序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种短杆菌及从短杆菌发酵液中分离提纯延胡索酸酶的方法 CN201610143796.5 2016-03-14 CN105647834A 2016-06-08 胡永红; 曹翠翠; 杨文革; 曹洋; 吴刚; 王春晓; 章泳
发明涉及一种短杆菌及从短杆菌发酵液中分离提纯延胡索酸酶的方法,菌种的拉丁学名是Brevibacterium sp.,参据的生物:NJWGY2133,保藏日期为2008年5月26日,保藏中心登记入册编号为CGMCC No.2520。分离提纯延胡索酸酶方法的具体步骤为:经过短杆菌发酵液培养、超声破碎制得粗酶液、聚乙二醇-无机盐双相萃取体系的配制;双水相萃取分离;透析除盐,冷冻干燥,制得延胡索酸酶。本发明工艺简单,生产周期短,操作条件温和,成本低,可从微生物中获得高纯度的酶,且酶活回收率在90%以上。
2 大肠杆菌工程菌及其催化来酸合成富马酸的方法 CN201610575998.7 2016-07-20 CN106222122A 2016-12-14 周哲敏; 刘文茂; 周丽; 崔文璟; 刘中美
发明涉及一种可高产富酸的大肠杆菌工程菌,通过敲除大肠杆菌的延胡索酸酶编码基因fumA和fumC,并转化来源于粘质沙雷氏菌的马来酸顺反异构酶基因得到。本发明还公开了上述大肠杆菌工程菌催化马来酸合成富马酸的方法:发酵培养大肠杆菌工程菌,当OD600达到40-80时对大肠杆菌工程菌进行高密度诱导表达,将得到的发酵液生化催化马来酸,得到富马酸。本发明利用Red同源重组技术敲除大肠杆菌中的fumA和fumC基因,切断其富马酸到L-苹果酸的代谢通路,然后表达来源于粘质沙雷氏菌的马来酸顺反异构酶,获得的基因工程菌株可高效转化马来酸底物合成高纯度富马酸,几乎不合成L-苹果酸副产物,为全细胞法催化马来酸生产富马酸的工业化提供依据。
3 移植のためのH因子 JP2016502210 2014-03-13 JP2016514158A 2016-05-19 リチャード ジョンソン; ジェニー チェン チャン
本発明は、H因子(FH)を含む組成物でレシピエントを治療することによって、同種移植片のレシピエントによるその同種移植片拒絶反応を予防または阻害するための方法を提供する。本発明はまた、レシピエントがH因子に加えて1つ以上の免疫抑制剤も投与される方法を包含する。
4 抗FHアプタマーと、その製造方法および使用 JP2014544015 2012-11-28 JP2015500017A 2015-01-05 ジェラルド ペレ,; アニエス シビエル,
本発明は、因子Hに特異的に結合する核酸アプタマーと、その製造方法、特に因子Hの精製を目的とする製造方法と、その使用とに関するものである。
5 移植のためのH因子 JP2016502210 2014-03-13 JP6373963B2 2018-08-15 ジョンソン リチャード; チャン ジェニー チェン
6 再生可能資源から化合物を生成するための高収量経路 JP2016515437 2014-09-17 JP2016533162A 2016-10-27 チョカワラ、ハーシャル
本開示は、1−ブタノール、酪酸、コハク酸、1,4−ブタンジオール、1−ペンタノール、ペンタン酸、グルタル酸、1,5−ペンタンジオール、1−ヘキサノール、ヘキサン酸、アジピン酸、1,6−ヘキサンジオール、6−ヒドロキシヘキサン酸、ε−カプロラクトン、6−アミノ−ヘキサン酸、ε−カプロラクタム、ヘキサメチレンジアミン、7〜25炭素長の直鎖脂肪酸および直鎖脂肪アルコール、セバシン酸またはドデカン二酸等の化合物を調製するための方法、組成物、および、天然に存在しない生物生物であって、前記方法は、a)アルドール付加を介して、CNアルデヒドおよびピルベートをCN+3β−ヒドロキシケトン中間体に変換する工程;およびb)酵素的工程または酵素的工程と化学的工程との組み合わせを介して、該CN+3β−ヒドロキシケトン中間体を該化合物に変換する工程を含む、方法、組成物、および、天然に存在しない微生物生物に関する。【選択図】図1
7 Recombinant h factor, as well as its variant and conjugates JP2012545436 2010-12-23 JP2013515474A 2013-05-09 クリシュトフ シュミット; ポール エヌ バーロー; アンナ リチャーズ
本発明は、組換え体H因子ならびにそのバリアントおよびコンジュゲート、それらの製造方法に関し、加えて前記物質を含む治療用途および治療方法に関する。
【選択図】 図1
8 BIOCONVERSION OF SHORT-CHAIN HYDROCARBONS TO FUELS AND CHEMICALS US15562606 2016-03-31 US20180355394A1 2018-12-13 Ramon Gonzales
An engineered microorganism(s) with novel pathways for the conversion of short-chain hydrocarbons to fuels and chemicals (e.g. carboxylic acids, alcohols, hydrocarbons, and their alpha-, beta-, and omega-functionalized derivatives) is described. Key to this approach is the use of hydrocarbon activation enzymes able to overcome the high stability and low reactivity of hydrocarbon compounds through the cleavage of an inert C—H bond. Oxygen-dependent or oxygen-independent activation enzymes can be exploited for this purpose, which when combined with appropriate pathways for the conversion of activated hydrocarbons to key metabolic intermediates, enables the generation of product precursors that can subsequently be converted to desired compounds through established pathways. These novel engineered microorganism(s) provide a route for the production of fuels and chemicals from short chain hydrocarbons such as methane, ethane, propane, butane, and pentane.
