首页 / 专利库 / 纺织设备及加工 / 拉伸比 / 用织物起绉工艺制造的具有提高CD拉伸率和低拉伸比率的湿压制的薄织物和手巾产品

用织物起绉工艺制造的具有提高CD拉伸率和低拉伸比率的湿压制的薄织物和手巾产品

阅读:549发布:2020-05-12

专利汇可以提供用织物起绉工艺制造的具有提高CD拉伸率和低拉伸比率的湿压制的薄织物和手巾产品专利检索,专利查询,专利分析的服务。并且用织物起绉工艺制造的具有提高CD拉伸率和低 拉伸比 率的湿压制的薄织物和手巾产品。 纤维 素纤维的吸收性片材,该 纤维素 纤维包括在网状结构中排列的硬木纤维和软木纤维的混合物,该网状结构具有:(i)多个的较高局部基重的伞形纤维富集区域,该区域由(ii)多个的较低局部基重连接区域互联,该连接区域的纤维取向沿着在互联的伞形区域之间的纵向发生偏向,其中片材所显示出的%CD拉伸率是片材的干拉伸比率的至少约2.75倍。容易地实现约0.4到约4的拉伸比率。,下面是用织物起绉工艺制造的具有提高CD拉伸率和低拉伸比率的湿压制的薄织物和手巾产品专利的具体信息内容。

1.制造用于薄织物产品的纤维素网幅的方法,包括:
(a)制备主要由硬木纤维组成的纤维素性造纸供料;
(b)将造纸供料作为在喷流速度下从流料箱流出的喷流提供到成 形用织物上;
(c)将造纸供料压缩脱水形成具有造纸纤维的明显随机分布的初 生网幅;
(d)将具有明显随机纤维分布的脱水网幅施加于在第一种速度下 运行的移动式转移面上;
(e)利用含图案的起皱传送带将该网幅在约30-约60%的稠度 下从转移面上进行传送带起绉,该起绉步骤是在压下在转移面与起 皱传送带之间限定的传送带起皱辊隙中发生,其中该传送带是在比转 移面的速度更缓慢的第二种速度下运行,该传送带图案,辊隙参数, 速度δ和网幅稠度进行选择,以使该网幅从转移面上起绉并且再分配 在起皱传送带上形成具有网状结构的网幅,该网状结构具有多个不同 局部基重的互联区域,其中包括至少(i)多个高局部基重的纤维富集 区域,由(ii)多个较低局部基重连接用区域来互联;
(f)干燥该网幅;和
(g)控制硬木与软木比率,纤维长度分布,整个起绉,喷流速度, 干燥和传送带起皱步骤以及选择起皱传送带图案,使得该网幅体现特 征于它所具有的%CD拉伸率是该网幅的干拉伸比率的至少约2.75倍。
2.根据权利要求1的方法,进一步包括在第一压延辊和第二钢 压延辊之间压延网幅的步骤。
3.制造用于手巾产品的纤维素网幅的方法,包括:
(a)制备主要由软木纤维组成的纤维素水性造纸供料;
(b)将造纸供料作为在喷流速度下从流料箱流出的喷流提供到 成形用织物上;
(c)将造纸供料压缩脱水形成具有造纸纤维的明显随机分布的初 生网幅;
(d)将具有明显随机纤维分布的脱水网幅施加于在第一种速度下 运行的移动式转移面上;
(e)利用含图案的起皱传送带将该网幅在约30-约60%的稠度下 从转移面上进行传送带起绉,该起绉步骤是在压力下在转移面与起皱 传送带之间限定的传送带起皱辊隙中发生,其中该传送带是在比转移 面的速度更缓慢的第二种速度下运行,该传送带图案,辊隙参数,速 度δ和网幅稠度进行选择,以使该网幅从转移面上起绉并且再分配在 起皱传送带上形成具有网状结构的网幅上,该网状结构具有多个不同 局部基重的互联区域,其中包括至少(i)多个高局部基重的纤维富集 区域,由(ii)多个较低局部基重连接区域来互联;
(f)干燥该网幅;和
(g)控制硬木与软木比率,纤维长度分布,整个起绉,喷流速度, 干燥和传送带起皱步骤以及选择起皱传送带图案,使得该网幅体现特 征于它所具有的%CD拉伸率是该网幅的干拉伸比率的至少约2.75倍。
4.制造传送带起绉的吸收性纤维素片材的方法,包括:
(a)制备包含硬木和软木纤维的混合物的纤维素供料;
(b)将造纸供料作为在喷流速度下从流料箱流出的喷流提供到成 形用织物上;
