序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 用于矩称的测量装置以及力矩称 CN201110113128.5 2011-03-02 CN102269635B 2015-04-01 C·鲍姆; R·扬克
发明涉及一种用于矩称的测量装置以及力矩称,所述测量装置包括具有多个固定口(4)的底板(2)、可旋转地布置在底板(2)上且具有多个容纳口(7)和固定口(8)的容纳板(6)、布置在容纳板(6)上用于被测物(12,28)的测量夹具(11),所述测量夹具(11)插入到一部分容纳口(7)之中,并且包括多个固定销(9),所述固定销通过插入到底板(2)和容纳板(6)上的一部分固定口(4,8)之中,可将测量夹具(11)固定在测量位置之中。
42 重心不变的偏心轮和测量装置 CN201110317017.6 2011-10-12 CN102564662A 2012-07-11 克里斯蒂安·鲍姆; 罗尼·扬克
发明涉及一种重心不变的偏心轮(9),其包括旋转轴线(13)和偏心区域(12),其中所述偏心轮(9)的质量重心位于所述旋转轴线(13)上。
43 用于矩称的测量装置以及力矩称 CN201110113128.5 2011-03-02 CN102269635A 2011-12-07 C·鲍姆; R·扬克
发明涉及一种用于矩称的测量装置以及力矩称,所述测量装置包括具有多个固定口(4)的底板(2)、可旋转地布置在底板(2)上且具有多个容纳口(7)和固定口(8)的容纳板(6)、布置在容纳板(6)上用于被测物(12,28)的测量夹具(11),所述测量夹具(11)插入到一部分容纳口(7)之中,并且包括多个固定销(9),所述固定销通过插入到底板(2)和容纳板(6)上的一部分固定口(4,8)之中,可将测量夹具(11)固定在测量位置之中。
44 电机的负载惯量估计方法 CN200610163721.X 2006-12-04 CN1988371A 2007-06-27 井出勇治
提供了一种电机的负载惯量估计方法,即便在电机的齿槽转矩较大或在负载机械系统中出现共振的时候,这种方法也能够估计负载惯量。在加速反馈信号中检测振动。当检测到的振动等于或高于预定平的时候,用系数α乘以估计惯量增益Kn,其中,系数α为零(0)或大于零但小于一(1);或者,当检测到的振动低于预定水平的时候,用等于一(1)的系数α乘以估计惯量增益Kn。
45 异步电机转动惯量辨识方法 CN01130057.4 2001-12-05 CN1193497C 2005-03-16 刘宏鑫; 张科孟; 李俊田; 刘国伟
发明涉及一种异步电机转动惯量辩识方法,包括以下步骤:采用转矩矢量控制方法,控制电机以恒定加速度从第一角速度(ω1)空载运行到第二角速度(ω2),记录运行时间(Δt);采用速度矢量控制方法,控制电机以恒定角速度(ω3)空载稳速运行,根据这时的转矩电流分量(It*)计算电磁转矩值从而得出电机的摩擦转矩(T0),再根据运行时间(Δt)和摩擦转矩(T0)计算出电机的转动惯量(J)。本发明提供的转动惯量辩识方法辩识参数精度高,可大大提高矢量控制的性能。
46 异步电机转动惯量辨识方法 CN01130057.4 2001-12-05 CN1354558A 2002-06-19 刘宏鑫; 张科孟; 李俊田; 刘国伟
发明涉及一种异步电机转动惯量辨识方法,包括以下步骤:采用转矩矢量控制方法,控制电机以恒定加速度从角速度ω1空载运行到角速度ω2,记录运行时间Δt;采用速度矢量控制方法,控制电机以恒定角速度ω3空载稳速运行,根据这时的转矩电流分量It*计算电磁转矩值从而得出电机的摩擦转矩T0,再根据运行时间Δt和摩擦转矩T0计算出电机的转动惯量J。本发明提供的转动惯量辨识方法辨识参数精度高,可大大提高矢量控制的性能。
47 Rigid characteristic identification equipment and rigid characteristic identification method JP2010156100 2010-07-08 JP5532238B2 2014-06-25 クレッパー ロバート; 政明 大熊
48 Rigid body property identification device and rigid body property identification method JP2010156100 2010-07-08 JP2012018092A 2012-01-26 ROBERT KLEPPER; OKUMA MASAAKI
PROBLEM TO BE SOLVED: To provide a rigid body property identification device or a rigid body property identification method capable of identifying rigid body properties with high accuracy while reducing the number of measurement points.SOLUTION: A rigid body property identification device for identifying rigid body properties including the mass and the position of center of gravity of an object to be measured comprises: a stationary part 10 which is immovable; a movable part 20 which is movable relative to the stationary part and includes an object to be measured T; support means 30 which supports the movable part so that the movable part can freely vibrate relative to the stationary part; measurement means 40 which measures data required to calculate the natural frequency of the movable part when the movable part vibrates; and analysis means 50 to which support conditions by the support means and measurement data measured by the measurement means are inputted and which performs arithmetic processing based on the support conditions and the natural frequency calculated from the measurement data. The analysis means identifies the rigid body properties of the object to be measured based on the support conditions by the support means and the natural frequency calculated from the measurement data.
