序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 整合储能和低温捕获的系统和方法 CN201280064148.0 2012-10-22 CN104246150B 2017-04-12 拉里·L·巴克斯特
整合的蓄能和低温捕获的系统和方法,向发电厂提供了有效的网格管理和节能碳捕获能。通过使用非高峰能量压缩天然气形成液化天然气(LNG)并储存LNG用作制冷剂,系统在非高峰需求时段储能。系统在低温碳捕获(CCC)工艺中使用储存的LNG作为制冷剂以在烟气中从轻的气体中隔离二化碳。系统通过燃烧由CCC工艺加温的天然气发电在高峰需求时段供应能量。
2 具有中间存储池的热电能量存储系统以及用于存储热电能量的方法 CN201080027686.3 2010-06-08 CN102459824A 2012-05-16 J·赫姆尔勒; L·考夫曼; M·默坎格茨
描述了用于采取热能形式来存储电能的系统和方法。热电能量存储系统包括:工作流体环路,用于使工作流体通过热交换器(16)进行循环;以及热存储介质环路,用于循环热存储介质,热存储介质环路具有经由热交换器(16)连接在一起的至少一个热存储池(24)、一个中间温度存储池(22)和一个冷存储池(20)。将存储介质的某个比例从热存储池或冷存储池重引导到中间存储池或者从中间存储池重引导到热存储池或冷存储池,从而结合直接在冷存储池与热存储池之间流动的存储介质的另一个比例。
3 具有中间存储池的热电能量存储系统以及用于存储热电能量的方法 CN201080027686.3 2010-06-08 CN102459824B 2015-08-05 J·赫姆尔勒; L·考夫曼; M·默坎格茨
描述了用于采取热能形式来存储电能的系统和方法。热电能量存储系统包括:工作流体环路,用于使工作流体通过热交换器(16)进行循环;以及热存储介质环路,用于循环热存储介质,热存储介质环路具有经由热交换器(16)连接在一起的至少一个热存储池(24)、一个中间温度存储池(22)和一个冷存储池(20)。将存储介质的某个比例从热存储池或冷存储池重引导到中间存储池或者从中间存储池重引导到热存储池或冷存储池,从而结合直接在冷存储池与热存储池之间流动的存储介质的另一个比例。
4 整合储能和低温捕获的系统和方法 CN201280064148.0 2012-10-22 CN104246150A 2014-12-24 拉里·L·巴克斯特
整合的蓄能和低温捕获的系统和方法,向发电厂提供了有效的网格管理和节能碳捕获能。通过使用非高峰能量压缩天然气形成液化天然气(LNG)并储存LNG用作制冷剂,系统在非高峰需求时段储能。系统在低温碳捕获(CCC)工艺中使用储存的LNG作为制冷剂以在烟气中从轻的气体中隔离二化碳。系统通过燃烧由CCC工艺加温的天然气发电在高峰需求时段供应能量。
5 即时响应蒸汽发生系统和方法 CN200780053010.X 2007-05-17 CN101680651A 2010-03-24 伯努瓦·詹维尔
一种在蒸汽发生系统中使用的用于产生即时的且之后连续的蒸汽的即时响应蒸汽发生系统和方法,该蒸汽发生系统包括蒸汽储蓄器、连接到蒸汽储蓄器的蒸汽出口、在蒸汽出口的出口、和连接到蒸汽储蓄器的快速响应蒸汽发生器单元。方法包括:在蒸汽储蓄器中提供潜在蒸汽,打开出口阀允许蒸汽储蓄器中潜在蒸汽经蒸汽出口离开,将馈进到蒸汽发生器单元,在潜在蒸汽经蒸汽出口离开的同时加热水,在潜在蒸汽完全离开蒸汽储蓄器之前利用蒸汽发生器单元发生蒸汽从而馈送到蒸汽储蓄器,控制经蒸汽出口的蒸汽流速,将其维持在基本不大于从蒸汽发生器单元到蒸汽储蓄器的蒸汽流速的值。蒸汽发生系统能够从初始蒸汽发生器单元冷状态条件产生即时且之后连续的蒸汽。
6 用于回收热量并且将其转换成机械功率的方法和装置 CN201210207114.4 2012-06-21 CN102865155B 2016-08-10 G.拉布; J.克拉默尔
发明涉及一种用于回收热量并且将其转换成机械功率的方法和装置,在工作介质循环中所引导的工作介质利用至少一个集成到工作介质循环中的蒸发器借助于机动车的内燃机的废热被蒸发,所产生的蒸汽被输送给与内燃机相连结的膨胀机,并且来自膨胀机的废蒸汽接下来在至少一个冷凝器中又被引回到液态相中。在至少一个蒸发器下游至少一个以及蒸汽存储器这样集成到工作介质循环中,使得尤其在不需要膨胀机的驱动功率时并且/或者在内燃机不以动运行时,所产生的蒸汽至少一部分被输入到蒸汽存储器中,其中,在膨胀机又需要驱动功率时并且/或者在内燃机以动力运行时,存储到蒸汽存储器中的蒸汽至少部分地又被引回到工作介质循环中用于驱动膨胀机。
7 具有中间存储池的热电能量存储系统以及用于存储热电能量的方法 CN201510360022.3 2010-06-08 CN104975891A 2015-10-14 J.赫姆尔勒; L.考夫曼; M.默坎格茨
描述了用于采取热能形式来存储电能的系统和方法。热电能量存储系统包括:工作流体环路,用于使工作流体通过热交换器(16)进行循环;以及热存储介质环路,用于循环热存储介质,热存储介质环路具有经由热交换器(16)连接在一起的至少一个热存储池(24)、一个中间温度存储池(22)和一个冷存储池(20)。将存储介质的某个比例从热存储池或冷存储池重引导到中间存储池或者从中间存储池重引导到热存储池或冷存储池,从而结合直接在冷存储池与热存储池之间流动的存储介质的另一个比例。
8 存储器的蓄能和释能方法以及适用于此方法的用于存储和释放热学能的设备 CN201380042428.6 2013-08-02 CN104541027A 2015-04-22 D.雷兹尼克; H.施蒂斯达尔
发明涉及一种用于在蓄能循环(13)和释能循环(14)中使热存储器(11)蓄能和释能的方法。根据本发明建议通过具有高压部分(HP)和低压部分(LP)的蒸汽涡轮机(23)进行释能。为向两个涡轮机部分提供热,根据本发明将热存储器(11)划分为用于高压部分(HP)的部分存储器(20)和用于低压部分(LP)的部分存储器(21)(此划分不必在结构上进行)。此外,本发明涉及一种设备,其中,热存储器(11)分为两个部分存储器(20、21)。通过带有高压部分(HP)和低压部分(LP)的涡轮机的运行,有利地实现可有利地提高来自热存储器(11)的热的效率和产量。该设备可例如用于中间存储发电设备(16)的过剩产能。