(c)将造纸供料压缩脱水形成具有造纸纤维的明显随机分布的初 生网幅;
(d)将具有明显随机纤维分布的脱水网幅施加于在第一种速度下 运行的移动式转移面上;
(e)利用含图案的起皱传送带将该网幅在约30-约60%的稠度下 从转移面上进行传送带起绉,该起绉步骤是在压力下在转移面与起皱 传送带之间限定的传送带起皱辊隙中发生,其中该传送带是在比转移 面的速度更缓慢的第二种速度下运行,该传送带图案,辊隙参数,速 度δ和网幅稠度进行选择,以使该网幅从转移面上起绉并且再分配在 起皱传送带上形成具有网状结构的网幅上,该网状结构具有多个不同 局部基重的互联区域,其中包括至少(i)多个高局部基重的纤维富集 区域,由(ii)多个较低局部基重连接区域来互联;
(f)干燥该网幅;和
(g)控制硬木与软木比率,纤维长度分布,整个起绉,喷流速度, 干燥和传送带起皱步骤以及选择起皱传送带图案,使得该网幅体现特 征于它所具有的%CD拉伸率是该网幅的干拉伸比率的至少约2.75倍。
5.根据权利要求4的制造传送带起绉的吸收性纤维素片材的方 法,其中纤维在纤维富集区域中的取向在CD上偏向。
6.根据权利要求4的制造传送带起绉的吸收性纤维素片材的方 法,它在约10-约100%的织物起绉下操作。
7.根据权利要求4的制造传送带起绉的吸收性纤维素片材的方 法,它在至少约40%的织物起绉下操作。
8.根据权利要求4的制造传送带起绉的吸收性纤维素片材的方 法,它在至少约60%的织物起绉下操作。
9.根据权利要求4的制造传送带起绉的吸收性纤维素片材的方 法,它在至少约80%的织物起绉下操作。
10.根据权利要求4的制造传送带起绉的吸收性纤维素片材的方 法,它在100%或更高的织物起绉下操作。
11.根据权利要求4的制造传送带起绉的吸收性纤维素片材的方 法,它在约125%或更高的织物起绉下操作。
12.根据权利要求4的制造传送带起绉的吸收性纤维素片材的方 法,其中该网幅包括次级纤维。

说明书全文

对于优先权的要求和技术领域

申请是中国专利申请200580011238.3的分案申请。

本申请是以2004年4月14日提交的美国临时专利申请序列号 No.60/562,025(代理人案卷No.2636;GP-04-5)的优先权为基础并要 求了优先权。本申请也是2003年10月6日提交的名称为“Fabric Crepe Process for Making Absorbent Sheet”的悬而未决的美国专 利申请序列号No.10/679,862的部分继续,其优先权被要求。此外, 本申请要求了2002年10月7日提交的美国临时专利申请序列号No. 60/416,666的申请日的利益。本申请部分地涉及一种工艺,其中网幅 压缩脱,起绉或起皱织物和干燥,其中该处理加以控制以生产出具 有高CD拉伸率(streth)和低拉伸(tensile)比率的产品。

背景技术

制造纸巾,手巾(towel)等的方法是大家所熟知的,其中包括 各种特征,如杨克式干燥,穿透干燥,织物起皱,干法起皱,湿起皱 等等。普通的湿压工艺与普通的穿透空气干燥工艺相比具有某些优点, 其中包括:(1)与不是用热空气的蒸腾干燥法而是水的机械除去相关 的低级能源成本;和(2)更高的生产速度,该速度对于使用湿压法形成 网幅的工艺更容易实现。另一方面,穿透空气干燥处理已经广泛地为 新资本投资,特别为柔软,蓬松,优质品质薄织物(tissue)和手巾 产品的生产所采用。
织物起皱已经与造纸工艺相结合使用,它包括纸幅的机械或压缩 脱水作为影响产品性能的手段。参见Weldon的美国专利No 4,689,119 和4,551,199;Klowak的4,849,054和4,834,838;和Edwards等人 的6,287,426。织物起皱工艺的操作已经受到将高或中等稠度的网幅 有效地转移到干燥器上的困难所妨碍。也请关注Hermans等人的美国 专利No.6,350,349,它公开了网幅从旋转的转移面上湿转移到织物 上的方法。与织物起皱相关的其它专利一般地说包括下列:Wells等 人的4,834,838;4,482,429;4,445,638以及4,440,597。
