序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
121 Gravity-center-neutral eccentric and measurement device US13270266 2011-10-11 US20120085153A1 2012-04-12 Christian Baum; Ronny Jahnke
A gravity center neutral eccentric is provided. The gravity-center-neutral eccentric includes an axis of rotation and an eccentric region, wherein the center of mass of the eccentric lies on the axis of rotation. In another embodiment, a center of mass of the eccentric region also lies on the axis of rotation. A measurement device including a gravity center neutral eccentric is also provided.
122 Method and apparatus for estimating system inertia where number of motor rotations are restricted US11712145 2007-02-28 US07622881B2 2009-11-24 John J. Golownia; Robert J. De Lange; Thomas J. Rehm
A method and apparatus for estimating inertia wherein a load has a limited range of load travel, the method comprising the steps of identifying an intermediate position along the range of load travel that is separated from a first end of the range of load travel, with the load separated from a first end of the range of load travel, increasing a velocity of the electric motor from a first velocity, identifying when the load has reached the intermediate position, identifying the motor velocity at the intermediate position as a second velocity, detecting a first rate of velocity change from the first velocity to the second velocity and deriving an inertia value as a function of the first rate of velocity change.
123 Method for determining the mass moment of inertia of an electric motor drive system US10637716 2003-08-08 US20040100219A1 2004-05-27 Norbert Kerner; Eugen Kellner
A method for determining the mass moment of inertia of an electric motor drive system of a machine, having a drive motor and further drive elements arranged downstream of the drive motor. The method includes a) determining a compensation current, which compensates losses occurring at a constant speed of the motor, so that a motor speed of the drive motor remains constant and b) determining an acceleration current, which generates a defined acceleration of the drive motor when the losses occurring at the constant speed of the drive motor are compensated. The method further entails c) calculating a mass moment of inertia of the electric motor drive system based on the determined acceleration current.
124 Apparatus and method for determining the inertia matrix of a rigid body US44942 1993-04-08 US5309753A 1994-05-10 Stanley H. Johnson
The experimental determination of the moments of inertia of a rigid body such as a golf-club head about each of three mutually perpendicular axes is described. The club head is suspended so as to swing as a pendulum about an axis that is parallel to each of the axes of interest and the moments of inertia are calculated from the periods of oscillation and physical properties of the body. The products of inertia must be calculated from the moments of inertia in multiple axis systems. Once the inertia matrix is complete, the associated ellipsoid of inertia displays the inertial properties of the rigid body without reference to a specific coordinate system. The inertia ellipsoids of two golf-club heads are determined and compared to demonstrate the procedure.
125 Automated mass-moment weighing system for jet engine blades US746373 1991-08-16 US5195363A 1993-03-23 E. Thomas Gossler; Michael A. Paul; V. Edward Stubbs, III
This invention pertains to an automatic method and apparatus for ascertaining the mass-moment of a blade of a jet engine. It encompasses robotic means to transport the blade from its loading station to the weighing station where its mass-moment is computed via a computer. Afterwards, the blade is returned to the loading station where the cycle begins over again.
126 Center of gravity and moments of inertia measurement device US152275 1988-02-04 US5177998A 1993-01-12 Michael W. Monk
A device for calculating the center of gravity (CG) and moments of inertia of a vehicle. The vehicle is driven onto the device and the height of its center of gravity is determined by hanging weights on the device to displace the vehicle's CG from its position without the weights; the height of the CG is then calculated by a simple mathematical formula. The pitch moment of inertia is calculated by aligning its axis perpendicular to the axis of the pivots and allowing the vehicle to swing, then calculating the moment of inertia by another mathematical formula. The roll moment of inertia is calculated by rotating the vehicle 90 degrees, letting it swing, and then using a slighly different formula. The yaw moment of inertia is calculated by lowering the device to the ground and causing the vehicle to oscillate about a pivot point, then calculating the yaw moment of inertia by means of another mathematical formula.
127 Machine for measuring the moments of inertia US953846 1978-10-23 US4213330A 1980-07-22 Rudolf Brozel; Kurt Beckel; Jan Berkhout
A machine which allows the moments of inertia of an appliance to be measured relative to two axes without the configuration of the machine to be modified in any way. This machine comprises a fixed horizontal plate and an oscillating table mounted with a vertical shaft so as to be capable of oscillation about the longitudinal axis of said rotary shaft. The oscillating table is supported on the fixed plate by means of a plurality of pneumatic support devices spaced from and arranged symmetrically around the rotary shaft, the latter extending through the fixed plate and being centered in the central opening in the fixed plate by radial bearing elements, e.g. gas bearing elements.
128 Means and graphical method of calculating moments of inertia US820713 1977-08-01 US4127941A 1978-12-05 Richard L. Hoover
This disclosure relates to a means and graphical method of calculating Moments of Inertia which utilizes a specially designed graph paper that simplifies calculation of the Moment of Inertia of an irregular shaped area with respect to a fixed axis.
129 Apparatus for measuring the swing weight of sporting implements US632948 1975-11-18 US4043184A 1977-08-23 Bernard Sayers
An apparatus incorporating an electrobalance mechanism to measure the dynamic swing weight of a sporting implement.
130 Apparatus for measuring the moments of blade segments US45462130 1930-05-22 US2060904A 1936-11-17 SMITH BEECHER D
131 A MEASUREMENT DEVICE EP17163665.7 2017-03-29 EP3225965A1 2017-10-04 SEZGIN, Hale