49 JPH02500934A - JP50679088 1988-08-04 JPH02500934A 1990-03-29
50 Moment measuring method JP19197483 1983-10-14 JPS6082937A 1985-05-11 MURAKAMI MASAKI
PURPOSE:To measure exactly a moment regarding to the rotation center of an object to be measured, by deriving a distance between a position of the center of gravity of the object to be measured and the rotation center, and multiplying this distance by a weight of the object to be measured. CONSTITUTION:A measuring instrument body 7 is supported by three load cells A, B and C. First of all, before a blade to be measured is placed on the measuring instrument body 7, outputs of the load cells A, B and C are stored in a memory of an arithmetic device 11, and a zero compensation is executed. Subsequently, the blade to be measured is placed so as to contact by pressing to a block 8, a position of the center of gravity of the blade and its angle are calculated by the arithmetic device 11. Next, a distance between the center of a rotor when this blade has been planted actually and the bottom part of the blade planted part is inputted to the arithmetic device 11 by a keyboard 13. The arithmetic device 11 calculates the distance between the center of the rotor and the position of the center of gravity, and it is multiplied by a total weight of the blade calculated from a total of a load working on each load cell A, B and C, by which a moment of the blade to the center of the rotor is calculated.
51 Method and device for detecting weight of car JP23377783 1983-12-13 JPS59160720A 1984-09-11 ARUFUREETO KURATSUTO
52 Moment measuring device JP11672282 1982-07-07 JPS599530A 1984-01-18 TSUKAHARA YOSHIHIRO
PURPOSE:To make it possible to perform easy moment measurement without changing the setting position of a blade in correspondence with the radius of the embedding of the blades by measuring the weight of the turbine blade at two supporting points, and providing operating devices, which compute the weight, then compute the center of gravity, and compute the moment. CONSTITUTION:A turbine blade 3 is set on a mounting table 4 and aligned with a stopper 6. Loads Wa and Wb at two supporting points, which are separated by a specified distance r0, are measured by weight detectors 7a and 7b. The values are inputted into a weight operating part 9, and the weight of the blade W is computed by using an expression W=Wa+Wb. The center of gravity rG is computed by a center of gravity operating part 10 by using an expression rG=WbXr0/W. Moment M is computed by a moment operating part 11 by susing an expression M=WX(R+rG), where R is a radius of the embedding of the blades. The R has different value for each stage and inputted from the outside. In this constitution, the setting position of the blade is not required to change in response to the radius of the embedding of the blade 3. Therefore the moment M can be readily measured.
