序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 即时响应蒸汽发生系统和方法 CN200780053010.X 2007-05-17 CN101680651B 2012-01-04 伯努瓦·詹维尔
一种在蒸汽发生系统中使用的用于产生即时的且之后连续的蒸汽的即时响应蒸汽发生系统和方法,该蒸汽发生系统包括蒸汽储蓄器、连接到蒸汽储蓄器的蒸汽出口、在蒸汽出口的出口、和连接到蒸汽储蓄器的快速响应蒸汽发生器单元。方法包括:在蒸汽储蓄器中提供潜在蒸汽,打开出口阀允许蒸汽储蓄器中潜在蒸汽经蒸汽出口离开,将馈进到蒸汽发生器单元,在潜在蒸汽经蒸汽出口离开的同时加热水,在潜在蒸汽完全离开蒸汽储蓄器之前利用蒸汽发生器单元发生蒸汽从而馈送到蒸汽储蓄器,控制经蒸汽出口的蒸汽流速,将其维持在基本不大于从蒸汽发生器单元到蒸汽储蓄器的蒸汽流速的值。蒸汽发生系统能够从初始蒸汽发生器单元冷状态条件产生即时且之后连续的蒸汽。
2 通过并入源高温的汽电共生电厂废热源利用的方法及装置 CN201580062401.2 2015-09-14 CN107003012A 2017-08-01 达科·雇里卡尼克; 乔治·科勒普; 史坦·布尼尼克
发明是关于一种低温废热利用的方法及装置。在汽电共生单元(CHP)的范围内,几乎没有低温热源,其不能直接用于热消耗器(HC)。因此,汽电共生电厂废热回收的方法及装置优选地包括至少一个冷凝式热交换器(HE2),其收集废热用于源高温(HP)应用,其中热水输出供给到内燃机(ICE)冷却系统,即冷却套管式热交换器,其中冷却剂允许的最高入口温度通过自动化控制系统(即具有电动控制(V1‑V3)的控制单元)达成及维持。重要的是要注意低温源在此由排气系统范围内的废气,中间冷却器涡轮增压器范围内的注入空气,以及内燃机范围内的润滑油冷却系统(ICE)或热泵(HP)表示。
3 即时响应蒸汽发生系统和方法 CN200780053010.X 2007-05-17 CN101680651A 2010-03-24 伯努瓦·詹维尔
一种在蒸汽发生系统中使用的用于产生即时的且之后连续的蒸汽的即时响应蒸汽发生系统和方法,该蒸汽发生系统包括蒸汽储蓄器、连接到蒸汽储蓄器的蒸汽出口、在蒸汽出口的出口、和连接到蒸汽储蓄器的快速响应蒸汽发生器单元。方法包括:在蒸汽储蓄器中提供潜在蒸汽,打开出口阀允许蒸汽储蓄器中潜在蒸汽经蒸汽出口离开,将馈进到蒸汽发生器单元,在潜在蒸汽经蒸汽出口离开的同时加热水,在潜在蒸汽完全离开蒸汽储蓄器之前利用蒸汽发生器单元发生蒸汽从而馈送到蒸汽储蓄器,控制经蒸汽出口的蒸汽流速,将其维持在基本不大于从蒸汽发生器单元到蒸汽储蓄器的蒸汽流速的值。蒸汽发生系统能够从初始蒸汽发生器单元冷状态条件产生即时且之后连续的蒸汽。
4 過給空気冷却ユニット JP2018029450 2018-02-22 JP2018159375A 2018-10-11 足立 成人; 成川 裕; 西村 和真; 藤井 哲郎; 荒平 一也; 山本 弘行; 石田 与明
【課題】加熱器を通過する作動媒体を確実に蒸発させる過給空気冷却ユニットを提供する。
【解決手段】過給空気冷却ユニットは、過給機からエンジンへ供給される過給空気によって作動媒体を蒸発させる蒸発器部5aと、蒸発器部5aにおいて気化した作動媒体が流入する膨張機と、膨張機の動を回収する動力回収機と、蒸発器部5aで冷却された過給空気をさらに冷却するガスクーラ部5bと、を備え、蒸発器部5aにおける過給空気の流路の幅がガスクーラ部5bにおける過給空気の流路の幅よりも大きく形成されることにより、蒸発器部5aにおける過給空気の流路S2に段差部322bが形成され、蒸発器部5aは、段差部322bによって拡大された第1領域322c内を通過する作動媒体の流量が蒸発器部5aにおける第2領域322d内を通過する作動媒体の流量よりも小さくなるように構成されている。
【選択図】図4
5 源高温熱ポンプを用いるコージェネレーション発電所の廃熱源の利用方法および装置 JP2017537027 2015-09-14 JP2017531764A 2017-10-26 ダルコ ゴリカネック,; ジュリ クロペ,; ボジクニック,スタネ
本発明は、低温廃熱を利用する方法および装置に関する。コージェネレーションユニット(CHP)の範囲内で低温熱源がほとんどなくて、直接熱消費機器(HC)に適用できない。そこで、コージェネレーション発電所の廃熱回収の方法および装置は、源高温熱ポンプ(HP)応用のための廃熱を収集する少なくとも1つの凝縮型熱交換器(HE2)を優先的に含む。ただし、熱湯が出されて内燃機関(ICE)冷却システム、即ち、冷却管式熱交換器に供給される。冷却剤に許される最高入口温度が、自動化制御システム(即ち、電動制御弁(V1-V3)を有する制御手段)により達成および維持される。重要なのは、ここで、低温源が排気システム範囲内の排気ガス、中間冷却器あるいはターボ過給機範囲内の注入空気、および内燃機関範囲内の潤滑油冷却システム(ICE)あるいは熱ポンプ(HP)によって表わされる。
6 Immediate response steam generation system and method JP2010507768 2007-05-17 JP5350366B2 2013-11-27 ベノワ ジャンヴィエル
The method of generating immediate and thereafter continuous steam is used in a steam generating system comprising a steam accumulator, a steam outlet connected to the steam accumulator, an outlet valve at the steam outlet, and a quick response steam generator unit connected to the steam accumulator. The method comprises the steps of providing latent steam in the steam accumulator, opening the outlet valve to allow latent steam in the steam accumulator to exit through the steam outlet, feeding water to the steam generator unit, heating the water fed to the steam generator unit while the latent steam exits through the steam outlet and, before the latent