序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 BIOCONVERSION OF SHORT-CHAIN HYDROCARBONS TO FUELS AND CHEMICALS US15562606 2016-03-31 US20180355394A1 2018-12-13 Ramon Gonzales
An engineered microorganism(s) with novel pathways for the conversion of short-chain hydrocarbons to fuels and chemicals (e.g. carboxylic acids, alcohols, hydrocarbons, and their alpha-, beta-, and omega-functionalized derivatives) is described. Key to this approach is the use of hydrocarbon activation enzymes able to overcome the high stability and low reactivity of hydrocarbon compounds through the cleavage of an inert C—H bond. Oxygen-dependent or oxygen-independent activation enzymes can be exploited for this purpose, which when combined with appropriate pathways for the conversion of activated hydrocarbons to key metabolic intermediates, enables the generation of product precursors that can subsequently be converted to desired compounds through established pathways. These novel engineered microorganism(s) provide a route for the production of fuels and chemicals from short chain hydrocarbons such as methane, ethane, propane, butane, and pentane.
2 BIOSYNTHESIS OF PRODUCTS FROM 1-CARBON COMPOUNDS EP15854300 2015-10-29 EP3212797A4 2018-06-13 GONZALEZ RAMON; CHOU ALEXANDER; CLOMBURG JAMES
An engineered microbe that contains a designed platform for the conversion of one-carbon substrates to chemical products is described. The designed platform embodies a new metabolic architecture that consolidates carbon fixation, central metabolism, and product synthesis into a single pathway. This is made possible by the key finding that 2-hydroxyacyl-CoA lyase, an enzyme in the α-oxidation pathway, is capable of catalyzing the C-C bond formation between formyl-CoA and aldehydes of different chain lengths, allowing for the elongation of the carbon backbone of said aldehyde by one-carbon units. These novel microbes present an opportunity for the production of chemicals from single-carbon feedstocks such as carbon dioxide, carbon monoxide, formate, formaldehyde, methanol or methane.
3 BIOSYNTHESIS OF PRODUCTS FROM 1-CARBON COMPOUNDS EP15854300.9 2015-10-29 EP3212797A1 2017-09-06 GONZALEZ, Ramon; CHOU, Alexander; CLOMBURG, James
An engineered microbe that contains a designed platform for the conversion of one-carbon substrates to chemical products is described. The designed platform embodies a new metabolic architecture that consolidates carbon fixation, central metabolism, and product synthesis into a single pathway. This is made possible by the key finding that 2-hydroxyacyl-CoA lyase, an enzyme in the α-oxidation pathway, is capable of catalyzing the C-C bond formation between formyl-CoA and aldehydes of different chain lengths, allowing for the elongation of the carbon backbone of said aldehyde by one-carbon units. These novel microbes present an opportunity for the production of chemicals from single-carbon feedstocks such as carbon dioxide, carbon monoxide, formate, formaldehyde, methanol or methane.
QQ群二维码
意见反馈