53 Inertia moment detecting device JP14759580 1980-10-23 JPS5772034A 1982-05-06 ONO HIROTAKA
PURPOSE:To facilitate detection of mechanical requirement value of drive side conversion required for direct control and assure high reliability of the detection, by providing a winder of a paper thinning machine with a mechanical requirement operating circuit. CONSTITUTION:When tension value of output of a tension detector 25 is constant, an output is obtained in a detecting circuit 30. And, winding speed of a roll 11 is constant, output of a differentiater 27 becomes zero, a drive current detecting circuit 28 operates and the current value Id1 is put into memory. When the winding speed is changed to deceleration, a negative voltage is put out to the output of the differentiater 27. At this time, a drive current detecting circuit 29 operates, and a current value Id2 is put into memory. The detected values Id1 and Id2 have deceleration current operated by a mechanical requirement GD<2> value operating circuit 31, and consequently, GD<2> of drive shaft conversion is operated and put out.
54 Rigid mounting inertia characteristics wo seek reservoir mounting system Oyobi method JP2014513108 2012-05-17 JP2014515492A 2014-06-30 クルパー、ロベルト
剛体の慣性特性、特に、慣性テンソル、質量及び/又は質量中心位置を求めるためのシステムであって、該システムは、キャリア(10)であって、剛体(2)が、該剛体(2)の6自由度に沿った動きを実行することができるように、該キャリア(10)から該剛体(2)を懸下するように構成されたキャリアと、少なくとも6つのセンサ(100)であって、剛体(2)の6自由度に沿った剛体(2)の動きを検出するための出信号を供給するセンサと、センサ(100)と協働する測定装置(110)であって、出力信号

によって剛体(2)の動きを測定するように構成された測定装置(110)と、出力信号

から慣性特性(r S )を算出するように構成された解析手段(20)と、を備える。 さらに、本発明は、慣性特性(r S )を求めるための方法に関する。
【選択図】図1
55 Center hole determining method and apparatus of the crankshaft JP2008195807 2008-07-30 JP5135104B2 2013-01-30 明広 義本
56 How to determine the characteristic parameters for controlling the drive system by the electric motor JP2003195611 2003-07-11 JP4464084B2 2010-05-19 オイゲン・ケルナー; ノルベルト・ケルナー
57 Load inertia estimation method for motor JP2005349266 2005-12-02 JP2007156699A 2007-06-21 IDE YUJI
<P>PROBLEM TO BE SOLVED: To provide a method for estimating inertia of a load of a motor with high accuracy even when cogging torque of the motor is large or even if resonance or the like is present in a mechanical system of the load. <P>SOLUTION: An oscillation inside an acceleration feedback signal is detected. When the oscillation has a predetermined level or above, an inertia estimation gain K<SB>n</SB>is multiplied by a coefficient α not less than 0 and less than 1. When the oscillation is less than the predetermined level, the inertia estimation gain K<SB>n</SB>is multiplied by a coefficient α of 1. <P>COPYRIGHT: (C)2007,JPO&INPIT
58 Load inertia estimation method of the motor JP2005349266 2005-12-02 JP3796261B1 2006-07-12 勇治 井出
【課題】 モータのコギングトルクが大きい場合や、負荷の機械系に共振などがあっても、高い精度でモータの負荷のイナーシャを推定する方法を提供する。
【解決手段】 加速度フィードバック信号中の振動を検出する。 そしてこの振動が、予め定めたレベル以上あるときには、イナーシャ推定ゲインK に0以上1未満の係数αを乗算する。 またこの振動が予め定めたレベルより小さいときには、イナーシャ推定ゲインK に1の係数αを乗算する。
【選択図】 図1
59 Device for determining the weight of the vehicle JP23377783 1983-12-13 JPH065178B2 1994-01-19 ARUFUREETO KURATSUTO
60 JPH0117092B2 - JP17991383 1983-09-28 JPH0117092B2 1989-03-29 HOZUMI KOICHI; HASHIMOTO NOBORU
QQ群二维码
意见反馈