steam has entirely exited the steam accumulator, generating steam with the steam generator unit to feed the steam accumulator and controlling the steam flow rate through the steam outlet to maintain it at a value which is essentially not greater than the steam flow rate from the steam generator unit to the steam accumulator. The steam generating system is capable of generating immediate and thereafter continuous steam from an initial steam generator unit cold condition due to the steam accumulator providing steam at the steam outlet while the steam generator unit heats the water fed therein.
7 発電システム JP2012162120 2012-07-20 JP5971706B2 2016-08-17 ハディアン アスハリ; ロジオノフミハイル; 沖田 信雄; 谷口 晶洋; 山下 勝也; 古屋 修; 高畑 和夫; 高柳 幹男
8 Apparatus for converting thermal energy into mechanical energy JP2013546752 2011-12-30 JP2014501880A 2014-01-23 ジャン‐エドモン、シェ
熱エネルギーを機械的エネルギーに変換するための装置。 第1の流体は、蒸気生成器の第1の流入部と第1の流出部との間に第1の経路を取っている。 熱伝達流体は、蒸気生成器の第2の流入部と第2の流出部との間に第2の経路を取っている。 第1の経路は、第1の流体の蒸気を形成するように第2の経路に熱的に接続されている。 蒸気の形態の第1の流体は、膨張チャンバの第1の流入部と第1の流出部との間に第1の経路を取っている。 熱伝達流体は、チャンバの第2の流入部と第2の流出部との間で第2の経路を取っている。 チャンバは、数個の基本熱的膨張部によって分割された膨張部によって、各膨張部間の第1の流体の加熱と共に、第1の流体の熱的膨張を実施するように構成されている。 第1の流体は、混合装置内で二相の混合を得るように、蒸気の形態で熱伝達流体と混合される。
9 Immediate response steam generation system and method JP2010507768 2007-05-17 JP2010527431A 2010-08-12 ベノワ ジャンヴィエル
即時の且つその後の連続蒸気を発生させる方法は、蒸気アキュムレータと、前記蒸気アキュムレータに連結された蒸気出口と、前記蒸気出口の出口バルブと、前記蒸気アキュムレータに連結された即時応答蒸気発生器ユニットを含む蒸気発生システムに用いられる。 前記方法は、蒸気アキュムレータ内に潜在蒸気を提供するステップと、出口バルブを開いて蒸気アキュムレータ内の潜在蒸気を蒸気出口を通って流出させるステップと、を蒸気発生器ユニットに供給するステップと、潜在蒸気が蒸気出口から流出する間蒸気発生器ユニットに供給された水を加熱するステップと、潜在蒸気が蒸気アキュムレータから完全に流出してしまう前に、蒸気発生器ユニットで蒸気を発生させて蒸気アキュムレータに蒸気を供給し、蒸気出口からの蒸気流量を制御して蒸気流量を蒸気発生器ユニットから蒸気アキュムレータへの蒸気流量よりも本質的に大きくない値に維持するステップと、を含む。 蒸気発生システムは、蒸気発生器ユニットがその中に供給された水を加熱する間、前記蒸気アキュムレータが蒸気出口に蒸気を提供することにより、蒸気発生器ユニットの初期常温状態から、即時の且つその後の連続蒸気を発生させることができる。
【選択図】図1
10 熱エネルギーを機械的エネルギーに変換するための装置 JP2013546752 2011-12-30 JP6009458B2 2016-10-19 ジャン‐エドモン、シェ
11 Power generation system JP2012162120 2012-07-20 JP2014023364A 2014-02-03 HADIANTO ASHARI; RODIONOV MIKHAIL; OKITA NOBUO; TANIGUCHI MASAHIRO; YAMASHITA KATSUYA; FURUYA OSAMU; TAKAHATA KAZUO; TAKAYANAGI MIKIO
PROBLEM TO BE SOLVED: To provide a power generation system capable of obtaining electric energy efficiently by using a vapor generation source, supply of which is unstable in a time series.SOLUTION: A power generation system according to an embodiment comprises: a diverting section configured to divert a supplied first heating medium into a first duct and a second duct; and a heat storage section including the first heating medium transmitted via the second duct and configured to transmit the first heating medium in a flow quantity leveled in terms of time. The power generation system of the embodiment comprises: a heat exchanging section configured to transfer heat from the first heating medium transmitted via the first duct and the first heating medium transmitted from the heat storage section to a second heating medium having a boiling point lower than that of the first heating medium; and a turbine which makes a rotary motion by the second heating medium to which heat was transferred by the heat exchange section.