A measurement device comprising at least one drive unit on which one apparatus (A) is placed, on which, in turn, a moving part to be measured in terms of its center of gravity and moment of inertia is fixed, such that the moving part is enabled to make rotational and/or oscillating motion, characterized in that it comprises an apparatus (A) comprising a base (A1); a body (A2); a coupling surface (A3) having a structure in compliance with that of the table to be positioned on the drive unit; a first centering pin (A4) disposed on the coupling surface (A3) so that it is suitably received by a hole provided in the center of the table when it is placed on the drive unit; a first coupling element (B1) enabling the placement of the moving part on the body (A2) and being suitable for coupling to the moving part such that the moving part is prevented from moving independently from itself and a second coupling element (B2) disposed on another side against the side on which the first coupling element (B1) is disposed, enabling to place the moving part on the body (A2) in a stable manner and being suitable for coupling to the moving part such that the moving part is prevented from moving independently from itself.

132 Dispositif pour déterminer les tenseurs d'inertie et les positions des centres de gravité en trois dimensions EP12380047.6 2012-09-13 EP2574896A3 2016-11-23 Martinez Goikolea, Aitor; Espinosa Ruiz de Alegria, Aitor; Fernandez Murguiondo, Etor; Simon Martinez, José Luis; Izaga Ugarriza, Joseba; Herran Fernandez, Mikel; Lopez Hernandez, Sergio; Sáez de Ocariz Granja, Idurre; Madruga Angulo, Oscar

Dispositif servant à mesurer les centres de gravité et les tenseurs d'inertie d'une structure dans les trois dimensions spatiales avec un seul amarrage de la structure au dispositif, facilement ré-ajustable par l'utilisateur.

Ce dispositif se compose fondamentalement d'un mécanisme d'élévation (10) avec deux axes de rotation, permettant de positionner la structure (0) à mesurer dans toutes les orientations nécessaires ; un automatisme induisant un mouvement rotationnel dans le troisième axe de rotation du dispositif, composé par un moteur (16), un système de contrôle et d'acquisition (20) et des capteurs (18) et (19) et deux capteurs (3) et (19) facilement remplaçables, dont la position est ajustable.

L'application de ce dispositif est de préférence le calcul du tenseur d'inertie et la position de centre de gravité d'une structure, en trois dimensions.

