一种内衬不锈复合管内壁强化工艺及强化设备

申请号 CN202011167533.0 申请日 2020-10-27 公开(公告)号 CN112458451B 公开(公告)日 2023-06-23
申请人 江苏众信绿色管业科技有限公司; 发明人 孟宪虎;
摘要 本 发明 提出了一种 内衬 不锈 钢 复合管内壁强化工艺及强化设备,工艺包括如下依次进行的处理步骤,预处理、同级复层包覆处理、后处理;其中,预处理包括活化和预热,预热包括分别于活化前后进行的前预热和后预热,同级复层包覆处理包括同步 喷涂 的渗透结合液、强化扩散液、 钝化 修复液,后处理包括阶段式 热处理 ,设备适用但不限于工艺过程中同级复层包覆处理,本 申请 通过科学合理的协配改善强化工艺,针对性设计强化设备,有效保证了强化处理的高效性,通过化学强化处理,大大提高了 不锈钢 管道的物化性能,同时提高了后续内衬管复合的性能,综合性价比显著提高,高效实用。
权利要求

1.一种内衬不锈复合管内壁强化工艺,其特征在于:包括插接于不锈钢管内的轴管,轴管内设有3个隔板,隔板将轴管内腔分为3个独立储腔,轴管外壁对应于隔板延长线方向设有加热组件,加热组件包括若干与轴管外壁固连的伸缩杆一,以及连于伸缩杆一外端间的加热管,加热管内设有加热电阻丝,轴管外壁对应于独立储腔侧设有喷涂组件,喷涂组件包括若干与轴管外壁固连的伸缩杆二,以及连于伸缩杆二外端间的喷涂管,喷涂管与独立储腔间对应开设有通口,且通口间通过软管可拆卸连通,喷涂管外壁开设有若干喷头;3个所述独立储腔外壁分别开设有料口,由该料口向其中分别填充渗透结合液、强化扩散液、钝化修复液,料口处配设密封盖;独立储腔内设有与通口连通的料管,料管一端设有体用于将液体导出至喷涂管并加压由喷头喷出;所述轴管外壁设有夹层,轴管外壁对应于每个独立储腔内设有回收组件,回收组件包括伸缩板,伸缩板包括套板以及滑动设于套板内的内板,套板、内板均为空心结构,且内板一端未封口、外端为三刮板结构,且内板外端刮板倾斜面开设有与其内腔连通的回收口,套板一端未封口用于内板活动插接、外端与轴管外壁固连且开设有与夹层连通的导流口,夹层下部外壁开设有排放口;
内衬不锈钢复合管内壁强化工艺包括如下依次进行的处理步骤,预处理、同级复层包覆处理、后处理;其中,预处理包括活化和预热,预热包括分别于活化前后进行的前预热和后预热,同级复层包覆处理包括同步喷涂的渗透结合液、强化扩散液、钝化修复液,后处理包括阶段式热处理
所述前预热温度为60‑100℃,后预热温度为80‑120℃;阶段式热处理为,先于90‑100℃保温加热0.5‑1h,然后升温至110‑120℃保温加热1‑3h,最后升温至140℃保温0.25‑0.5h,再以5℃/min降至80℃保温0.5h,最后自然降至室温再与内衬管进行下一步的复合工艺;
所述活化包括依次喷涂磷酸缓冲溶液、乙醇/丙复合液和复合活化液,磷酸缓冲溶液选用pH值为4.8‑5.6,乙醇/丙酮复合液中两者体积比为6:4;复合活化液由以下质量百分含量组分组成:烷2‑5%、羟基聚二甲基硅烷2‑4%、硅酸锂1‑2%、古树脂3‑6%、纳米级氧化锌/氧化混合粉0.5‑2%、去离子余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5;
所述渗透结合液包括以下质量百分含量组分,硅溶胶15‑30%、聚乙烯亚胺2‑4%、醋酸乙烯1‑3%、环氧脂肪酸甲酯0.5‑2%、45%浓度乙醇水溶液余量;
所述强化扩散液包括以下质量百分含量组分,sds改性石油沥青15‑18%、强化粉料4‑
8%、羟基烷基酚聚氧乙烯醚2‑3%、氨基甲酸甲酯0.5‑2%、45%浓度乙醇水溶液余量;
所述强化粉料包括以下质量百分含量组分,纳米8‑15%、石墨5‑10%、氮化5‑
10%、氮化15‑20%、纳米级氧化锌/氧化铝混合粉余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5;所述钝化修复液包括以下质量百分含量组分,环氧树脂
15‑20%、呋喃树脂15‑25%、硅烷偶联剂2‑4%、柠檬酸1‑4%、硅溶胶10‑20%、聚醋酸乙烯乳液余量。