12 Thermal accumulator JP3037081 1981-03-03 JPS57146004A 1982-09-09 KAMIMOTO MASAYUKI; NOZAKI TAKESHI; KANARI KATSUHIKO
PURPOSE:To make it possible to increase quantity of steam generation by a method wherein latent heat storing material having its transition and fusion temperatures within the working temperature of a steam accumulator is placed inside a pressure vessel so as to improve thermal accumulation density of a thermal accumulator. CONSTITUTION:Latent heat storing material having their transition and fusion temperatures within the working temperature of the steam accumulator, for example, pentaerythritol which has its transition temperature at 188 deg.C is placed in the pressure vessel 3 directly or in capsulized form to constitute a thermal accumulator. For heat storage, steam is injected into pressurerized water 5 in the pressure vessel 3 out of nozzles 4 through an AVA automatically controlled valve 1 for intake. This causes steam to evolve latent heat so that temperature of the pressurized water 5 rises and successive heat transfer takes place from the pressurized water 5 to the latent heat storing material 6 so as to increase thermal accumulation density by latent heat of fusion or transition of the heat storing material 6. During heat releasing, steam is generated by evaporation of the pressurized water 5 and is blown out of an AVA automatically controlled valve 2 for discharge.
13 METHOD AND APPARATUS FOR COGENERATION POWER PLANT WASTE HEAT SOURCE UTILIZATION BY INCORPORATED WATER SOURCE HIGH TEMPERATURE HEAT PUMP US15516413 2015-09-14 US20170298866A1 2017-10-19 Darko GORICANEC; Jurij KROPE; Stane BOZICNIK
The invention relates to a method and apparatus for low temperature waste heat utilization. In the scope of the cogeneration unit (CHP) there are few low temperature sources, which cannot be used by heat consumer (HC) directly. Hence, the method and apparatus for cogeneration power plant waste heat recovery comprise at least one, preferably condensing type heat exchanger (HE2), which collects the waste heat for water source high temperature heat pump (HP) employment, wherein its hot water outlet is fed to the internal combustion engine (ICE) cooling system, i.e. cooling jacket type heat exchanger, wherein the maximum allowed coolant inlet temperature is achieved and maintained by automated control system (i.e. control unit with motorized control valves (V1-V3)). It is important to notice, that low temperature sources are herein represented by the exhaust gas in the scope of exhaust system, the charging air in the scope of the intercooler or turbo-supercharger, and lubrication oil cooling system in the scope of internal combustion engine (ICE) or heat pump (HP).