与造纸工艺有关,织物模塑也可用作提供织构和膨松度的手段。 在这方面,在Lindsey等人的美国专利No.6,610,173中见到在湿压 情况下压印纸幅的方法,它导致了与偏转元件的偏转管道对应的不对 称的突起。该‘173专利报道了在压制过程中差动速度转移可以改进 网幅用偏转元件的模塑和压印。所生产的薄织物网幅据报道具有特殊 组的物理和几何学性能,如图案致密化网络和具有不对称结构的突起 的重复图案。对于使用织构化织物的网幅的湿模塑法,也可参见下列 美国专利:6,017,417和5,672,248,两个都授权于Wendt等人; Hermans等人的5,508,818和5,510,002以及Trokhan的4,637,859。 对于织物用于为几乎干燥片材赋予织构的用途,参见Drew等人的美国 专利No.6,585,855,以及美国专利出版物No.US 2003/00064。
穿透干燥、起绉的产品已公开在下面专利中:Morgan,Jr.等人 的美国专利No.3,994,771;Morton的美国专利No.4,102,737;和 Trokhan的美国专利No.4,529,480。在这些专利中描述的方法包括, 非常一般地,在多孔载体上形成网幅,加热预干燥该网幅,用由压印 织物部分地限定的夹辊将该网幅施加于杨克式干燥器中,然后从杨克 式干燥器中起皱该产品。相对可渗透性的网幅是典型地需要的,使得 难以在所希望的水平上采用再循环供料。转移到杨克干燥干燥器上的 过程典型地在约60%-约70%的网幅稠度下发生;虽然在一些工艺中该 转移是在高得多的稠度下,有时甚至接近空气干燥时进行。
如以上所指出,穿透干燥产品倾向于显示出增强的蓬松度和柔 软度;然而,用热空气的热脱水法倾向于是能量密集的。其中网幅机 械地脱水的湿压制操作从能量观点考虑是优选的并且更容易地应用于 含有再循环纤维的供给料,该再循环纤维倾向于形成比原始纤维有更 低渗透性的网幅。许多改进涉及提高压缩脱水产品的蓬松度和吸收性, 该产品典型地用造纸毡部分地脱水。
尽管在现有技术领域中取得一些进展,但是先前已知的湿压方法 无法生产出具有优异的物理性能,尤其在较低MD/CD拉伸比率下的提 高CD拉伸率的高度吸收性网幅,这些性能是用于优质薄织物和手巾产 品中所追求的。
根据本发明,湿压制的网幅的吸收性、蓬松度和拉伸率能够通过 将网幅进行湿织物起皱和将该纤维在起皱织物上重排,与此同时维持 高速度、热效率和供料容限以再循环那些普通湿压工艺的纤维,来大 幅度地改进。
本发明的概述
因此在本发明的第一方面提供了包括在网状结构中排列的硬木 纤维和软木纤维的混合物的纤维素纤维的吸收性片材,该网状结构具 有:(i)较高局部基重的多个伞形纤维富集区域,利用(ii)多个较 低局部基重连接区域来互联。该连接区域的纤维取向是沿着在互联的 伞形区域之间的方向发生偏向。该网状结构的相对基重,伞形化 (pileation)程度,硬木与软木比率,纤维长度分布,纤维取向,和几 何结构能够加以控制,以使该片材显示出该片材的干拉伸比率的至少 约2.75倍的%CD拉伸率。在一个优选的实施方案中该片材显示出至 少约5g/g的空隙体积,至少约5%的CD拉伸率和低于约1.75的MD/CD 拉伸比率。在另一个优选实施方案中该MD/CD拉伸比率低于约1.5。 在另一个优选实施方案中该片材显示出至少约5g/g的吸收性,至少 约10%的CD拉伸率,和低于约2.5的MD/CD拉伸比率。在仍然另一 个优选实施方案中该片材显示出至少约5g/g的吸收性,至少约15% 的CD拉伸率,和低于约3.5的MD/CD拉伸比率。至少约20%的CD拉 伸率和低于约5的MD/CD拉伸比率据信根据本发明能实现。