说明书全文

一种内衬不锈复合管内壁强化工艺及强化设备

技术领域

[0001] 本发明涉及管道加工技术领域,具体的为一种内衬不锈钢复合管内壁强化工艺及强化设备。

背景技术

[0002] 内衬不锈钢复合钢管执行城镇建设行业标准CJ/T192‑2004,是在钢管内壁复合薄壁不锈钢管,这种双金属复合钢管大大提高钢管在输、输热水、输气、输天然气、输油过程中的耐腐蚀性能,表面光滑,流体小,又保留了钢管机械强度高,可采用焊接、沟漕、螺纹连接,密封性好的优点,克服了锌钢管易腐蚀,采用热熔连接的塑料管易漏水和老化的缺陷,是输气、输水、输油钢管的升级换代的理想产品。
[0003] 钢管与内衬不锈钢管复合生产复合管时,其贴壁问题是产品质量的关键。若贴壁不好,可使内衬管起褶折,或者在钢管与内衬管之间形成间隙。有间隙必定存有空气,当该复合管两端经焊接封闭,形成产品后,在长期使用中就会在复合管内衬管的内侧鼓泡,从而影响正常使用,另外,贴合壁面的理化性能(强度、结合力、防腐等)极大的影响双层管道间的复合效果,因此,管道贴合壁面的好坏,是产品质量的关键,必须严格加以控制。

