序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Remote subscription unit for GNSS Information US11474691 2006-06-26 US20070055445A1 2007-03-08 James Janky; David Bird; Ann Ciganer
A GPS information service system for providing supplemental GPS correction and signal acquisition information to subscribers. A GPS information server broadcasts GPS aiding information encrypted with subscription keys. A remote GPS subscription unit receives the key enablers for the subscription keys in service activation (SAM) messages for the services for which they have subscribed and then uses the subscription keys to decrypt the GPS aiding information. In order to prevent unauthorized access to the information, unsymmetrical signature generation and authentication algorithms are used for generating and authenticating signatures for the SAM messages.
102 Correction of troposhere induced errors in global positioning systems US10553682 2004-04-19 US20070027624A1 2007-02-01 Matthew Powe; James Butcher; John Owen
A method of obtaining data for use by a receiver of a satellite positioning system or a GNSS comprises deriving the data remotely from the receiver by a server (200), using meteorological information and a regional or global three dimensional map of grid points from which it computes tropospherical delays by ray tracing through the refractivity field derived from atmospheric measurements of pressure, temperature and water data content, such measurements being available from meteorological bodies. When used to enhance position determined by a user receiver that includes a non-meteorological, climate based model (130) giving zenith delays and means (130′) to map them to particular inclinations, the server also includes a copy of such non-meteorological model (230) and provides its ray traced delay values as zenith delays. The sets of zenith delay values for corresponding grid points are compared in the server (260) and modifications developed (preferably in fractional form) by which the non-meteorological delay values require correcting to be accurate. The correction sets are reduced by image compression techniques (270) and transmitted via the satellites (1101 etc) of the GNSS at low data rate to the user receiver, which receiver simply applies the corrections to the Zenith delays derived by its own model. If a user position is known, the server may derive accurate tropospheric delay values directly for the receiver position directly for transmission.
103 Positioning apparatus, positioning server apparatus, and positioning system US11131255 2005-05-18 US20060158373A1 2006-07-20 Katsuyuki Kamei
A mobile station (1) is provided having a GPS positioning unit (11) that receives electric waves from GPS satellites and computes the coordinates of an approximate location of a point to be positioned, performs interferometric positioning on the point to be positioned using correction data used for making a correction to the point to be positioned, which are transmitted from a positioning server apparatus (30), so as to compute the coordinates in the world geodetic system of the point to be positioned, and a transformation unit (12) that transforms the coordinates in the world geodetic system of the point to be positioned into those in the existing geodetic system using transformation parameters transmitted from the positioning server apparatus (30) when the coordinates in the world geodetic system of the point to be positioned are located in the interior of a graphic region transmitted from the positioning server apparatus (30).
104 Synchronizing ranging signals in an asynchronous ranging or position system US10909234 2004-07-30 US20060022873A1 2006-02-02 Kurt Zimmerman
In a local positioning system, the land-based transmitters include free running oscillators or oscillators free of clock synchronization with any remote oscillator. A reference receiver receives the ranging signals from different transmitters and generates timing offset information, such as code phase measurements. The timing offset information is then communicated back to transmitters. The temporal offset information indicates relative timing or phasing of the different transmitted ranging signals to the reference receiver. The transmitters then transmit the temporal offset information with the ranging signals, such as modulating the transmitted code by the timing offset information. A mobile receiver is operable to receive the ranging signals and timing offset information in a same communications path, such as on a same carrier. Position is determined with the temporal offset information and the ranging signals. The temporal offset information for the various transmitters allows the mobile receiver to more accurately determine position than in an unsynchronized system.
105 Spread spectrum localizers US09734118 2000-12-11 US06795491B2 2004-09-21 Robert Alan Fleming; Cherie Elaine Kushner
A network of localizers determines relative locations in three-dimensional space to within 1 cm by cooperatively measuring propagation times of pseudorandom sequences of electromagnetic impulses. Ranging transmissions may include encoded digital information to increase accuracy. The propagation time is determined from a correlator circuit which provides an analog pseudo-autocorrelation function sampled at discrete time bins. The correlator has a number of integrators, each integrator providing a signal proportional to the time integral of the product of the expected pulse sequence delayed by one of the discrete time bins, and the non-delayed received antenna signal. With the impulses organized as doublets the sampled correlator output can vary considerably in shape depending on where the autocorrelation function peak falls in relation to the nearest bin. Using pattern recognition the time of arrival of the received signal can be determined to within a time much smaller than the separation between bins. Because operation of standard CMOS circuitry generates noise over a large frequency range, only low-noise circuitry operates during transmission and reception. To provide the time accuracy necessary for distancing, a high-frequency clock operates during inter-localizer communications. The high-frequency clock uses a phase-lock loop circuit to increase the clock rate and a programmable delay to provide still finer time graduations. A stage in the low-frequency clock uses low-noise circuitry during transmissions and receptions, and standard circuitry at other times.