133 System and method for determining inertia properties of a rigid body EP11168278.7 2011-05-31 EP2508861A1 2012-10-10 Klöpper, Robert

System for determining inertia properties of a rigid body, particularly the inertia tensor, the mass and/or the position of the center of mass, comprising: a carrier (10), which is designed for suspending a rigid body (2) from the carrier (10), such that the rigid body (2) is able to perform movements along the six degrees of freedom of the rigid body (B), at least six sensors (100) providing output signals for detecting the movement of the rigid body (2) along the six degrees of freedom of the rigid body (2), a measuring device (110) cooperating with the sensors (100), wherein the measuring device (110) is configured to measure said movement of the rigid body (2) by means of said output signals ( (tk)), and an analysing means (20) configured for determining from said output signals ( (tk)) said inertia properties (rs). Furthermore, the invention relates to a method for determing the inertia properties (rs).

134 Klemmvorrichtung für Turbinenschaufel EP10187255.4 2010-10-12 EP2442088A1 2012-04-18 Baum, Christian; Jahnke, Ronny

Ein schwerpunktneutraler Exzenter (9) umfasst eine Rotationsachse (13) und einen Exzenterbereich (12), wobei der Massenschwerpunkt des Exzenters (9) auf der Rotationsachse (13) liegt.

135 Momentenwaage EP10179132.5 2010-09-24 EP2363698A3 2012-01-04 Baum, Christian; Jahnke, Ronny

Eine Messvorrichtung für eine Momentenwaage umfasst eine Grundplatte (2) mit mehreren Fixieröffnungen (4), eine drehbar an der Grundplatte (2) angeordnete Aufnahmeplatte (6) mit mehreren Aufnahmeöffnungen (7) und Fixieröffnungen (8), eine an der Aufnahmeplatte (6) angeordnete Messaufnahme (11) für ein Messobjekt (12, 28), wobei die Messaufnahme (11) in einen Teil der Aufnahmeöffnungen (7) eingreift und mehrere Fixierstifte (9), welche die Messaufnahme (11) in einer Messposition fixieren durch Eingriff in einen Teil der Fixieröffnungen (4, 8) in Grundplatte (2) und Aufnahmeplatte (6).

136 VORRICHTUNG UND VERFAHREN ZUR BESTIMMUNG DER TRÄGHEITSPARAMETER EINES KÖRPERS EP07765162.8 2007-07-11 EP2069741A2 2009-06-17 GOERTZ, Harald; STRAUCH, Jan; PETER, Boris
The invention relates to a device for determining the inertial parameters of a body, particularly a motor vehicle. Said device comprises a receiving platform (P) on which the body (F10) can be placed. The receiving platform (P) is provided with a central, especially spherical joint (G00) about which the receiving platform (P) can be moved with three degrees of freedom (x, y, z) by means of drive units (Z1, Z2, Z3). The invention further relates to a method for determining the inertial parameters of a body, particularly by means of a device disclosed in one of the preceding claims. In said method, a control system is provided which allows a receiving platform (P) and a body (F10) mounted thereon to be moved about a central pivot (G00) with three degrees of freedom (x, y, z). The forces measured in the joints (G00, G20) and the angles measured in the central joint (G00) are fed to an evaluation process, by means of which the inertial parameters of the body (F10) are determined especially by using laws of mechanics, particularly the principle of angular momentum.
137 Verfahren zur Bestimmung des Massenträgheitsmomentes eines elektromotorischen Antriebssystems EP03016287.9 2003-07-18 EP1388732A1 2004-02-11 Kerner, Norbert; Kellner, Eugen

Die Erfindung betrifft ein Verfahren zur Bestimmung des Massenträgheitsmomentes eines elektromotorischen Antriebssystems einer Maschine, insbesondere einer Werkzeugmaschine, das einen Antriebsmotor und weitere dem Antriebsmotor nachgeordnete Antriebselemente umfasst, bei dem ein Kompensationsstrom bestimmt wird, der bei konstanter Motorgeschwindigkeit auftretende Verluste kompensiert, so dass die Motorgeschwindigkeit (v) konstant bleibt, bei dem der Beschleunigungsstrom (IB) bestimmt wird, der eine definierte Motorbeschleunigung (a) erzeugt, wenn die bei konstanter Motorgeschwindigkeit (v) auftretenden Verluste kompensiert sind, und bei dem aus dem Beschleunigungsstrom (IB) das Massenträgheitsmoment (J) berechnet wird.