9 用于回收热量并且将其转换成机械功率的方法和装置 CN201210207114.4 2012-06-21 CN102865155A 2013-01-09 G.拉布; J.克拉默尔
发明涉及一种用于回收热量并且将其转换成机械功率的方法和装置,在工作介质循环中所引导的工作介质利用至少一个集成到工作介质循环中的蒸发器借助于机动车的内燃机的废热被蒸发,所产生的蒸汽被输送给与内燃机相连结的膨胀机,并且来自膨胀机的废蒸汽接下来在至少一个冷凝器中又被引回到液态相中。在至少一个蒸发器下游至少一个以及蒸汽存储器这样集成到工作介质循环中,使得尤其在不需要膨胀机的驱动功率时并且/或者在内燃机不以动运行时,所产生的蒸汽至少一部分被输入到蒸汽存储器中,其中,在膨胀机又需要驱动功率时并且/或者在内燃机以动力运行时,存储到蒸汽存储器中的蒸汽至少部分地又被引回到工作介质循环中用于驱动膨胀机。
10 即时响应蒸汽发生系统和方法 CN200780053010.X 2007-05-17 CN101680651B 2012-01-04 伯努瓦·詹维尔
一种在蒸汽发生系统中使用的用于产生即时的且之后连续的蒸汽的即时响应蒸汽发生系统和方法,该蒸汽发生系统包括蒸汽储蓄器、连接到蒸汽储蓄器的蒸汽出口、在蒸汽出口的出口、和连接到蒸汽储蓄器的快速响应蒸汽发生器单元。方法包括:在蒸汽储蓄器中提供潜在蒸汽,打开出口阀允许蒸汽储蓄器中潜在蒸汽经蒸汽出口离开,将馈进到蒸汽发生器单元,在潜在蒸汽经蒸汽出口离开的同时加热水,在潜在蒸汽完全离开蒸汽储蓄器之前利用蒸汽发生器单元发生蒸汽从而馈送到蒸汽储蓄器,控制经蒸汽出口的蒸汽流速,将其维持在基本不大于从蒸汽发生器单元到蒸汽储蓄器的蒸汽流速的值。蒸汽发生系统能够从初始蒸汽发生器单元冷状态条件产生即时且之后连续的蒸汽。
11 STEAM HEAT STORAGE SYSTEM US14424755 2013-08-27 US20150219403A1 2015-08-06 Marco Olcese
A solar plant including a solar field for production of steam, a turbine using steam, and an excess steam storage and draw off system. The system includes a latent heat thermal storage module and a liquid displacement thermal storage module including a liquid volume and a steam blanket. The modules are connected together so that the steam produced passes through the steam blanket before passing through the latent heat module, condensing, to be injected in the liquid volume, the lower part of the liquid volume being connected to the solar field and to an outlet of the turbine to let in or return cold liquid. The liquid volume acts as a liquid displacement reservoir.
12 Method and apparatus for recovering heat and converting it into mechanical power in a drive system for motor vehicles US13530767 2012-06-22 US09051851B2 2015-06-09 Gottfried Raab; Josef Klammer
A method and an apparatus recover heat and convert the heat into mechanical power in a drive system for motor vehicles. A working medium carried in a working medium circuit is evaporated by an evaporator integrated into the working medium circuit by waste heat from an internal combustion engine. The vapor generated is fed to an expansion machine coupled to the internal combustion engine, and the exhaust vapor from the expansion machine is then converted back into the liquid phase in at least one condenser. Accordingly at least one valve, which can be subjected to control by a control device, and a vapor accumulator are integrated into the working medium circuit downstream of the evaporator such that the vapor generated is fed into the vapor accumulator. The vapor stored in the vapor accumulator is fed back at least in part into the working medium circuit to drive the expansion machine.