发明内容

[0004] 有鉴于此,本发明的目的在于提供一种内衬不锈钢复合管内壁强化工艺及强化设备,通过科学合理的协配改善强化工艺,针对性设计强化设备,有效保证了强化处理的高效性,通过化学强化处理,大大提高了不锈钢管道的物化性能,同时提高了后续内衬管复合的性能,综合性价比显著提高,高效实用。
[0005] 为达到上述目的,本发明提供如下技术方案:
[0006] 一种内衬不锈钢复合管内壁强化工艺,包括如下依次进行的处理步骤,预处理、同级复层包覆处理、后处理;其中,预处理包括活化和预热,预热包括分别于活化前后进行的前预热和后预热,同级复层包覆处理包括同步喷涂的渗透结合液、强化扩散液、钝化修复液,后处理包括阶段式热处理
[0007] 作为本发明进一步优选,前预热温度为60‑100℃,后预热温度为80‑120℃;阶段式热处理为,先于90‑100℃保温加热0.5‑1h,然后升温至110‑120℃保温加热1‑3h,最后升温至140℃保温0.25‑0.5h,再以5℃/min降至80℃保温0.5h,最后自然降至室温再与内衬管进行下一步的复合工艺。
[0008] 作为本发明进一步优选,活化包括依次喷涂磷酸缓冲溶液、乙醇/丙复合液和复合活化液,磷酸缓冲溶液选用pH值为4.8‑5.6,乙醇/丙酮复合液中两者体积比为6:4;复合活化液由以下质量百分含量组分组成:烷2‑5%、羟基聚二甲基硅烷2‑4%、硅酸锂1‑2%、古树脂3‑6%、纳米级氧化锌/氧化混合粉0.5‑2%、去离子水余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0009] 作为本发明进一步优选,渗透结合液包括以下质量百分含量组分,硅溶胶15‑30%、聚乙烯亚胺2‑4%、醋酸乙烯1‑3%、环氧脂肪酸甲酯0.5‑2%、45vt%乙醇水溶液余量。
[0010] 作为本发明进一步优选,强化扩散液包括以下质量百分含量组分,sds改性石油沥青15‑18%、强化粉料4‑8%、羟基烷基酚聚氧乙烯醚2‑3%、氨基甲酸甲酯0.5‑2%、45vt%乙醇水溶液余量。
[0011] 作为本发明进一步优选,强化粉料包括以下质量百分含量组分,纳米8‑15%、石墨5‑10%、氮化5‑10%、氮化15‑20%、纳米级氧化锌/氧化铝混合粉余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0012] 作为本发明进一步优选,钝化修复液包括以下质量百分含量组分,环氧树脂15‑20%、呋喃树脂15‑25%、硅烷偶联剂2‑4%、柠檬酸1‑4%、硅溶胶10‑20%、聚醋酸乙烯乳液余量。
[0013] 作为本发明进一步优选,一种内衬不锈钢复合管内壁强化设备,应用于上述任一项所述的内衬不锈钢复合管内壁强化工艺,包括插接于不锈钢管内的轴管,轴管内设有3个隔板,隔板将轴管内腔分为3个独立储腔,轴管外壁对应于隔板延长线方向设有加热组件,加热组件包括若干与轴管外壁固连的伸缩杆一,以及连于伸缩杆一外端间的加热管,加热管内设有加热电阻丝,轴管外壁对应于独立储腔侧设有喷涂组件,喷涂组件包括若干与轴管外壁固连的伸缩杆二,以及连于伸缩杆二外端间的喷涂管,喷涂管与独立储腔间对应开设有通口,且通口间通过软管可拆卸连通,喷涂管外壁开设有若干喷头。
[0014] 作为本发明进一步优选,内衬不锈钢复合管内壁强化设备,3个所述独立储腔外壁分别开设有料口,由该料口向其中分别填充渗透结合液、强化扩散液、钝化修复液,料口处配设密封盖;独立储腔内设有与通口连通的料管,料管一端设有体用于将液体导出至喷涂管并加压由喷头喷出。
[0015] 作为本发明进一步优选,轴管外壁设有夹层,轴管外壁对应于每个独立储腔内设有回收组件,回收组件包括伸缩板,伸缩板包括套板以及滑动设于套板内的内板,套板、内板均为空心结构,且内板一端未封口、外端为三刮板结构,且内板外端刮板倾斜面开设有与其内腔连通的回收口,套板一端未封口用于内板活动插接、外端与轴管外壁固连且开设有与夹层连通的导流口,夹层下部外壁开设有排放口。
[0016] 本发明的有益效果在于:本发明通过科学合理的协配改善强化工艺,针对性设计强化设备,有效保证了强化处理的高效性,通过化学强化处理,大大提高了不锈钢管道的物化性能,同时提高了后续内衬管复合的性能,综合性价比显著提高,高效实用。
[0017] 本申请以合理配比的多重化学组分对管道内壁进行活化强化,强化工艺中,先进行活化处理,然后再同步以多级材料进行复合涂覆处理,在同步涂覆过程中,随时进行加热处理,合理调控涂料的流变和固结程度,层间结合力和组分间的反应结合效果强,有效成分相互协作,大大提高了金属结合面的结合效果和修复力,为后续内衬不锈钢管道的复合提供了优异的结合面,同时,在内衬管的扩张复合过程中,对外层不锈钢管的冲击损伤小,贴面的理化性能大幅度增强,不仅层间结合强,同时耐候耐腐性显著提高,综合性价比有效改善。附图说明
[0018] 图1为本发明结构示意图;
[0019] 图2为本发明加热组件侧视图;
[0020] 图3为本发明喷涂组件侧视图;
[0021] 图中:1轴管、2隔板、3独立储腔、4料口、5加热组件、51伸缩杆一、52加热管、53加热电阻丝、6喷涂组件、61伸缩杆二、62喷涂管、63通口、64喷头、7夹层、71排放口、8回收组件、81伸缩板、82回收口、83导流口。

