序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 크랭크샤프트의 센터홀 결정 방법 및 장치 KR1020107025937 2009-06-25 KR101157057B1 2012-06-22 요시모토아키히로
본 발명은, 크랭크샤프트(crankshaft)의 센터홀의 위치를 용이하고 또한 적절하게 결정한다. 이 센터홀(center hole) 결정 방법은, 상부 몰드 및 하부 몰드에 의해 성형하여 얻어진 소재 크랭크샤프트의 센터홀을 결정하는 방법으로서, 제1 단계 내지 제4 단계를 포함하는 것이다. 제1 단계는 상부 몰드 및 하부 몰드에 의해 성형된 각각의 부위의 형상 데이터를 각각 취득한다. 제2 단계는, 각각의 부위의 측정 데이터를 대응하는 설계 데이터와 비교함으로써, 각각의 부위의 몰드 어긋남에 의한 어긋남량을 산출한다. 제3 단계는, 어긋남량에 기초하여, 어긋남량에 대응하는 데이터를 보간(補間)하여 실제 형상 데이터를 재현한다. 제4 단계는 실제 형상 데이터에 기초하여 소재 크랭크샤프트의 회전 밸런스가 소정 범위 내로 되도록 센터홀을 결정한다.
182 회전관성 측정장치 KR1020060126306 2006-12-12 KR1020080054122A 2008-06-17 서재준
An apparatus of measuring rotational inertia is provided to reduce a space for measuring the rotational inertia by supporting a measuring object with one support wire. An apparatus(100) of measuring rotational inertia includes a support wire(10), a top plate(20), a bottom plate(30), and an optical sensor member(40). The support wire is extended by being fixed to an upper part of a measuring space. A rotation center of the top plate is fixed to a front end of the support wire. The bottom plate is installed on the top plate by a plurality of support bars and receives a measuring object. The optical sensor member measures a rotation period of the top or bottom plate.
183 유한 회전축의 교차 관성모멘트 측정장치 및 그 방법 KR1020020027855 2002-05-20 KR100473782B1 2005-03-08 윤시영
본 발명은 유한 회전 축의 교차 관성모멘트 측정에 관한 것으로서, 베이스 판과; 각각 양단부가 로드셀을 통해 상기 베이스 판 상에 고정되어 제1 회전축을 지지하는 두 개의 제1 지지대와; 상기 두 개의 제1 지지대 사이에서 상기 제1 회전축에 대하여 회전 가능하게 설치되며, 상기 제1 회전축과 수직을 이루는 제2 회전축을 지지하는 프레임 형상의 제2 지지대와; 상기 제2 지지대 내측에 설치되고, 상기 제2 회전축에 대하여 회전 가능하게 설치되는 굴림대와; 상기 로드셀로부터 출력되는 신호를 이용해 교차 관성모멘트를 연산하는 데이터 처리기를 포함하여 구성되는 유한 회전축의 교차 관성모멘트 측정장치 및 그 측정방법을 제공한다. 이로써, 다축 시선 안정화 장치 등의 교차 관성모멘트 측정 및 보정이 가능하게 되었으며 저속 회전기계 등의 보정도 용이하게 되었다. 따라서, 다축 시선 안정화 장치 등 정밀 안정화 장치에서 관성에 의한 교차 관성모멘트의 간섭 등을 최소화 할 수 있게 됨에 따라 다축 시선 안정화 장치 등의 정밀도를 향상시킬 수 있게 되었다.
184 System and method for determining inertia properties of a rigid body EP11168278.7 2011-05-31 EP2508861B1 2018-11-07 Klöpper, Robert
System for determining inertia properties of a rigid body, particularly the inertia tensor, the mass and/or the position of the center of mass, comprising: a carrier (10), which is designed for suspending a rigid body (2) from the carrier (10), such that the rigid body (2) is able to perform movements along the six degrees of freedom of the rigid body (B), at least six sensors (100) providing output signals for detecting the movement of the rigid body (2) along the six degrees of freedom of the rigid body (2), a measuring device (110) cooperating with the sensors (100), wherein the measuring device (110) is configured to measure said movement of the rigid body (2) by means of said output signals ( (t k )), and an analysing means (20) configured for determining from said output signals ( (t k )) said inertia properties (r s ) . Furthermore, the invention relates to a method for determing the inertia properties ( r s ).
185 CENTROID DETECTION DEVICE EP11783269 2011-05-17 EP2573536A4 2017-05-31 WATANABE YUTAKA
A center-of-gravity detecting system (100) includes a motion detector (14) for detecting a vertical motion of a travelling object in a self-weight direction during travel and a horizontal motion of the travelling object in a widthwise direction during travel, and an arithmetic unit (15). The arithmetic unit (15) calculates a center-of-gravity location of the travelling object in the self-weight direction in a cross-section perpendicular to the travel direction of the travelling object and a center-of-gravity location of the travelling object in the widthwise direction in the cross-section perpendicular to the travel direction, using the frequency of a vertical motion of the travelling object in the self-weight direction, a frequency of the horizontal motion of the travelling object in the widthwise direction, a central angle of the horizontal motion of the travelling object in the widthwise direction, and the width of the traveling object. The arithmetic unit (15) calculates a center-of-gravity location of the travelling object in the travel direction, using the frequency of the vertical motion of the travelling object in the self-weight direction, a frequency of the horizontal motion of the travelling object in the travel direction, the center-of-gravity location of the travelling object in the self-weight direction, and the length of the travelling object in the travel direction.
186 VORRICHTUNG UND VERFAHREN ZUR BESTIMMUNG DER TRÄGHEITSPARAMETER EINES KÖRPERS EP07765162.8 2007-07-11 EP2069741B1 2017-03-01 GOERTZ, Harald; STRAUCH, Jan; PETER, Boris
187 METHOD FOR PRE-BALANCING A CRANKSHAFT EP15177123.5 2015-07-16 EP2980552A1 2016-02-03 Leverington, James M