9 SEMI-SYNTHETIC TEREPHTHALIC ACID VIA MICROORGANISMS THAT PRODUCE MUCONIC ACID US16032772 2018-07-11 US20180312883A1 2018-11-01 Mark J. Burk; Robin E. Osterhout; Jun Sun
The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2-fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans-3-hydroxy-4-hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans-3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis-3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis-3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.
10 RECOMBINANT FACTOR H AND VARIANTS AND CONJUGATES THEREOF US15483814 2017-04-10 US20170335310A1 2017-11-23 Christoph Schmidt; Paul N. Barlow; Anna Richards
The present invention relates to recombinant factor H and variants and conjugates thereof and methods of their production, as well as uses and methods of treatment involving the materials.
11 METABOLIC ENGINEERING FOR ENHANCED SUCCINIC ACID BIOSYNTHESIS US15496944 2017-04-25 US20170306363A1 2017-10-26 Michael T. GUARNIERI; Yat-Chen CHOU; Gregg Tyler BECKHAM; Davinia SALVACHÚA RODRÍGUEZ
Presented herein are biocatalysts and methods for the production of succinic acid from carbon sources. The biocatalysts include microbial cells that have been engineered to overexpress exogenously added genes that encode enzymes active in the reductive branch of the tricarboxylic acid (TCA) cycle.
12 SEMI-SYNTHETIC TEREPHTHALIC ACID VIA MICROORGANISMS THAT PRODUCE MUCONIC ACID US15383593 2016-12-19 US20170096689A1 2017-04-06 Mark J. Burk; Robin E. Osterhout; Jun Sun
The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2-fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans-3-hydroxy-4-hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans-3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis-3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis-3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.
13 SEMI-SYNTHETIC TEREPHTHALIC ACID VIA MICROORGANISMS THAT PRODUCE MUCONIC ACID US12851478 2010-08-05 US20110124911A1 2011-05-26 Mark J. Burk; Robin E. Osterhout; Jun Sun
The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2-fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans-3-hydroxy-4-hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans-3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis-3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis-3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.
14 L-아스파르트산 유도체를 생산하는 변이미생물 및 이를 이용한 L-아스파르트산 유도체의 제조방법 KR1020150039071 2015-03-20 KR1020160112783A 2016-09-28 이상엽; 송찬우; 채동언
본발명은글리옥살레이트션트레귤레이터를코딩하는유전자및 푸마레이즈(fumarase)를코딩하는유전자가결실되어있고, 야생형균주에비하여아스파테이즈(aspartase)를코딩하는유전자가과발현되어있는 L-아스파르트산유도체생성능을가지는변이미생물및 이를이용한 L-아스파르트산유도체의제조방법에관한것이다. 본발명에따르면, 생물학적방법으로, L-Alanine, 3-Aminopropionic acid, Threonine, 1,3-Diaminopropane, Lysine, Methionine, 3-Hydroxypropionic acid, Cadaverin, 5-aminovaleric acid 등의다양한아스파르트산유도체를제조할수 있다.
