序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Range finder for camera JP28111589 1989-10-27 JPH03141331A 1991-06-17 MOGAMIYA MAKOTO; SUZUKI SHINJI
PURPOSE: To allow the setting of a distance measurement zone in an arbitrary position and to facilitate the operation at the time of photographing a subject by providing a projecting direction changing mechanism, a distance measurement zone checking part, a distance measurement position changing means, a moving position detecting means and a control means. CONSTITUTION: This range finder has the projecting direction changing mechanism 34 which changes the projecting direction of the distance measuring light of the distance measuring means, the distance measurement zone checking part 40 which can change the position in the visual field of a finder and the distance measurement position changing means 24 which moves this distance measurement zone checking part 40 to a desired position. The device has also the moving position detecting means 40 which detects the moving position of the distance measurement zone checking part 40 and the control means which drives the projecting direction of the distance measuring light of the distance measuring means in follow up to the distance measurement zone checking part 40 via the projecting direction changing mechanism 34 in accordance with the detection data of the moving position detecting means 50. The focusing to the subject is executed in this way by measuring the distance of the arbitrary subject in the visual field of the finder without moving a camera. The operability is improved and the photographer's burden is decreased. COPYRIGHT: (C)1991,JPO&Japio
102 Method and unit for measuring electro-optically dimension,position and form of object JP5553880 1980-04-28 JPS5616802A 1981-02-18 PRYOR TIMOTHY R; HOCKLEY BERNARD; LIPTAY-WAGNER NICK; HAGENIERS OMER L; PASTORIUS WALTER J
PURPOSE: To improve the measurement precision of a complicated form, by irradiating a light onto the surface of an object and by condensing the scatterred light from the surface of the object and by focusing it onto a photodiode array and by measuring the position of the surface of the object on a basis of the focusing position. CONSTITUTION: The laser from projecting light source 1 has the output controlled by Pockels cell 2 and is condensed through focusing lens 3 onto point 2A on the surface of object 4. The scatterred light from object 4a is condensed at angle α by focusing lens 5 and is focused onto linear photodiode array 7. Control computer 15 stores the logical form of the object by the input from input terminal 16 and controls sensor 8 by table controller 18 to move sensor 8 within the logical form of the object. At this time, deviation from logical dimensions is plotted on a basis of the focusing position on photodiode array 17 by plotter 17. Thus, the object of a complicated form can be measured with a high precision. COPYRIGHT: (C)1981,JPO&Japio