106 Method and apparatus for a satellite payload and radiodetermination US10750904 2004-01-05 US20040145517A1 2004-07-29 George Vladimir Kinal; James Robert Nagle II; Claudio Soddu; Fintan Richard Ryan
A satellite radiodetermination system comprises global navigation service (GNSS) satellites 2 such as GPS satellites, which generate GNSS ranging signals Rn, geostationary satellites 6 which retransmit ranging signals Rg generated at a navigation land earth station (NLES) 8, including augmentation data A, and medium earth orbit (MEO) satellites 10 which generate ranging signals Rm including regional augmentation data RA transmitted from a satellite access node (SAN) 14. The regional augmentation data RA is supplied by regional augmentation systems 21a, 21b. A navigation receiver 11 receives the ranging signals Rg, Rm, Rn and calculates ionospheric delay values for those ranging signals which are provided on dual frequencies. Using these ionospheric delay values, and optionally the regional augmentation data RA and the augmentation data A, the navigation receiver estimates ionospheric delay values for those ranging signals which are provided on single frequencies. The navigation receiver uses the ranging signals, corrected for ionospheric delay and errors indicated by the augmentation data A and regional augmentation data RA, to calculate position and time accurately.
107 Navigation system using locally augmented GPS US10669614 2003-09-24 US20040119638A1 2004-06-24 John E. Fagan; Hengquin Wen; Rick Pendergraft
A local area augmentation navigation system for determining the location of an object using differential GPS. The system does not require any significant power or communication infrastructure. The system includes at least three reference stations, a master station and a LAAS receiver. The at least three reference stations are located in close proximity to each other and at known locations. Each of the reference stations receive a GPS signal from a GPS constellation and collect and output via a wireless transceiver the pseudo-range data from the GPS signal. The master station is positioned in close proximity to the reference stations and receives the pseudo-range data from the reference stations. The master station forms a correction message from the pseudo-range data and the known locations of the reference stations. The master station broadcasts the correction message within a specified area. The LAAS receiver is positioned within the specified area and receives the correction message broadcast by the master station as well as a GPS signal from the GPS constellation. The LAAS receiver calculates the location of the LAAS receiver with the correction message and the GPS signal.
108 System and method for locating a mobile unit within the service area of a mobile communications network US09219113 1998-12-23 US06748226B1 2004-06-08 Larry C. Wortham
A differential positioning system (10) includes components of a satellite-based or land-based positioning system (12) and components of a mobile communications network (14). The differential positioning system (10) provides accurate and immediate position information to a mobile unit (17). A transmitter site (40) of a mobile communications network (14) is associated with a reference positioning receiver (38). The reference positioning receiver (38) generates correction data for transmission to the mobile unit (17). The mobile unit (17) includes a mobile communications device (42) for receiving the correction data generated by the reference positioning receiver (38) and a mobile positioning receiver (24) for generating a position fix. The mobile unit (17) refines the position fix generated by the mobile positioning receiver (24) using correction data received by the mobile communications device (42).
109 Method and system for providing wide area augmentation system (WAAS) like corrections using a server and processor on the internet US10347032 2003-01-16 US06741935B1 2004-05-25 Ralph Eschenbach
A method and system are disclosed for providing WAAS like corrections using a server and processor on the Internet. For one method, satellite measurement data is collected. Satellite position error corrections are computed using the collected satellite measurement data. The computed satellite position error corrections are stored. The stored satellite position error corrections can then be later retrieved and used by a server and processor on the Internet.