A method (200) for pre-balancing a crankshaft, the method (200) comprising the steps (202, 204, 222) of receiving data related to a three dimensional scan of the crankshaft; generating a model based on the data; and providing instructions, based on the model, for defining a pre-balancing machining axis.

188 Vorrichtung und Verfahren zur drehgeberlosen Identifikation mechanischer Kenngrößen eines Drehstrom-Asynchronmotors EP10172911.9 2010-08-16 EP2421148B1 2015-02-11 Villwock, Sebastian; Zatocil, Heiko
189 RIGID BODY PROPERTY IDENTIFICATION DEVICE AND RIGID BODY PROPERTY IDENTIFICATION METHOD EP11803450 2011-06-16 EP2592407A4 2014-12-17 KLÖPPER ROBERT; OKUMA MASAAKI
A rigid body characteristic identification system which identifies rigid body characteristics of a measurement target including its mass and center of gravity position, provided with an immovable stationary part 10, moving parts 20 which can move with respect to the stationary part and include a measurement target T, support means 30 for supporting the moving parts with respect to the stationary part in a freely vibratable manner, measuring means 40 for measuring data which is necessary for calculating the natural frequency of the moving parts when the moving parts are vibrating, and analyzing means 50 for receiving as input the support conditions by the supporting means and the measurement data which was measured by the measuring means and for performing processing based on these support conditions and natural frequency calculated from the measurement data. The analyzing means uses the support conditions by the supporting means and natural frequencies which are calculated from the measurement data as the basis to identify the rigid body characteristics of the measurement target. Due to this, a rigid body characteristic identification system or rigid body characteristic identification method which can reduce the number of measurement points while identifying the rigid body characteristics with a high precision is provided.
190 Measurement of the inertial properties of an aircraft movable control surface EP12382293.4 2012-07-20 EP2687445A1 2014-01-22 Alonso Gago, Justo; Valera Rodriguez, Pedro

Method for obtaining the inertial properties of a movable (10) rotating around a hinge line (2) in an aircraft control surface (1), comprising the following steps:

a) removing the actuators mechanical connections from the movable (10), leaving it free to rotate around its hinge line (2), further balancing the movable (10) and calculating in a first approach its coarse static momentum;

b) refining the static momentum of the movable (10) obtained in a), and obtaining simultaneously its frictional momentum;

c) incorporating an elastic element (300) on the control surface (1), configuring a second order mechanical system;

d) inducing forced oscillations on the movable (10) at a certain frequency, this frequency being increased until it is sensibly close to the resonance frequency of the movable (10);

e) calculating, from the wave response in d), the momentum of inertia of the movable (10).