15 외인성 푸마라아제 유전자를 포함하는 코리네박테리움 및 이를 이용한 C4 디카르복실산의 생산 방법 KR1020130094885 2013-08-09 KR1020150018227A 2015-02-23 정순천; 박준성; 박진환; 윤지애; 박재찬; 조광명
외인성 푸마라아제 유전자를 포함하는 코리네박테리움 속 미생물 및 이를 이용한 C4 디카르복실산의 혐기적 생산 방법을 제공한다. 상기 코리네박테리움을 이용하여 혐기 조건에서 환원성 대사물질의 생산을 증가시키는 것이 가능하다.
16 Semi-synthetic terephthalic acid via microorganisms that produce muconic acid US15383593 2016-12-19 US10041093B2 2018-08-07 Mark J. Burk; Robin E. Osterhout; Jun Sun
The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2-fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans-3-hydroxy-4-hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans-3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis-3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis-3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.
17 Yeast cells having reductive TCA pathway from pyruvate to succinate and overexpressing an exogenous NAD(P)+ transhydrogenase enzyme US14416633 2013-07-25 US09850507B2 2017-12-26 Brian J. Rush; Kevin T. Watts; Vernon L. McIntosh, Jr.; Arlene M. Fosmer; Gregory M. Poynter; Thomas W. McMullin
Yeast cells having a reductive TCA pathway from pyruvate or phosphoenolpyruvate to succinate, and which include at least one exogenous gene overexpressing an enzyme in that pathway, further contain an exogenous transhydrogenase gene.
18 Semi-synthetic terephthalic acid via microorganisms that produce muconic acid US14308292 2014-06-18 US09562241B2 2017-02-07 Mark J. Burk; Robin E. Osterhout; Jun Sun
The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate. The muconate pathway including an enzyme selected from the group consisting of a beta-ketothiolase, a beta-ketoadipyl-CoA hydrolase, a beta-ketoadipyl-CoA transferase, a beta-ketoadipyl-CoA ligase, a 2-fumarylacetate reductase, a 2-fumarylacetate dehydrogenase, a trans-3-hydroxy-4-hexendioate dehydratase, a 2-fumarylacetate aminotransferase, a 2-fumarylacetate aminating oxidoreductase, a trans-3-amino-4-hexenoate deaminase, a beta-ketoadipate enol-lactone hydrolase, a muconolactone isomerase, a muconate cycloisomerase, a beta-ketoadipyl-CoA dehydrogenase, a 3-hydroxyadipyl-CoA dehydratase, a 2,3-dehydroadipyl-CoA transferase, a 2,3-dehydroadipyl-CoA hydrolase, a 2,3-dehydroadipyl-CoA ligase, a muconate reductase, a 2-maleylacetate reductase, a 2-maleylacetate dehydrogenase, a cis-3-hydroxy-4-hexendioate dehydratase, a 2-maleylacetate aminoatransferase, a 2-maleylacetate aminating oxidoreductase, a cis-3-amino-4-hexendioate deaminase, and a muconate cis/trans isomerase. Other muconate pathway enzymes also are provided. Additionally provided are methods of producing muconate.
19 Regulator of complement activation and uses thereof US14386043 2013-03-15 US09540626B2 2017-01-10 John D. Lambris; Christoph Schmidt; Daniel Ricklin
A potent complement regulator is disclosed. The complement regulator comprises a complement regulatory region connected by a flexible linker to a multifunctional binding region that enables binding to C3b activation/inactivation products and/or oxidation end products, as well as to polyanionic surface markers on host cells. An embodiment of the invention utilizes factor H SCRs 1-4 as the complement regulatory region and factor H SCRs 19 and 20 as the multifunctional binding region, linked together by a poly-Gly linker at least 12 residues in length. Pharmaceutical compositions comprising the complement regulator and methods of using the complement regulator are also disclosed.
20 METHOD FOR TREATING ALS VIA THE INCREASED PRODUCTION OF FACTOR H US15043499 2016-02-12 US20160193251A1 2016-07-07 Jason Williams
Methods and systems for the treatment for ALS incorporating stem cells harvested from the subject to be treated. These stem cells may be genetically altered with the addition of several genes of interest. Then, the patient will receive systemic gene therapy for the muscles and directed specifically at motor neurons. In this multi-pronged treatment approach, the stem cells provide immune regulation and the regeneration of motor neurons. And, the new motor neurons carry the added genes, which are protective against motor neuron death from ALS. The systemic therapy increases the amount of genes, which further reduces the effects of ALS. Additional gene therapy administered in the muscle will be further protective of the axon, while maintaining muscle mass and function.
QQ群二维码
意见反馈