具体实施方式

[0022] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0023] 实施例1:
[0024] 一种内衬不锈钢复合管内壁强化工艺,包括如下依次进行的处理步骤,预处理、同级复层包覆处理、后处理;其中,预处理包括活化和预热,预热包括分别于活化前后进行的前预热和后预热,同级复层包覆处理包括同步喷涂的渗透结合液、强化扩散液、钝化修复液,后处理包括阶段式热处理。
[0025] 其中:
[0026] ①预处理:预处理包括活化和预热,预热包括分别于活化前后进行的前预热和后预热,前预热温度为60‑100℃,后预热温度为80‑120℃;活化包括依次喷涂磷酸缓冲溶液、乙醇/丙酮复合液和复合活化液,磷酸缓冲溶液选用pH值为4.8‑5.6,乙醇/丙酮复合液中两者体积比为6:4;复合活化液由以下质量百分含量组分组成:氨基硅烷2‑5%、羟基聚二甲基硅氧烷2‑4%、硅酸锂1‑2%、古马隆树脂3‑6%、纳米级氧化锌/氧化铝混合粉0.5‑2%、去离子水余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0027] ②同级复层包覆处理:
[0028] 渗透结合液包括以下质量百分含量组分,硅溶胶15‑30%、聚乙烯亚胺2‑4%、醋酸乙烯1‑3%、环氧脂肪酸甲酯0.5‑2%、45vt%乙醇水溶液余量。
[0029] 强化扩散液包括以下质量百分含量组分,sds改性石油沥青15‑18%、强化粉料4‑8%、羟基烷基酚聚氧乙烯醚2‑3%、氨基甲酸甲酯0.5‑2%、45vt%乙醇水溶液余量。具体的,强化粉料包括以下质量百分含量组分,纳米碳酸钙8‑15%、石墨5‑10%、氮化硼5‑10%、氮化钛15‑20%、纳米级氧化锌/氧化铝混合粉余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0030] 钝化修复液包括以下质量百分含量组分,环氧树脂15‑20%、呋喃树脂15‑25%、硅烷偶联剂2‑4%、柠檬酸1‑4%、硅溶胶10‑20%、聚醋酸乙烯乳液余量。
[0031] ③后处理:阶段式热处理为,先于90‑100℃保温加热0.5‑1h,然后升温至110‑120℃保温加热1‑3h,最后升温至140℃保温0.25‑0.5h,再以5℃/min降至80℃保温0.5h,最后自然降至室温再与内衬管进行下一步的复合工艺。
[0032] 实施例2:
[0033] 基于上述的强化工艺,在此提出了一种内衬不锈钢复合管内壁强化设备,包括插接于不锈钢管内的轴管1,轴管1内设有3个隔板2,隔板2将轴管1内腔分为3个独立储腔3,3个独立储腔3外壁分别开设有料口4,由该料口4向其中分别填充渗透结合液、强化扩散液、钝化修复液,料口处配设密封盖。
[0034] 轴管1外壁对应于隔板2延长线方向设有加热组件5,加热组件5包括若干与轴管1外壁固连的伸缩杆一51(至少2个,分别设于两端,可采用现有电动伸缩杆或气动伸缩杆或液压伸缩杆等市售成品安装,保证伸缩调控即可,在此不作限定),以及连于伸缩杆一51外端间的加热管52,加热管52内设有加热电阻丝53,使用时,根据需要通过伸缩杆一的伸缩,调控加热管与不锈钢管内壁的距离,从而调控热源与内壁面的距离,完成不同程度的加热效果。
[0035] 轴管1外壁对应于独立储腔3侧设有喷涂组件6,喷涂组件6包括若干与轴管1外壁固连的伸缩杆二61,以及连于伸缩杆二61外端间的喷涂管62,喷涂管62与独立储腔3间对应开设有通口63,且通口63间通过软管(图中未示出)可拆卸连通,喷涂管62外壁开设有若干喷头64。进一步的,独立储腔3内设有与通口63连通的料管65,料管65一端设有泵体(图中未示出,用于加压泵送)用于将液体导出至喷涂管并加压由喷头喷出。
[0036] 同理,使用时,由伸缩杆二的伸缩,调节喷头与不锈钢管内壁的间距,从而调整喷涂效果。