191 VERFAHREN UND VORRICHTUNG ZUR SIMULATION EINES TRANSLATORISCH ODER ROTATORISCH BEWEGTEN KÖRPERS EP11784407.6 2011-11-08 EP2673610A1 2013-12-18 BAUER, Robert; ETTL, Wolfgang; GRITSCH, Christian; WASTIAN, Michael
A method and a device for simulating a body that is moved in a translational or rotational manner. The method includes detecting a force that acts on the body or a torque (MW), and assigning a reference mass or a reference moment of inertia (Jsoll) to the body. The force or the torque (Mw) and the reference mass or the reference moment of inertia (Jsoll) are used to determine a reference speed (omegasoll) for a speed control which controls an actual speed (omegaist) using a control transmission function (G(s)), and the reference speed (omegasoll) is determined by means of a transmission element using a transmission function (P(s)) that is reciprocally proportional to the control transmission function (G(s)).
192 METHOD AND DEVICE FOR DETERMINING CENTER HOLE OF CRANKSHAFT EP09802805.3 2009-06-25 EP2305420B1 2013-05-29 YOSHIMOTO, Akihiro
193 RIGID BODY PROPERTY IDENTIFICATION DEVICE AND RIGID BODY PROPERTY IDENTIFICATION METHOD EP11803450.3 2011-06-16 EP2592407A1 2013-05-15 KLOEPPER, Robert; OKUMA, Masaaki

A rigid body characteristic identification system which identifies rigid body characteristics of a measurement target including its mass and center of gravity position, provided with an immovable stationary part 10, moving parts 20 which can move with respect to the stationary part and include a measurement target T, support means 30 for supporting the moving parts with respect to the stationary part in a freely vibratable manner, measuring means 40 for measuring data which is necessary for calculating the natural frequency of the moving parts when the moving parts are vibrating, and analyzing means 50 for receiving as input the support conditions by the supporting means and the measurement data which was measured by the measuring means and for performing processing based on these support conditions and natural frequency calculated from the measurement data. The analyzing means uses the support conditions by the supporting means and natural frequencies which are calculated from the measurement data as the basis to identify the rigid body characteristics of the measurement target. Due to this, a rigid body characteristic identification system or rigid body characteristic identification method which can reduce the number of measurement points while identifying the rigid body characteristics with a high precision is provided.

194 CENTROID DETECTION DEVICE EP11783269.1 2011-05-17 EP2573536A1 2013-03-27 WATANABE, Yutaka

A center-of-gravity detecting system (100) includes a motion detector (14) for detecting a vertical motion of a travelling object in a self-weight direction during travel and a horizontal motion of the travelling object in a widthwise direction during travel, and an arithmetic unit (15). The arithmetic unit (15) calculates a center-of-gravity location of the travelling object in the self-weight direction in a cross-section perpendicular to the travel direction of the travelling object and a center-of-gravity location of the travelling object in the widthwise direction in the cross-section perpendicular to the travel direction, using the frequency of a vertical motion of the travelling object in the self-weight direction, a frequency of the horizontal motion of the travelling object in the widthwise direction, a central angle of the horizontal motion of the travelling object in the widthwise direction, and the width of the traveling object. The arithmetic unit (15) calculates a center-of-gravity location of the travelling object in the travel direction, using the frequency of the vertical motion of the travelling object in the self-weight direction, a frequency of the horizontal motion of the travelling object in the travel direction, the center-of-gravity location of the travelling object in the self-weight direction, and the length of the travelling object in the travel direction.

195 Vorrichtung und Verfahren zur drehgeberlosen Identifikation mechanischer Kenngrößen eines Drehstrom-Asynchronmotors EP10172911.9 2010-08-16 EP2421148A1 2012-02-22 Villwock, Sebastian; Zatocil, Heiko

Die Erfindung betrifft ein Verfahren zur drehgeberlosen Identifikation mechanischer Kenngrößen eines Drehstrom-Asynchronmotors (09). Das Verfahren umfasst zumindest die Schritte:

- Konstantspannungseinprägung U in α-Achsenrichtung zur Erzeugung eines Konstantmagnetflusses;

- Testsignalspannungseinspeisung U in β-Achsenrichtung des Asynchronmotors (09), wobei die α-Achsenrichtung konstant bestromt bleibt;

- Meßsignalstrommessung I in β-Statorachsenrichtung des Asynchronmotors (09);

- Identifikation von mechanischen Kenngrößen des Asynchronmotors (09) auf Basis der Testsignalspannung U und des Meßsignalstroms I;

wobei der Rotor (11) Auslenkungsbewegungen (75) ausführen kann.