13 THERMOELECTRIC ENERGY STORAGE SYSTEM WITH AN INTERMEDIATE STORAGE TANK AND METHOD FOR STORING THERMOELECTRIC ENERGY US14565257 2014-12-09 US20150129158A1 2015-05-14 Jaroslav HEMRLE; Lilian KAUFMANN; Mehmet MERCANGOEZ
A system and method are provided for storing electric energy in the form of thermal energy. A thermoelectric energy storage system includes a working fluid circuit for circulating a working fluid through a heat exchanger, and a thermal storage medium circuit for circulating a thermal storage medium. The thermal storage medium circuit includes at least one hot storage tank, an intermediate temperature storage tank, and a cold storage tank connected together via the heat exchanger. A proportion of the storage medium is redirected to or from the intermediate storage tank from or to the hot or cold storage tank, joining another proportion which flows directly between the cold and hot storage tank.
14 Heat storage system with combined heat storage device US902656 1992-06-23 US5269145A 1993-12-14 Siegfried Krause; Friedrich Lindner
In order to improve a heat storage system, comprising a heat source, a heat storage device and a heat sink, between which heat is transferred by means of a heat transporting medium, such that a steam-powered engine which is to be operated with overcritical steam of the heat transporting medium can be operated with an inexpensive and simple construction of the heat storage system, it is suggested that the heat sink comprise a steam-powered engine to be operated with overcritical steam of the heat transporting medium, that the heat storage device comprise a Ruths storage device storing the heat transporting medium condensed in the form of a liquid bath and having a storage temperature below the critical temperature of the heat transfer medium and a superheat storage device connected with the Ruths storage device and having a storage temperature above the critical temperature of the heat transporting medium, that the heat storage system be operable during discharge such that in the Ruths storage device steam result from the liquid bath of the heat transporting medium with a temperature corresponding to the storage temperature in the Ruths storage device, and that the steam subsequently flow through the superheat storage device and be heated thereby to a temperature above the critical temperature and then flow into the steam-powered engine.