[0037] 实施例3:
[0038] 基于实施例2的强化设备,进一步的,轴管1外壁设有夹层7,轴管1外壁对应于每个独立储腔3内设有回收组件8,回收组件8包括伸缩板81,伸缩板81包括套板以及滑动设于套板内的内板,套板、内板均为空心结构,内板一端未封口、外端为三角刮板结构,且内板外端刮板倾斜面开设有与其内腔连通的回收口82,套板一端未封口用于内板活动插接、外端与轴管1外壁固连且开设有与夹层7连通的导流口83,夹层7下部外壁开设有排放口71。
[0039] 使用时,通过伸缩板的伸缩调节(将内板外侧的三角刮板端伸缩调节至与不锈钢管内壁相触,然后通过限位件固定,如紧固螺栓插接固定等),在具体操作过程中,不锈钢管被支撑且转动驱动,同时,加热组件、喷涂组件、回收组件工作,即可完成喷涂、干燥以及防流挂(回收)的同步操作,通过控制不锈钢管的转速,实现多层处理液的包覆处理,三层组分间相互渗透联结,且温控性好,辅配协作性强,大大提高了强化作用效果,高效实用。
[0040] 实施例4:
[0041] 基于实施例1‑3的强化工艺和强化设备,进一步限定工艺的优化选取,具体如下:
[0042] ①预处理:预处理包括活化和预热,预热包括分别于活化前后进行的前预热和后预热,前预热温度为80℃,后预热温度为120℃;活化包括依次喷涂磷酸缓冲溶液、乙醇/丙酮复合液和复合活化液,磷酸缓冲溶液选用pH值为4.8‑5.6,乙醇/丙酮复合液中两者体积比为6:4;复合活化液由以下质量百分含量组分组成:氨基硅烷2.5%、羟基聚二甲基硅氧烷2.5%、硅酸锂2%、古马隆树脂5%、纳米级氧化锌/氧化铝混合粉1.5%、去离子水余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0043] ②同级复层包覆处理:
[0044] 渗透结合液包括以下质量百分含量组分,硅溶胶25%、聚乙烯亚胺3.5%、醋酸乙烯2.5%、环氧脂肪酸甲酯1.5%、45vt%乙醇水溶液余量。
[0045] 强化扩散液包括以下质量百分含量组分,sds改性石油沥青15%、强化粉料6%、羟基烷基酚聚氧乙烯醚2.5%、氨基甲酸甲酯2%、45vt%乙醇水溶液余量。具体的,强化粉料包括以下质量百分含量组分,纳米碳酸钙15%、石墨10%、氮化硼8%、氮化钛15%、纳米级氧化锌/氧化铝混合粉余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0046] 钝化修复液包括以下质量百分含量组分,环氧树脂15%、呋喃树脂15%、硅烷偶联剂3%、柠檬酸3%、硅溶胶15%、聚醋酸乙烯乳液余量。
[0047] ③后处理:阶段式热处理为,先于100℃保温加热0.5h,然后升温至110℃保温加热2h,最后升温至140℃保温0.25h,再以5℃/min降至80℃保温0.5h,最后自然降至室温再与内衬管进行下一步的复合工艺。
[0048] 实施例5:
[0049] 基于实施例1‑3的强化工艺和强化设备,进一步限定工艺的优化选取,具体如下:
[0050] ①预处理:预处理包括活化和预热,预热包括分别于活化前后进行的前预热和后预热,前预热温度为60℃,后预热温度为100℃;活化包括依次喷涂磷酸缓冲溶液、乙醇/丙酮复合液和复合活化液,磷酸缓冲溶液选用pH值为4.8‑5.6,乙醇/丙酮复合液中两者体积比为6:4;复合活化液由以下质量百分含量组分组成:氨基硅烷5%、羟基聚二甲基硅氧烷3%、硅酸锂2%、古马隆树脂5%、纳米级氧化锌/氧化铝混合粉1%、去离子水余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0051] ②同级复层包覆处理:
[0052] 渗透结合液包括以下质量百分含量组分,硅溶胶30%、聚乙烯亚胺2.5%、醋酸乙烯2.5%、环氧脂肪酸甲酯1.5%、45vt%乙醇水溶液余量。
