing temperature, with the magnets (36) being secured to the opposite sides of the spacer (38) so as to place a pair of like magnetic poles in opposition. In operation, the sensing mass (34) interacts with the iron washer (32) so as to be magnetically biased to a first position in the passage (24), while the magnetic-permeability of the spacer (38) and, hence, the magnetic flux generated by the sensing mass (34) adjusts to maintain a nearly constant threshold magnetic bias irrespective of variations in sensor temperature. The sensing mass (34) is displaced in response to acceleration of the housing (12) from its first position in the passage (24) towards a second position therein when such acceleration overcomes the threshold magnetic bias, while the tube (14) itself interacts with the sensing mass (34) to provide magnetic damping therefor. Upon reaching the second position in the tube (14), the sensing mass (34) electrically bridges a pair of contacts (60) to indicate that a threshold level of acceleration has been achieved. An electrical coil (70) is secured proximate with the iron washer (38) which, when energized, reversibly magnetizes the latter, whereby the sensing mass (34) is either repelled to the second position in the tube (14) or more strongly biased towards the first position therein.

212 DIRECTIONAL SHOCK DETECTOR EP90909003.0 1990-05-16 EP0474746A1 1992-03-18 RUBEY, Ulyss Ray
Le détecteur (10) comporte deux aimants discoïdes qui sont magnétisés à travers leurs épaisseurs respectives. Un aimant (91) est couplé à demeure à un récipient, et l'autre aimant (85) est laissé libre de coulisser transversalement par rapport à l'aimant fixe. Les aimants sont orientés de sorte que leurs pôles opposés soient adjacents l'un à l'autre. En l'absence d'un choc agissant sur le récipient, l'aimant libre (85) demeure dans une position centrée par rapport à l'aimant fixe (91). Un indicateur est prévu pour indiquer lorsque l'aimant libre se déplace vers une position excentrée par suite d'une force d'accélération, ainsi que le sens de cette force d'accélération. Dans un mode de réalisation, l'indicateur comprend un dispositif de marquage (55) couplé à l'aimant libre et une surface d'enregistrement (60) couplée au récipient. Dans un autre mode de réalisation, l'indicateur comporte un revêtement transparent (84) et des pattes (96) pour retenir l'aimant libre excentré.
213 IMPACT SENSOR EP90914775 1990-10-04 EP0447560A4 1992-03-18 SUZUKI, OTOHIKO; KANEKO, KOUICHI; FUJIYAMA, YOUICHI
214 Quick-response accelerometer EP91306777.3 1991-07-25 EP0474352A1 1992-03-11 Behr, Leonard W.; Anderson, Steven J.; Duda, Donald A.; Colten, Robert B.

An acceleration sensor comprises a tube (14) formed of an electrically-conductive, nonmagnetic material; an annular magnetically-permeable element (18), such as a iron washer, encircling a longitudinal portion of the tube (14); a magnetic sensing mass (32) in the tube which magnetically interacts with the washer (18) so as to be magnetically biased towards a first or "rest" position in the tube (14) characterized in that a longitudinal portion of the sensing mass (32) is situated within the portion of the tube (14) encircled by the washer (18), the sensing mass (32) being displaced from its rest position in the tube (14) towards a second position therein in response to an accelerating force exceeding the magnetic bias thereon; and a switch (28) operated by the sensing mass (32) when the sensing mass is displaced to its second position in the tube (14). The instant accelerometer features a low threshold magnetic bias of the sensing mass to provide a quickened sensing mass response to acceleration inputs of short duration; and a magnetic bias which increases in a substantially linear manner with increasing sensing mass displacement from its rest position towards its second position within the tube (14).

215 Magnetically-damped, testable accelerometer EP91110926.2 1989-02-20 EP0455270A3 1992-01-02 Behr, Leonard Werner

An acceleration sensor comprises a housing having a magnetically permeable element, such as a steel washer, secured thereto proximate with an end of a cylindrical passage formed therein; a magnetic sensing mass in the passage which is displaced in response to acceleration of the housing from an initial position within the passage proximate the steel washer to a second position within the passage when such acceleration overcomes the magnetic bias of the sensing mass towards the steel washer;

and a pair of beam contacts projecting from the housing into the passage so as to be bridged by the sensing mass when the sensing mass is displaced to the second position within the passage. The accelerometer further comprises a pair of oppositely-wound electrical coils encompassing the passage proximate the initial position and the second position of the sensing mass therein, respectively. Upon the delivery of a direct current to the coils, the sensing mass is magnetically biased to the second position within the passage, whereby the beam contacts are bridged by the sensing mass to confirm the operability of the sensor.