14 Filter arrangements; components; and, methods US14485896 2014-09-15 US09752474B2 2017-09-05 Thomas Lundgren; Daniel Adamek; Wade Mosset
Filter assemblies and components therefor, are described. In an example arrangement, the filter assembly is configured to be serviced from either the top or the bottom. A rotational indexing arrangement is to ensure appropriate orientation of an internally received filter cartridge, and other components of the arrangement are provided. Methods of assembly, servicing and use are described.
15 Engine inlet varying impedance acoustic liner section US13655911 2012-10-19 US08863893B2 2014-10-21 Joe Everet Sternberger; Judith Marie Gallman
An inlet for an aircraft engine nacelle having an acoustic barrel panel, a septum buried or sandwiched within the acoustic barrel panel, and a perforated face sheet. The inlet may be located forward of an engine and/or an engine fan housed within the aircraft engine nacelle. Both the septum and the perforated face sheet may have perforations or holes therein of varying sizes and varying distances apart from each other. The smaller the area of the perforations or holes and the further apart they are from each other, the higher the impedance of a given area of the septum or the perforated face sheet. The impedance of the septum and/or the perforated face sheet may progressively increase in a direction away from the engine fan.
16 Crankcase ventilation filter arrangments; components; and, methods US12157650 2008-06-12 US08404029B2 2013-03-26 Thomas Lundgren; Daniel Adamek; Wade Mosset
A crankcase ventilation filter assembly and components therefor, are described. In an example arrangement, the crankcase ventilation filter assembly is configured to be serviced from either the top or the bottom. A rotational indexing arrangement is to ensure appropriate orientation of an internally received filter cartridge, and other components of the arrangement are provided. Methods of assembly, servicing and use are described.
17 IMMEDIATE RESPONSE STEAM GENERATING SYSTEM AND METHOD US12600308 2007-05-17 US20100154725A1 2010-06-24 Benoit Janvier
The method of generating immediate and thereafter continuous steam is used in a steam generating system comprising a steam accumulator, a steam outlet connected to the steam accumulator, an outlet valve at the steam outlet, and a quick response steam generator unit connected to the steam accumulator. The method comprises the steps of providing latent steam in the steam accumulator, opening the outlet valve to allow latent steam in the steam accumulator to exit through the steam outlet, feeding water to the steam generator unit, heating the water fed to the steam generator unit while the latent steam exits through the steam outlet and, before the latent steam has entirely exited the steam accumulator, generating steam with the steam generator unit to feed the steam accumulator and controlling the steam flow rate through the steam outlet to maintain it at a value which is essentially not greater than the steam flow rate from the steam generator unit to the steam accumulator. The steam generating system is capable of generating immediate and thereafter continuous steam from an initial steam generator unit cold condition due to the steam accumulator providing steam at the steam outlet while the steam generator unit heats the water fed therein.
18 Combined steam and high temperature water generating system US3704693D 1971-01-14 US3704693A 1972-12-05 HANSEN ERWIN
A combined steam-high temperature water generating system includes a heated water generating vessel for delivering both steam and high temperature water to delivery circuits therefor. A portion of the heated water is continuously supplied to one or several forced circulation steam boilers which evaporate part, and only part of the throughput water flow. The return flow from the boiler or boilers to the vessel thus comprises a steam-high temperature water mixture. The system accommodates varying relative consumption demands for steam vis.-a-vis. high temperature water. Also, a chemical balance is maintained between the steam and heated water subsystem components by reason of the continuous water recirculation between the boiler or boilers and vessel. Further, the multifunctional use of the common heated water generating vessel renders the system amenable to ready fabrication.
19 Heat accumulator US75616224 1924-12-15 US1705975A 1929-03-19 GOTTLIEB HOLTHAUS
20 losel US1498662D US1498662A 1924-06-24
QQ群二维码
意见反馈