In nebengeordneten Aspekten betrifft die Erfindung eine Identifikationseinrichtung (39) für die Bestimmung von mechanischen Kenngrößen eines Asynchronmotors (09) sowie eine diese umfassende Motorsteuerungsvorrichtung (35), wobei die identifizierten Kenngrößen zur Bestimmung, Optimierung und Überwachung einer Motorsteuerung verwendet werden können. Schließlich schlägt die Erfindung eine Verwendung des Identifikationsverfahrens für die Steuerung elektrischer Antriebe vor.

196 Momentenwaage EP10179132.5 2010-09-24 EP2363698A2 2011-09-07 Baum, Christian; Jahnke, Ronny

Eine Messvorrichtung für eine Momentenwaage umfasst eine Grundplatte (2) mit mehreren Fixieröffnungen (4), eine drehbar an der Grundplatte (2) angeordnete Aufnahmeplatte (6) mit mehreren Aufnahmeöffnungen (7) und Fixieröffnungen (8), eine an der Aufnahmeplatte (6) angeordnete Messaufnahme (11) für ein Messobjekt (12, 28), wobei die Messaufnahme (11) in einen Teil der Aufnahmeöffnungen (7) eingreift und mehrere Fixierstifte (9), welche die Messaufnahme (11) in einer Messposition fixieren durch Eingriff in einen Teil der Fixieröffnungen (4, 8) in Grundplatte (2) und Aufnahmeplatte (6).

197 Verfahren zur Trägheitsmomentbestimmung EP95890165.4 1995-09-21 EP0704689B1 2003-04-16 Abler, Georg, Dipl.-Ing.; Eitzinger, Johann, Dipl.-Ing.; Harms, Klaus-Christoph, Dr.
198 적응적 관심영역 및 탐색창을 이용한 객체 검출 방법 및 장치 KR1020160180586 2016-12-28 KR1020180076441A 2018-07-06
본발명은적응적관심영역및 탐색창을이용한객체검출방법및 장치에관한것으로서, 본발명의실시예에따른적응적관심영역및 탐색창을이용한객체검출장치는, 차량내의카메라로부터이미지를획득하는이미지획득부; 상기획득된이미지에서거리에따른적응적관심영역을설정하는관심영역설정부; 상기설정된적응적관심영역의이미지크기를단계적으로변화시켜복수의리사이즈이미지가포함된이미지피라미드를생성하는이미지피라미드생성부; 상기생성된이미지피라미드의각 리사이즈이미지에서거리별탐색창을각각생성하는탐색창생성부; 및각 리사이즈이미지에서상기생성된적응적탐색창을이동시켜객체를검출하는객체검출부;를포함한다.
199 타이어의 관성 모멘트 측정 장치 및 방법 KR20160089203 2016-07-14 KR20180007812A 2018-01-24 KIM YOUNG IN
본발명은타이어의관성모멘트측정장치및 이를이용한관성모멘트측정방법을개시한다. 본발명은제1 방향으로연장된베이스부와, 일단이상기베이스부에연결되고, 상기제1 방향으로연장되는커넥터와, 상기커넥터의타단에연결되고, 타이어의트레드가지면과마주보도록상기타이어의사이드월을지지하는장착유닛및 상기트레드와마주보도록상기장착유닛의하부에설치되며, 상기타이어의회전각을설정하는앵글플레이트를포함한다.
200 3축 관성 측정 시스템의 제조 방법 및 이를 이용한 3축 관성 측정 시스템 KR1020150049783 2015-04-08 KR1020160120558A 2016-10-18 문상희; 이종성
본발명은, 단일한기판상에, x축의병진운동을검지하는 x축가속도계, y축의병진운동을검지하는 y축가속도계, 및 z축의회전운동을검지하는 z축각속도계가형성되어있는 3축관성측정시스템의제조방법으로서, 상기 x축가속도계, 상기 y축가속도계및 상기 z축각속도계는표면/벌크마이크로머시닝(SBM : Surface/Bulk Micromachining) 공정에의하여형성되고, 알카리에칭(alkaline etching)을할 때, 릴리스(release)되는것이방지되도록하는릴리스방지패턴을형성하는단계를포함한, 3축관성측정시스템의제조방법을제공한다.
QQ群二维码
意见反馈