从下面的数据可以看出,干拉伸比率的至少约3,3.25或3.5倍 的%CD拉伸率根据本发明容易地实现。
通常,至少约4的%CD拉伸率和约0.4到约4的干拉伸比率是本 发明产品典型具有的。优选,该产品具有最少约5或6的CD拉伸率。 在一些情况下至少约8或至少约10的CD拉伸率是优选的。
本发明的产品典型地具有至少约5或6g/g的空隙体积。至少约 7g/g,8g/g,9g/g或10g/g的空隙体积同样是典型的。
本发明的片材可以主要(大于50%)由硬木纤维或软木纤维组成。 典型地该片材包括这两种纤维的混合物。
在本发明的另一个方面提供了制造供薄织物或手巾产品用的纤 维素网幅的方法,该方法包括以下步骤:(a)制备水性纤维素造纸供 料;(b)作为在一定喷射速度下从流料箱流出的喷射料来将造纸供料 提供到成形织物上;(c)将造纸供料压缩脱水形成具有造纸纤维的明 显随机分布的初生网幅;(d)将具有明显随机纤维分布的脱水网幅施 加于在第一种速度下运动的移动式转移表面上;(e)利用含图案的起 皱传送带在约30%-约60%的稠度下将该该网幅从转移面上进行传送 带起皱,该起皱步骤是在压下在转移面和起皱传送带之间限定的传 送带起皱辊隙中进行,其中该传送带是在比转移面的速度更缓慢的第 二速度下运行。该传送带图案,辊隙参数,速度δ和网幅稠度进行选 择,使得该网幅从转移面上起绉并再分配在起皱传送带上形成具有网 状结构的网幅,该网状结构具有不同局部基重的多个互连区域,其中 包括至少(i)较高局部基重的多个纤维富集区域,这些纤维富集区域 利用(ii)多个较低局部基重区域来互联。该网幅然后干燥。可以看出, 硬木与软木比率,纤维长度分布,整个起绉,喷流速度,干燥和传送 带起皱步骤加以控制以及起皱传送带图案进行选择,使得该网幅体现 特征于它所具有的%CD拉伸率是该网幅的干拉伸比率的至少约2.75 倍。这些参数也进行选择,使得以上关于本发明产品所指出的性能可 以在本发明的各种实施方案中实现。
本发明的工艺可以通过用于生产供薄织物制造用的基础片材的 主要硬木纤维来实施或当希望制造手巾时,本发明的工艺可以通过主 要由软木纤维组成的供料来实施。本领域中的技术人员将会认识到, 如果需要的话,可以选择其它添加剂。
根据本发明已经发现,当希望压延时,在基重上有局部变化的网 幅优选在丝压延辊之间进行压延。
本发明的传送带起绉网幅典型地体现特征于纤维富集区域的纤 维在横向上发生偏向,这可从所附显微照片看出。
一般该工艺是在约10%到约100%的织物起绉下操作。优选实施 方案包括这样一些,其中该工艺是在至少约40,60,80或100%或更 高的织物起绉下操作。本发明的工艺可以在125%或更高的织物起绉 下操作。
本发明的方法是极度地供料容忍的,并且能够用大量的次级纤维 来操作,如果希望的话。
本发明的仍然其它特征和优点将从后面的讨论变得十分清楚。
附图的简述
本发明参考附图来详细描述,其中:
图1是沿着织物起绉的片材的纤维富集区域的纵向上的截面的 显微照片(120X);
图2是MD/CD干拉伸比率-对-喷流/丝网速度δ(英尺/分钟)的 曲线图;
图3是织物起绉网幅的织物侧的显微照片(10X);
图4是说明了可用于生产该产品和实施本发明方法的造纸机的 示意图;
图5和6是以各种织物和起皱率生产的13磅片材的CD拉伸率- 对-MD/CD拉伸比率的曲线图;
图7-9是本发明的各种24磅片材的CD拉伸率-对-干拉伸比率 的曲线图;和
图10是钢和橡胶压延辊的不同组合的厚度减少-对-压延机荷载 的曲线图。
详细叙述
本发明参考几个实施方案和多个实施例进行详细描述。此类讨 论仅仅是为了举例说明的目的。在所附权利要求中阐明的本发明的精 神和范围之内的对于具体实施例的改进对于本领域中的技术人员来说 是显而易见的。
在这里使用的术语给出了它的具有紧接着在下面阐明的举例性 质的定义的寻常意义。