110 GPS receiver and method for processing GPS signals US10340015 2003-01-09 US06725159B2 2004-04-20 Norman F. Krasner
A global positioning system (GPS) receiver has first circuitry for receiving and processing pseudorandom sequences transmitted by a number of GPS satellites. The first circuitry is configured to perform conventional correlation operations on the received pseudorandom sequences to determine pseudoranges from the GPS receiver to the GPS satellites. The GPS receiver also includes second circuitry coupled to the first circuitry. The second circuitry is configured to receive and process the pseudorandom sequences during blockage conditions. The second circuitry processes the pseudorandom sequences by digitizing and storing a predetermined record length of the received sequences and then performing fast convolution operations on the stored data to determine the pseudoranges. The GPS receiver may have a common circuitry for receiving GPS signals from in view satellites and downconverting the RF frequency of the received GPS signals to an intermediate frequency (IF). The IF signals are split into two signal paths; a first of which provides the conventional con-elation processing to calculate the pseudoranges. During blockage conditions, the IF signal is passed to the second signal path wherein the IF signals are digitized and stored in memory and later processed using the fast convolution operations to provide the pseudoranges. Alternative arrangements for the two signal paths include separate downconverters or shared digitizers. One embodiment provides both signal paths on a single integrated circuit with shared circuitry executing computer readable instructions to perform GPS signal processing appropriate to the reception conditions.
111 Motor vehicle warning and control system and method US10420395 2003-04-21 US20040022416A1 2004-02-05 Jerome H. Lemelson; Robert D. Pedersen; Dorothy Lemelson
A system and method assists the driver of a motor vehicle in preventing accidents or minimizing the effects of same. In one form, a television camera is mounted on a vehicle and scans the roadway ahead of the vehicle as the vehicle travels. Continuously generated video picture signals output by the camera are electronically processed and analyzed by an image analyzing computer, which generates codes that serve to identify obstacles. A decision computer mounted in the controlled vehicle receives such code signals along with code signals generated by the speedometer or one or more sensors sensing steering mechanism operation and generates control signals. Such code signals may be displayed, and a synthetic speech or special sound generating and warning means used, to warn the driver of the vehicle of approaching and existing hazards. The system may also use the control signals, particularly through application of fuzzy logic, to control the operation of the brakes and steering mechanism of the vehicle to avoid or lessen the effects of a collision. In a particular form, the decision computer may select the evasive action taken from a number of choices, depending on whether and where the detection device senses other vehicles or obstacles.
112 Method and system for minimizing storage and processing of ionospheric grid point correction information US10382976 2003-03-06 US06646594B1 2003-11-11 Clayton Barber; Cliff Pemble
A method and system are provided for minimizing storage and processing of ionospheric grid point corrections transmitted from WAAS satellites in a global positioning system. Based upon a current location, the system creates a boundary around the current location and collects ionospheric grid point corrections within the boundary. The collected correction points are used to correct the position initially determined by a global positioning system.
113 GPS receiver and method for processing GPS signals US10340015 2003-01-09 US20030139879A1 2003-07-24 Norman F. Krasner
A global positioning system (GPS) receiver has first circuitry for receiving and processing pseudorandom sequences transmitted by a number of GPS satellites. The first circuitry is configured to perform conventional correlation operations on the received pseudorandom sequences to determine pseudoranges from the GPS receiver to the GPS satellites. The GPS receiver also includes second circuitry coupled to the first circuitry. The second circuitry is configured to receive and process the pseudorandom sequences during blockage conditions. The second circuitry processes the pseudorandom sequences by digitizing and storing a predetermined record length of the received sequences and then performing fast convolution operations on the stored data to determine the pseudoranges. The GPS receiver may have a common circuitry for receiving GPS signals from in view satellites and downconverting the RF frequency of the received GPS signals to an intermediate frequency (IF). The IF signals are split into two signal paths; a first of which provides the conventional con-elation processing to calculate the pseudoranges. During blockage conditions, the IF signal is passed to the second signal path wherein the IF signals are digitized and stored in memory and later processed using the fast convolution operations to provide the pseudoranges. Alternative arrangements for the two signal paths include separate downconverters or shared digitizers. One embodiment provides both signal paths on a single integrated circuit with shared circuitry executing computer readable instructions to perform GPS signal processing appropriate to the reception conditions.
114 Motor vehicle warning and control system and method US08671853 1996-06-28 US06553130B1 2003-04-22 Jerome H. Lemelson; Robert Pedersen
A system and method assists the driver of a motor vehicle in preventing accidents or minimizing the effects of same. In one form, a television camera is mounted on a vehicle and scans the roadway ahead of the vehicle as the vehicle travels. Continuously generated video picture signals output by the camera are electronically processed and analyzed by an image analyzing computer, which generates codes that serve to identify obstacles. A decision computer mounted in the controlled vehicle receives such code signals along with code signals generated by the speedometer or one or more sensors sensing steering mechanism operation and generates control signals. Such code signals may be displayed, and a synthetic speech or special sound generating and warning means used, to warn the driver of the vehicle of approaching and existing hazards. The system may also use the control signals, particularly through application of fuzzy logic, to control the operation of the brakes and steering mechanism of the vehicle to avoid or lessen the effects of a collision. In a particular form, the decision computer may select the evasive action taken from a number of choices, depending on whether and where the detection device senses other vehicles or obstacles.