[0053] 强化扩散液包括以下质量百分含量组分,sds改性石油沥青16%、强化粉料5%、羟基烷基酚聚氧乙烯醚2.5%、氨基甲酸甲酯1.5%、45vt%乙醇水溶液余量。具体的,强化粉料包括以下质量百分含量组分,纳米碳酸钙12%、石墨8%、氮化硼5%、氮化钛15%、纳米级氧化锌/氧化铝混合粉余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0054] 钝化修复液包括以下质量百分含量组分,环氧树脂20%、呋喃树脂20%、硅烷偶联剂3%、柠檬酸3%、硅溶胶15%、聚醋酸乙烯乳液余量。
[0055] ③后处理:阶段式热处理为,先于90℃保温加热1h,然后升温至120℃保温加热2h,最后升温至140℃保温0.25h,再以5℃/min降至80℃保温0.5h,最后自然降至室温再与内衬管进行下一步的复合工艺。
[0056] 实施例6:
[0057] 基于实施例1‑3的强化工艺和强化设备,进一步限定工艺的优化选取,具体如下:
[0058] ①预处理:预处理包括活化和预热,预热包括分别于活化前后进行的前预热和后预热,前预热温度为80℃,后预热温度为110℃;活化包括依次喷涂磷酸缓冲溶液、乙醇/丙酮复合液和复合活化液,磷酸缓冲溶液选用pH值为4.8‑5.6,乙醇/丙酮复合液中两者体积比为6:4;复合活化液由以下质量百分含量组分组成:氨基硅烷4%、羟基聚二甲基硅氧烷2%、硅酸锂1.5%、古马隆树脂6%、纳米级氧化锌/氧化铝混合粉2%、去离子水余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0059] ②同级复层包覆处理:
[0060] 渗透结合液包括以下质量百分含量组分,硅溶胶30%、聚乙烯亚胺4%、醋酸乙烯1.5%、环氧脂肪酸甲酯1%、45vt%乙醇水溶液余量。
[0061] 强化扩散液包括以下质量百分含量组分,sds改性石油沥青18%、强化粉料4%、羟基烷基酚聚氧乙烯醚3%、氨基甲酸甲酯1.5%、45vt%乙醇水溶液余量。具体的,强化粉料包括以下质量百分含量组分,纳米碳酸钙10%、石墨5%、氮化硼5%、氮化钛15%、纳米级氧化锌/氧化铝混合粉余量,且纳米级氧化锌/氧化铝混合粉中氧化锌与氧化铝质量比为1:0.5。
[0062] 钝化修复液包括以下质量百分含量组分,环氧树脂20%、呋喃树脂25%、硅烷偶联剂4%、柠檬酸4%、硅溶胶15%、聚醋酸乙烯乳液余量。
[0063] ③后处理:阶段式热处理为,先于100℃保温加热0.5h,然后升温至110℃保温加热1h,最后升温至140℃保温0.5h,再以5℃/min降至80℃保温0.5h,最后自然降至室温再与内衬管进行下一步的复合工艺。
[0064] 实施例7:
[0065] 将实施例4‑6制得的强化后的不锈钢管与内衬不锈钢管进行复合,采用现有常规复合技术手段,得复合管道。
[0066] 将实施例4‑7制得的不锈钢管道以及内衬不锈钢复合管进行性能测试,数据如下(对照例为采购的市售内衬不锈钢复合管成品):
[0067]   工作压力,MPa 结合强度,MPa 耐温性,℃实施例4‑6 1.1±0.2 ‑ ‑120~500
实施例7 1.5±0.3 2.4±0.3 ‑150~650
对照例 0.9±0.1 1.1±0.2 ‑80~500
[0068] 由上述表格数据可知,本申请内衬不锈钢复合管具有优异的耐压性和层间结合力,温度使用范围广,适用绝大多数情况,综合使用寿命显著延长。另外,内壁强化后的不锈钢管具有优异的防腐效果(酸、、电化学腐蚀等),内衬复合后,相较对照的现有产品,防腐性提高了60%以上。
[0069] 需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
[0070] 以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
QQ群二维码
意见反馈