15 Steam power plant US45593830 1930-05-26 US1900766A 1933-03-07 JOHANNES RUTHS
16 Steam heat storage system US14424755 2013-08-27 US09683788B2 2017-06-20 Marco Olcese
A solar plant including a solar field for production of steam, a turbine using steam, and an excess steam storage and draw off system. The system includes a latent heat thermal storage module and a liquid displacement thermal storage module including a liquid volume and a steam blanket. The modules are connected together so that the steam produced passes through the steam blanket before passing through the latent heat module, condensing, to be injected in the liquid volume, the lower part of the liquid volume being connected to the solar field and to an outlet of the turbine to let in or return cold liquid. The liquid volume acts as a liquid displacement reservoir.
17 Immediate response steam generating system and method US12600308 2007-05-17 US09657598B2 2017-05-23 Benoit Janvier
The method of generating immediate and thereafter continuous steam is used in a steam generating system comprising a steam accumulator, a steam outlet connected to the steam accumulator, an outlet valve at the steam outlet, and a quick response steam generator unit connected to the steam accumulator. The method comprises the steps of providing latent steam in the steam accumulator, opening the outlet valve to allow latent steam in the steam accumulator to exit through the steam outlet, feeding water to the steam generator unit, heating the water fed to the steam generator unit while the latent steam exits through the steam outlet and, before the latent steam has entirely exited the steam accumulator, generating steam with the steam generator unit to feed the steam accumulator and controlling the steam flow rate through the steam outlet to maintain it at a value which is essentially not greater than the steam flow rate from the steam generator unit to the steam accumulator. The steam generating system is capable of generating immediate and thereafter continuous steam from an initial steam generator unit cold condition due to the steam accumulator providing steam at the steam outlet while the steam generator unit heats the water fed therein.
18 Systems and methods for integrated energy storage and cryogenic carbon capture US13657616 2012-10-22 US09410736B2 2016-08-09 Larry L. Baxter
The systems and methods integrate energy storage with cryogenic carbon capture, providing effective grid management and energy-efficient carbon capture capabilities to power plants. The systems store energy during off-peak demand by using off-peak energy to compress natural gas to form liquefied natural gas (LNG) and storing the LNG for use as a refrigerant. The systems use the stored LNG as a refrigerant in a cryogenic carbon capture (CCC) process to isolate carbon dioxide from light gases in a flue gas. The systems supply energy during peak demand by burning the natural gas warmed by the CCC process to generate power.
19 SYSTEMS AND METHODS FOR INTEGRATED ENERGY STORAGE AND CRYOGENIC CARBON CAPTURE US13657616 2012-10-22 US20130139543A1 2013-06-06 Larry L. Baxter
The systems and methods integrate energy storage with cryogenic carbon capture, providing effective grid management and energy-efficient carbon capture capabilities to power plants. The systems store energy during off-peak demand by using off-peak energy to compress natural gas to form liquefied natural gas (LNG) and storing the LNG for use as a refrigerant. The systems use the stored LNG as a refrigerant in a cryogenic carbon capture (CCC) process to isolate carbon dioxide from light gases in a flue gas. The systems supply energy during peak demand by burning the natural gas warmed by the CCC process to generate power.
20 Electrical generator systems and related methods US11487501 2006-07-17 US20080041362A1 2008-02-21 Claudio Filippone
Various embodiments of electric generator systems are disclosed. The systems may include an electric generator whose energy source is provided by the displacement of a first fluid. The first fluid may be in a liquid state contained in a reservoir hydraulically connected to a first chamber. The first chamber may be configured to receive thermal energy utilized to convert the first fluid into a vapor. The system may also include a second chamber hydraulically connected to the first chamber to receive the vaporized fluid from the first chamber. The second chamber may be configured to condense the vaporized first fluid, causing depressurization in the second chamber. The system may be configured such that the depressurization of the second chamber may drive a second fluid through an energy converter (e.g. Turbine Generator) able to convert the first fluid condensing energy into mechanical or electrical energy. Alternatively, the system may be configured such that the depressurization of the second chamber may drive a third fluid into an energy converter (e.g. Expander) able to convert the fluid energy into mechanical or electrical energy.
QQ群二维码
意见反馈