103 RFID를 이용한 레일 기반 전동이동장치의 위치 파악 및 그 위치에 따른 콘텐츠 운영 시스템 KR1020150000507 2015-01-05 KR1020160084067A 2016-07-13 윤태수; 박현우; 김기현; 한윤균; 이현태; 정호열; 조덕용
본발명은 RFID를이용한레일기반전동이동장치의위치파악및 위치에따른콘텐츠운영시스템및 방법에관한것이다. 본발명의제 1 측면은, 라이더단말(20)을실장한전동이동장치(1)의레일(3) 상의이동시작에따라, 라이더단말(20)의하나의 RFID 태그(2)에대한인식의결과, 라이더단말(20)로부터무선네트워크(3)를통한라이더 ID(rider_ID)와위치(position) 정보, RFID 태그값을수신하는메인단말(10); 를포함하며, 라이더단말(20)은, 메인단말(10)로부터무선네트워크(3)를통해라이더 ID에해당하는라이더단말(20)로위치정보와매칭되는 RFID 태그값에해당하는이동및 동작명령을수신하여, 전동이동장치(10)의이동및 동작명령이수행되도록제어하는 RFID를이용한레일기반전동이동장치의위치파악및 위치에따른콘텐츠운영시스템을제공함에있다. 또한, 본발명의제 2 측면은, 라이더단말(20)을실장한전동이동장치(1)의레일(3) 상의이동시작에따라, 메인단말(10)이라이더단말(20)의하나의 RFID 태그(2)에대한인식의결과, 라이더단말(20)로부터무선네트워크(3)를통한라이더 ID(rider_ID)와위치(position) 정보, RFID 태그값을수신하는제 1 단계; 및메인단말(10)이무선네트워크(3)를통해라이더 ID에해당하는라이더단말(20)로위치정보와매칭되는 RFID 태그값에해당하는이동및 동작명령을전송하여, 라이더단말(20)에의해전동이동장치(10)의이동및 동작명령이수행되도록제어하는제 2 단계; 를포함하는것을특징으로하는 RFID를이용한레일기반전동이동장치의위치파악및 위치에따른콘텐츠운영방법을제공함에있다. 이에의해, 종래의레일을따라서전동이동장치가이동하는데있어서각 위치별존재하는콘텐츠가도착시간에맞춰서동작하는방식의경우초기에한번에산정하여구현함에따라중간에발생하는멈춤혹은속도의변이현상이생기면콘텐츠와의실행시간이일치하지않게되는문제점을중앙제어영역에서의제어방식으로해결하여, 실감형콘텐츠의효과의반감문제를해소할수 있는효과가있다. 뿐만아니라, 본발명은, RFID 태그를이용하여레일위를이동하는전동이동장치의각 위치정보를파악할수 있으며, 파악한위치정보에대한무선전송을통해중앙제어영역에서각 위치를파악하여해당위치에맞는콘텐츠를실행할수 있는효과가있다.
104 깊이 정보를 추정할 수 있는 방법과 장치, 및 상기 장치를 포함하는 신호 처리 장치 KR1020090082150 2009-09-01 KR101565969B1 2015-11-05 민동기; 진영구
깊이센서의깊이정보추정방법이개시된다. 상기방법은 S-탭픽셀구조를갖는깊이센싱픽셀에의하여추정시점에인접하는 M개의검출시점들에서검출된값들을이용하여상기추정시점의값들을추정하는단계와, 추정된값들과상기깊이센싱픽셀에의하여상기추정시점에서검출된 L-개의값을이용하여깊이정보를추정하는단계를포함한다.
105 차량 안전을 위한 센서 시스템, 차량 제어 시스템 및 운전자 정보 시스템 KR1020107022853 2009-03-09 KR101562378B1 2015-10-22 묀히,홀거,엠.; 카파이,마크; 콤버그,알버트,아.
센서시스템이설명되는데, 이센서시스템은자동차와같은차량의속도및 자동차바퀴(20)의회전속도를결정하기위해자체혼합레이저센서(10) 및분석기회로(30)를사용한다. 차량의속도와바퀴(20)의회전속도사이의편차는바퀴(20)의슬라이딩, 결국정지마찰, 또는더욱구체적으로바퀴(20)와자동차가주행하고있는표면사이의주행마찰의계수를결정하기위해사용될수 있다. 더욱이, 차량제어시스템이설명되는데, 이차량제어시스템은운전동안의주행마찰의계수를결정하기위해제어회로(50) 및제어수단(300, 400)에의해바퀴(20)의테스트가속을시작한다. 테스트가속은바퀴(20)의짧은기간의슬라이딩을시작하고, 슬라이딩은센서시스템에의해검출된다.
106 상대 움직임 센서, 물체와 상기 센서 서로에 대한 움직임을 측정하기 위한 방법, 쉬트 센서, 쉬트 재질을 처리하기 위한 장치, 및 입력 디바이스 KR1020067022143 2005-04-26 KR101224358B1 2013-01-21 리에스,마틴,디.
예를 들면, 레이저 다이오드의 소위 "자가-혼합(self-mixing)" 효과를 활용하는 상대 움직임 센서(108)를 이용하는, 쉬트 재질 또는 광 입력 디바이스를 취급하기 위한 장치내에서, 대역 통과 필터(100)는 저주파수 반송파 신호와 이러한 신호에 존재하는 고주파수 잡음 모두의 효과를 감소시키거나 실질적으로 제거하기 위하여 전기 신호의 측정으로부터 야기된 전기 신호를 필터링하기 위해 제공된다. 결과적으로, 레이저 자가-혼합 변환(translation) 측정의 정밀도는 상당히 향상된다.