本发明的产品的吸收性(SAT)用简单的吸收性试验器来测量。简 单的吸收性试验器是测量薄织物,卫生巾,或手巾的样品的亲水性和 吸收性的特别有用的装置。在这一试验中2.0英寸直径的薄织物,卫 生巾,或手巾的样品被安放在顶部平直塑料盖与底部刻纹槽的样品板 之间。该薄织物,卫生巾,或手巾样品圆盘利用1/8英寸宽圆周法兰 面积来固定就位。样品没有被夹持器压缩。通过1mm直径导管将73 °F的去离子水在底部样品板的中心上引入到样品中。该水处于-5mm 的静水压头。在测量的开始由仪器机构所引入的脉冲引发流动。水因 此利用毛细管作用被该薄织物,卫生巾,或手巾样品从这一中心进入 点沿径向向外浸渗。当水浸渗的速率下降到低于0.005gm水/每5秒 时,该试验终止。从贮器中除去的并被样品吸收的水的量被称量并报 导为多少克的水/每平方米的样品,除非另有说明。在实践中,使用 M/K Systems Inc.Gravimetric Absorbency Testing System。这是 可从M/K Systems Inc.,12 Garden Street,Danvers,Mass.,01923 获得的商业系统。也称为SAT的WAC或吸水容量实际上由仪器本身测 得。WAC被定义为重量-对-时间曲线具有“零”斜率的点,即样品已 经停止吸收。试验的终止标准是以经过固定的时间之后所吸收的水重 量的最大变化来表达的。这基本上是重量-对-时间曲线的零斜率的估 计。该程序使用经过5秒时间间隔的0.005g的变化作为终止标准;除 非规定了“Slow SAT”,在这种情况下中断标准是在20秒中的1mg。
在整个说明书和权利要求中,当我们谈到具有纤维取向的明显 随机分布(或使用类似术语)的初生网幅时,我们指当已知的成形技术 用于将供料沉积在成形织物上时所导致的纤维取向的分布。当在显微 镜下观察时,该纤维即使取决于喷流-丝网速度(the jet to wire speed),有相对于纵向取向的显著偏向,使得该网幅的纵向拉伸强度 超过横向拉伸强度,仍产生随机取向的外观。
除非另作说明,“基重”,BWT,bwt等等是指产品的3000平方 英尺令的重量。稠度指初生网幅的固体含量百分数,例如,按照完全 干燥的基础来计算。“空气干燥”指包括残留水分,按照惯例对于纸 浆至多约10%水分和对于纸张有至多约6%水分。具有50%水和50%完全 干燥的纸浆的初生网幅具有50%的稠度。
该术语“纤维素”,“纤维素片材”等等在意义上包括引入了含 有纤维素作为主要成分的造纸纤维的任何产品。“造纸纤维”包含包 括纤维素纤维的原始纸浆或再循环(二次)纤维素纤维或纤维混合物。 适合于制造本发明的网幅的纤维包括:非木纤维,如纤维或棉衍生 物,尼拉麻,南非槿麻,沙巴草,亚麻,芦苇草,稻草,黄麻,甘 蔗渣,马利筋属植物花纤维,和菠萝叶纤维;以及木纤维,如从每年 落叶树和针叶树获得的那些,其中包括软木纤维,如北方和南方软木 皮纸纤维;硬木纤维,如桉树,枫木,桦树,山杨等。造纸纤维能 够利用现有技术领域中的技术人员熟悉的许多化学制浆方法中的任何 一种来从它们的来源物质释放出来,此类方法包括硫酸盐,亚硫酸盐, 多硫化物,法制浆,等等。如果需要的话该纸浆能够通过化学方法 漂白,其中包括使用氯,二化氯,氧等。本发明的产品可以包括普 通纤维(不论从原始纸浆还是从再循环的来源得到)和高粗糙度富含木 质素的管式纤维的共混物,如漂白化学热机械纸浆(BCTMP)。“供料 (Furnishes)”和类似术语指包括用于制造纸类产品的造纸纤维,湿强 度树脂,解粘结剂和类似原料的一种水性组合物。