115 Golf course yardage and information system with zone detection US09860494 2001-05-21 US06525690B2 2003-02-25 Richard W. Rudow; John Coffee; Douglas L. Lecker; Tuan Pham; Kirk Bingeman; Brad Garn
A player position determining and course management system for a golf course having a plurality of roving units for use by players in playing the course is disclosed. Each roving unit includes a central processing unit (CPU) including a data processor for executing various tasks ranging from fastest-execution of a task to slowest execution of a task on a schedule of priorities of task completion, a real-time means for controlling the processor to give the tasks priority ranging from fastest execution of a task with highest priority to slowest execution of a task with lowest priority, and a means for precisely timing functions of the system including modulating means utilizing a common digital modulation technique for digitally modulating data transmitted to and from all of the roving units. Each of the roving units include a monitor for displaying the golf course including each of the holes with its tee box, fairway, green, cup and hazards, as well as the position of the roving unit on the course in real time. Additionally, the system includes a course management base station for transmitting and receiving information to the roving units and a monitor for displaying the location of each roving unit on the golf course in real time.
116 Collecting and reporting information concerning mobile assets US09790371 2001-02-21 US06496777B2 2002-12-17 Lynden L. Tennison; Steve C. Lampe
A mobile platform includes a GPS receiver system to collect position related information for storage in a database. Sensors further collect platform operational information for storage in the database. A control processor for the mobile platform collects the stored information for periodic transmission over a wireless communications link to a remote location for further processing and handling. The control processor is configured to periodically engage in data collection from the GPS receiver system and sensors at a first rate and remotely report any interim collected information over the wireless communications link at a second rate. Preferably, the first rate is greater than the second rate by integer multiple to most efficiently and economically utilize wireless communications resources. At the remote location, a central controller receives the mobile platform reported information for processing in accordance with tracking management applications. An interface to the central controller allows a user to control the information collection and reporting operations of the control processor (in the mobile platform) as well as the tracking management functions performed by the central controller.
117 GPS vehicle collision avoidance warning and control system and method US09923252 2001-08-02 US06487500B2 2002-11-26 Jerome H. Lemelson; Robert D. Pedersen
GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50,52,200,452) in neural networks (132, FIGS. 6-8) in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory (484) which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive auto-pilot mode is provided.
118 Display monitor for golf cart yardage and information system US09818916 2001-03-28 US06470242B1 2002-10-22 Richard W. Rudow; John Coffee; Douglas L. Lecker; Kirk H. Bingeman; Robert D. Camiano
A player position determining and course management system for a golf course having a plurality of roving units for use by players in playing the course is disclosed. Each roving unit includes a central processing unit (CPU) including a data processor for executing various tasks ranging from fastest-execution of a task to slowest execution of a task on a schedule of priorities of task completion, a real-time means for controlling the processor to give the tasks priority ranging from fastest execution of a task with highest priority to slowest execution of a task with lowest priority, and a means for precisely timing functions of the system including modulating means utilizing a common digital modulation technique for digitally modulating data transmitted to and from all of the roving units. Each of the roving units include a monitor for displaying the golf course including each of the holes with its tee box, fairway, green, cup and hazards, as well as the position of the roving unit on the course in real time. Additionally, the system includes a course management base station for transmitting and receiving information to the roving units and a monitor for displaying the location of each roving unit on the golf course in real time.
119 METHOD AND APPARATUS FOR DETERMINING LOCATION USING A COARSE POSITION ESTIMATE US09773207 2001-01-30 US20020130812A1 2002-09-19 Alkinoos Vayanos; Peter Gaal
Corrections to a coarse position estimate of the pseudorange receiving device are made based upon knowledge of the amount of error present in inaccurate information (e.g., the old Almanac and/or Ephemeris) used to estimate the coarse position.
120 Method and apparatus for synchronizing base stations using remote synchronizing stations US09430620 1999-10-29 US06433739B1 2002-08-13 Samir S. Soliman
A method and apparatus for determining any offset between the timing of a communication base station and the timing of a GPS constellation using a remote synchronization station at which the timing of a base station can be measured and compared with known timing to determine an offset.
QQ群二维码
意见反馈