107 조도, 근접도 및 색온도 측정이 가능한 이미지센서 KR1020090051639 2009-06-10 KR101048768B1 2011-07-15 이병수; 김찬기; 서영호
본 발명은 이미지센서에 관한 것으로서, 보다 상세하게는 특정 대역의 파장을 갖는 적외선 및 가시광의 유무에 의한 출력 전압 값의 변화를 이용하여 현재의 조도, 피사체와의 근접도 및 피사체의 색온도를 측정할 수 있는 조도, 근접도 및 색온도 측정이 가능한 이미지센서에 관한 것이다. 본 발명에 따른 조도, 근접도 및 색온도 측정이 가능한 이미지센서는, 이미지픽셀을 구비하는 제1센싱부의 주변에 별도의 제2센싱부를 구비하고 제1센싱부와 별도로 동작하도록 구성함으로써, 전력 소비를 감소시키면서 용이하게 현재의 조도, 피사체와의 근접도 및 피사체의 색온도를 측정할 수 있는 장점이 있다. 이미지센서, 조도, 근접도, 색온도, 투과필터
108 SOI 기반 광전자 컴포넌트를 이용한 LIDAR 시스템 KR1020087019514 2007-01-25 KR1020080106899A 2008-12-09 엘버커키,비제이; 피에데,데이비드
A compact, integrated LIDAR system utilizes SOI-based opto-electronic components to provide for lower cost and higher reliability as compared to current LIDAR systems. Preferably, an SOI-based LIDAR transmitter and an SOI-based LIDAR receiver (both optical components and electrical components) are integrated within a single module. The various optical and electrical components are formed utilizing portions of the SOI layer and applying well-known CMOS fabrication processes (e.g., patterning, etching, doping), including the formation of additional layer(s) over the SOI layer to provide the required devices. A laser source itself is attached to the SOI arrangement and coupled through an integrated modulation device (such as a Mach-Zehnder interferometer, i.e., MZI) to provide the scanning laser output signal (the scan controlled by, for example, an electrical (encoder) input to the input to the MZI). The return, reflected optical signal is received by a photodetector integrated within the SOI arrangement, where it is thereafter converted into an electrical signal and subjected to various types of signal processing to perform the desired type(s) of signal characterization/signature analysis. ® KIPO & WIPO 2009
109 자체-캘리브레이팅 물체 검출 시스템 KR1020077011067 2005-10-14 KR1020070095872A 2007-10-01 프라이스,버논디.; 벨,브라이언케이.
An object detection system (100) for a vehicle includes a clock generator (206) for generating a clock signal. A set of emitters (104) produces and transmits a sensing beam. A set of receivers (112) receives reflected portions of the transmitted sensing beam. A microprocessor (102) controls the object detection system. A gate array (114) receives control signals from the microprocessor and produces transmit signals for the emitters and reference signals for the receivers. The gate array is preferably a field programmable gate array (FPGA).
110 상대 움직임 센서, 물체와 상기 센서 서로에 대한 움직임을 측정하기 위한 방법, 쉬트 센서, 쉬트 재질을 처리하기 위한 장치, 및 입력 디바이스 KR1020067022143 2005-04-26 KR1020070012427A 2007-01-25 리에스,마틴,디.
In an apparatus for handling sheet material or an optical input device, for example, which employs a relative movement sensor (108) utilizing the so-called "self- mixing" effect of a laser diode, a band pass filter (100) is provided for filtering the electric signal resulting from measurement of the electric signal to reduce or substantially eliminate the effects of both the low frequency carrier signal and the high frequency noise present in such a signal. As a result, the precision of the laser self- mixing translation measurements is significantly improved. ® KIPO & WIPO 2007
111 거리 측정 장치 및 방법 KR1020057000913 2003-05-12 KR1020050013184A 2005-02-02 슈티어레,외르크; 볼프,페터; 플린슈파흐,군터
본 발명은 변조된 측정빔(16,26,36)을 목표물(20) 방향으로 송신하기 위한 적어도 하나의 송신기(22,24)를 구비한 적어도 하나의 송신 브랜치(14), 목표물(20)로부터 리턴된 측정빔(17,44)의 수신을 위한 적어도 하나의 수신 브랜치(18), 및 목표물(20)로 부터 리턴된 측정빔으로부터 목표물(20)에 대한 장치(10)의 거리를 측정하기 위한 제어 및 평가 유닛(28,58)을 포함하는 거리 측정 장치에 관한 것이다. 본 발명에 따라 상기 장치(10)가 설정된 측정 불확실도로 거리 측정을 가능하게 하는 수단을 포함한다. 또한 본 발명은 설정가능한 측정 불확실도로 거리 측정이 가능한 거리 측정 방법에 관한 것이다. 결정된 설정가능한 측정 시간안에 거리 측정을 보장하기 위해, 거리 측정에 기초가 되는 측정 불확실도의 값이 상기 측정 시간에 매칭되고, 특히 단계적으로 상승될 수 있다.