138 Verfahren zur Trägheitsmomentbestimmung EP95890165 1995-09-21 EP0704689A3 1998-08-05 ABLER GEORG DIPL-ING; EITZINGER JOHANN DIPL-ING; HARMS KLAUS-CHRISTOPH DR
Zur weitgehend selbsttätigen Bestimmung des Trägheitsmomentes insbesonders eines Verbrennungsmotors auf einem Prüfstand werden Drehzahl n und Drehmoment M M sowohl in einer Hochlaufphase als auch in einer Auslaufphase unter kontrollierten Betriebsbedingungen gemessen. Zur Eliminierung des Verlustmomentes bei der Bestimmung des Trägheitsmomentes werden aus der Hochlaufphase und der Auslaufphase die Meßpunkte jeweils gleicher Drehzahl kombiniert ausgewertet, was auf sehr einfache Weise eine genaue Bestimmung des Trägheitsmomentes mit den zumeist ohnedies an einem Prüfstand vorhandenen Einrichtungen ermöglicht.
139 Verfahren zur Trägheitsmomentbestimmung EP95890165.4 1995-09-21 EP0704689A2 1996-04-03 Abler, Georg, Dipl.-Ing.; Eitzinger, Johann, Dipl.-Ing.; Harms, Klaus-Christoph, Dr.

Zur weitgehend selbsttätigen Bestimmung des Trägheitsmomentes insbesonders eines Verbrennungsmotors auf einem Prüfstand werden Drehzahl n und Drehmoment MM sowohl in einer Hochlaufphase als auch in einer Auslaufphase unter kontrollierten Betriebsbedingungen gemessen. Zur Eliminierung des Verlustmomentes bei der Bestimmung des Trägheitsmomentes werden aus der Hochlaufphase und der Auslaufphase die Meßpunkte jeweils gleicher Drehzahl kombiniert ausgewertet, was auf sehr einfache Weise eine genaue Bestimmung des Trägheitsmomentes mit den zumeist ohnedies an einem Prüfstand vorhandenen Einrichtungen ermöglicht.

140 Appareil de mesure des caractéristiques massiques d'un corps et son application à la mesure des caractéristiques d'un satellite à sec EP88402038.9 1988-08-04 EP0303532A1 1989-02-15 Rollet, Robert

Appareil de mesure pour la détermination des caractéristiques passiques d'un corps (1) du genre comportant, porté par une embase (3), un plateau (2) de réception pour ce corps monté oscillant, par rapport à un axe sensiblement vertical, de part et d'autre d'une position angulaire d'équilibre vers laquelle ce plateau est ramené élastiquement, ce plateau et cette embase étant munis d'un détecteur de position angulaire (3A) et d'organes de blocage (3C), caractérisé en ce que cette embase (3) est elle-même portée par une structure mobile (5) portée par un socle (6), et montée oscillante, par rapport à un axe horizontal (Δ) ajustable coupant ledit axe vertical à une hauteur réglable, de part et d'autre d'une position angulaire d'équilibre stable, ce socle et cette structure mobile étant munis d'un système de détection de position angulaire, et d'organes (19) de réglage en hauteur de l'axe horizontal instantané d'oscillation, cet appareil étant en outre muni de moyens (4,4A) de positionnement et de blocage du corps par rapport à la structure mobile.

QQ群二维码
意见反馈