216 Magnetically-damped, testable accelerometer EP91110926.2 1989-02-20 EP0455270A2 1991-11-06 Behr, Leonard Werner

An acceleration sensor comprises a housing having a magnetically permeable element, such as a steel washer, secured thereto proximate with an end of a cylindrical passage formed therein; a magnetic sensing mass in the passage which is displaced in response to acceleration of the housing from an initial position within the passage proximate the steel washer to a second position within the passage when such acceleration overcomes the magnetic bias of the sensing mass towards the steel washer;

and a pair of beam contacts projecting from the housing into the passage so as to be bridged by the sensing mass when the sensing mass is displaced to the second position within the passage. The accelerometer further comprises a pair of oppositely-wound electrical coils encompassing the passage proximate the initial position and the second position of the sensing mass therein, respectively. Upon the delivery of a direct current to the coils, the sensing mass is magnetically biased to the second position within the passage, whereby the beam contacts are bridged by the sensing mass to confirm the operability of the sensor.

217 Temperature-compensating accelerometer EP89309864.0 1989-09-28 EP0386360A3 1991-04-17 Behr, Leonard W.; Colten, Robert B.; Duda, Donald A.

An acceleration sensor (10) comprises a tube (14) formed of an electrically-conductive non-magnetic material; a stop (30) defining an end of the tube which moves longitudinally thereof in response to temperature; a magnetically-permeable element, such as a iron washer (44), proximate with the end of the tube (14); and a sensing mass (46) in the tube (14) comprising a pair of permanent magnets (48) secured to the opposite sides of an iron spacer (50) so as to place a pair of like magnetic poles thereof in opposition. In operation, the sensing mass (46) interacts with the iron washer (44) so as to be magnetically biased against the stop (30), while the stop (30) moves longitudinally of the tube (14) to maintain a nearly constant threshold magnetic bias on the sensing mass (46) irrespective of variations in sensor temperature. The sensing mass (46) is displaced in response to acceleration of the housing (12) from its first position against the stop (30) towards a second position in the tube (14) when such acceleration overcomes the magnetic bias, while the tube (14) itself interacts with the sensing mass to provide magnetic damping therefor. Upon reaching the second position in the tube 14 , the sensing mass (46) bridges a pair of electrical contacts (54) with an electrically-conductive surface (56) thereof to indicate that a threshold level of acceleration has been achieved. An electrical coil (60) is secured proximate with the iron washer (44) which, when energized, reversibly magnetizes the latter, whereby the sensing mass (46) is either repelled to the second position in the tube or more strongly biased against the stop (30).

218 MINIATUR-WIPPSCHALTER MIT IMPULSAUFBEREITER EP85901959.8 1985-05-07 EP0179826B1 1990-10-24 Weiss, Matthias
This new micro-mechanical switch is characterized by its very simple design, the very simple operating links between its component parts, the extremely small movement and play of the switching element(s), a material composition specific to its use and a micro-mechanical shape with a modern high-quality surface finish. The switch can be used as follows: as an ON/OFF switch, a single-pole commutator, and a one-, two- or three-dimensional position sensor. In the latter case it is an individual element and/or is used for the switching in parallel or in series of several standard switches. Other applications are: magnetic switches and/or relay components, as well as switching and/or display elements for electric fields in a suitable electronic arrangement.
219 TRIMMABLE MICROMINIATURE FORCE-SENSITIVE SWITCH EP87907716.0 1987-11-12 EP0333733A1 1989-09-27 ALLEN, Henry, Vandegrift; JERMAN, John, Hallock; TERRY, Stephen, Clark
Commutateur microminiaturisé ajustable (10) sensible à la force, comprenant un substrat en silicium (12) pourvu d'un organe fléchissable d'épaisseur réduite (14) dont le fléchissement varie en fonction des modifications des conditions externes à détecter, telles que la pression, l'accélération et la température. L'ajustage dudit commutateur s'effectue en appliquant une force externe prédéterminée, telle qu'une pression, qui provoque le fléchissement de l'organe fléchissable (14) et la fermeture d'un commutateur, puis progressivement de plusieurs commutateurs d'un ensemble de commutateurs (52). L'énergie électrique est ensuite appliquée à la borne externe (34) du contact commun (28) et à la borne externe (50) de la terminaison commune (46) de liaisons fusibles (44), de sorte que le courant s'écoule à travers les commutateurs (52) fermés et à travers leurs liaisons fusibles associées (44), lesquelles en fondant ouvrent le circuit, empêchant ainsi toute détection ultérieure de conditions externes dont le niveau serait égal ou inférieur au niveau sélectionné appliqué pendant l'ajustage du dispositif.
220 An inertia switch impact sensor EP84301551.2 1984-03-08 EP0119064B1 1987-09-02 Jackman, Peter Ronald; Stratton, Paul Philip
QQ群二维码
意见反馈