112 라이다 신호 수신용 시간의존 이득제어 증폭 장치 및 방법 KR1020000043701 2000-07-28 KR1020020010245A 2002-02-04 김석철; 김승우; 박원규; 조성주
PURPOSE: A time-dependent gain control amplifying device and a method for receiving radar signals are provided to capture a radar signal of wide band as a normal signal and recover with an A/D converter having relative small resolution the signals into an original radar signal by previously determining the gain of a radar signal according to distance and amplifying a received optical signal with the determined gain. CONSTITUTION: An optical sensor(26) receives an optical signal scattered in atmosphere to convert it into an electrical signal. A CPU(29) determines a gain to be multiplied to the converted electrical signal and restores the modulated radar signal into an original signal. The gain is stored in a first memory(25). A D/A converter(30) converts the gain into an analog signal. A gain control amplifier(22) amplifies the electrical signal in accordance with the gain converted into the analog signal. A clock generator(28) controls the gains so that the gains are sequentially input in accordance with clock frequencies. An A/D converter(23) converts the amplified electrical signal into a digital signal. A test radar signal radiated for determining the converted digital signal and gains is stored in a second memory(20).
113 Low drift reference for laser radar US13840606 2013-03-15 US10119816B2 2018-11-06 Anthony R. Slotwinski; Mina A. Rezk
Laser radar systems include a pentaprism configured to scan a measurement beam with respect to a target surface. A focusing optical assembly includes a corner cube that is used to adjust measurement beam focus. Target distance is estimated based on heterodyne frequencies between a return beam and a local oscillator beam. The local oscillator beam is configured to propagate to and from the focusing optical assembly before mixing with the return beam. In some examples, heterodyne frequencies are calibrated with respect to target distance using a Fabry-Perot interferometer having mirrors fixed to a lithium aluminosilicate glass-ceramic tube.
114 System and method of acquiring three-dimensional coordinates using multiple coordinate measurment devices US15621368 2017-06-13 US09967545B2 2018-05-08 Yazid Tohme
A method is provided of determining three-dimensional coordinates of an object surface with a laser tracker and structured light scanner. The method includes providing the scanner having a body, a pair of cameras, a projector, a retroreflector and a processor. The projector and cameras are positioned in a non-collinear arrangement. The projector is configured to project a pattern onto the surface. The method also includes providing the tracker which emits a beam of light onto the retroreflector and receives a reflected beam of light. The first location and orientation is measured with the tracker. The first surface pattern is projected onto the surface. A pair of images of the surface pattern is acquired with cameras. The processor determines the 3D coordinates of a first plurality of points in the tracker frame of reference.
115 SYSTEM AND METHOD OF ACQUIRING THREE-DIMENSIONAL COORDINATES USING MULTIPLE COORDINATE MEASURMENT DEVICES US15621368 2017-06-13 US20170280132A1 2017-09-28 Yazid Tohme
A method is provided of determining three-dimensional coordinates of an object surface with a laser tracker and structured light scanner. The method includes providing the scanner having a body, a pair of cameras, a projector, a retroreflector and a processor. The projector and cameras are positioned in a non-collinear arrangement. The projector is configured to project a pattern onto the surface. The method also includes providing the tracker which emits a beam of light onto the retroreflector and receives a reflected beam of light. The first location and orientation is measured with the tracker. The first surface pattern is projected onto the surface. A pair of images of the surface pattern is acquired with cameras. The processor determines the 3D coordinates of a first plurality of points in the tracker frame of reference.
116 Optical touch display system US13288035 2011-11-03 US09645681B2 2017-05-09 Chih-Hung Lu; Hsin-Chia Chen; En-Feng Hsu; Chi-Chieh Liao; Ren-Hau Gu; Shu-Sian Yang; Yu-Hao Huang
Optical touch display system includes a light source, a reflector, an image sensor, and a processing device. The light source emits light to at least one object directly and emits light to the at least one object via the reflector at the same time. Then the image sensor receives light reflected from the at least one object directly and light reflected via the reflector simultaneously to form a set of imaging objects which have similar color parameters on an image. Then the processing device produces a set of still image parameters of the image objects such as gravity centers and border boundaries. Based on the still image parameters, the processing device determines the coordinates of the least one object on the optical touch display.
117 Robot cleaner US14873809 2015-10-02 US09488983B2 2016-11-08 Dongki Noh; Seungmin Baek; Taekyeong Lee
A robot cleaner may include a main body, a light irradiation unit irradiating light towards a region in front of the main body, an image sensor including a plurality of horizontal lines sequentially exposed to form an image, an image processing unit constructing frames by synchronizing signals output from the horizontal lines, such that, after construction of any one frame, the image processing unit does not construct one or more frames by ignoring signals output from the horizontal lines, and then constructs a next frame, and a controller controlling the light irradiation unit to irradiate light while the horizontal lines are exposed to construct the one frame, such that the light irradiation unit stops irradiation of light between before exposure of all the horizontal lines to construct the frame is completed and one point of time while the image processing unit ignores signals output from the horizontal lines.
118 Six degree-of-freedom laser tracker that cooperates with a remote line scanner US13443956 2012-04-11 US09207309B2 2015-12-08 Robert E. Bridges
A method of measuring surface sets on an object surface with a coordinate measurement device and a target scanner, includes providing the scanner having a body, a first retroreflector incorporating a pattern, a projector, a camera, and a processor, providing the device, selecting the source pattern of light; projecting the source pattern of light onto the object to produce the object pattern of light; imaging the object pattern of light onto the photosensitive array to obtain the image pattern of light; obtaining the pixel digital values for the image pattern of light; sending the first beam of light from the device to the first retroreflector; receiving the second beam of light from the first retroreflector; measuring the orientational and translational sets based at least in part on the second beam of light; determining the surface sets corresponding to the plurality of collinear pattern elements; and saving the surface sets.
119 Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner US13443946 2012-04-11 US09151830B2 2015-10-06 Robert E. Bridges
Measuring three surface sets on an object surface with a measurement device and scanner, each surface set being 3D coordinates of a point on the object surface. The method includes: the device sending a first light beam to the first retroreflector and receiving a second light beam from the first retroreflector, the second light beam being a portion of the first light beam, a scanner processor and a device processor jointly configured to determine the surface sets; selecting the source light pattern and projecting it onto the object to produce the object light pattern; imaging the object light pattern onto a photosensitive array to obtain the image light pattern; obtaining the pixel digital values for the image light pattern; measuring the translational and orientational sets with the device; determining the surface sets corresponding to three non-collinear pattern elements; and saving the surface sets.
120 ELECTRO-OPTIC DISTANCE-MEASURING DEVICE US14394217 2013-03-06 US20150077758A1 2015-03-19 Thomas Luthi; Burkhard Bockem
A distance measuring device includes a light source emitting light, and an integrated electro-optic modulator arranged such that the emitted light passes through an optical waveguide of the electro-optic modulator in a first direction before being emitted from the distance measuring device, and after being reflected from a target passes through the electro-optic modulator in a second direction which is opposite to the first direction. The forward electro-optic response of a modulating region of the electro-optic modulator is the same as the backward electro-optic response, and a center of gravity of the modulation is independent of modulation frequency.
QQ群二维码
意见反馈