如在这里使用的,术语“将网幅或供料压缩脱水”指通过在脱水 毡上湿压的机械脱水,例如,在一些实施方案中通过利用在网幅表面 上连续地施加的机械压力就象在压辊和压之间的夹辊中一样,其中 该网幅与造纸毡接触。该术语“压缩脱水”用来区别一些工艺,其中 网幅的初始脱水主要通过热方式来进行,例如在以上指出的Trokhan 的美国专利No.4,529,480和Farrington等人的美国专利No. 5,607,551中通常就是这样。压缩脱水网幅因此指,例如,通过对其 施加压力从具有低于30%左右的稠度的初生网幅中除去水和/或通过 对其施加压力将网幅的稠度提高了约15%或更高。
“织物侧”和类似术语指网幅的与起皱和干燥用织物接触的那一 侧。“干燥器侧”或类似术语是该网幅的与网幅的织物侧相对的那一 侧。
Fpm指英尺/分,而稠度指网幅的重量百分数纤维。
MD指纵向和CD指横向。
辊隙参数包括,没有限制,轧点压力,辊隙长度,支承辊硬度, 织物接近,织物引出角度,均匀性,以及在辊隙的表面之间的速度 δ。
辊隙长度指辊隙表面发生接触的长度。
“在线”和类似术语指不从生产该网幅的造纸机中除去该网幅所 进行的工艺步骤。当它在卷绕之前没有切断的情况下被拉伸或压延时, 网幅在线拉伸或压延。
移动式转移面指一个表面,该网幅从该表面上起绉进入到该起皱 织物中。移动式转移面可以是下面所述的转鼓的表面,或可以是连续 光滑运送带的表面或具有表面织构等的另一种移动织物。移动式转移 面需要支持该网幅和促进高固体起皱,这可从下面的讨论领会到。
在这里报导的厚度和/或膨松度可以是1,4或8片厚度。各片材 被堆叠和在堆叠体的中心部分上进行厚度测量。优选,试验样品在23 ℃±1.0℃(73.4°±1.8°F)的氛围中在50%相对湿度下调理至少约2 小时,和然后用Thwing-Albert Model 89-II-JR或Progage Electronic Thickness Tester,以2-英寸(50.8-mm)直径测砧,539 ±10克净荷重和0.231英寸/秒下降率进行测量。对于成品试验,每 片的试验产品必须具有与销售产品相同的层数。对于通常的试验,选 择八个片材并堆叠在一起。对于卫生巾试验,在堆叠之前将卫生巾展 开。对于从绕线器上退绕的基片试验,所试验的各片材必须具有与从 绕线器上退绕生产的相同层数。因为从造纸机卷筒上松下的基片试验, 必须使用单层(single plies)。片材在MD上定向排列被堆叠在一起。 在通常的压花或印刷产品上,如果完全有可能的话,在这些区域中避 免进行测量。膨松度也能够通过将厚度除以基重,以体积/重量的单位 表达。
干拉强度(MD和CD),拉伸率,它们的比率,模量,破裂模量, 应力和应变是用标准Instron试验设备或可以各种方式构型设计的其 它合适伸长拉伸试验机来测量的,典型地使用在50%相对湿度和23℃ (73.4°F)下调理过的薄织物或手巾的3或1英寸宽的带材,其中拉 伸试验在2英寸/分钟的十字头速度下进行。
拉伸比率简单地是由前述方法测定的数值的比率。拉伸比率指 MD/CD干拉伸比率,除非另有说明。除非另作说明,拉伸性能是干片 材性能。拉伸强度有时简称为拉伸。除非另作说明,断裂拉伸强度, 拉伸等在这里报道。
“织物起绉比率”是在起皱织物和成型丝网(forming wire)之间 的速度差的表达并且典型地作为紧接着在起皱之前的网幅速度与紧接 着在起皱之后的网幅速度的比率来计算,因为成型丝网和转移面典型 地但不一定地在同一速度下操作:
织物起绉比率=转移圆筒速度÷起皱织物速度
织物起绉也能够表达为按照下式计算的百分比:
织物起绉,百分数=[织物起绉比率-1]×100%
线起绉(有时称为整个起绉),卷筒起绉等等类似地按以下所讨论 的方式来计算。
PLI或pli指磅力/每线性英寸。
“主要”指大于约50%,典型地按重量;当关于纤维时按完全干 燥的基础。
有时称为P+J的Pusey和Jones(P+J)硬度(凹陷)是根据ASTM D 531测量的,并且指凹陷数(标准试样和条件)。
速度δ指线速度的差异。
下面所述的空隙体积和/或空隙体积比率是通过用非极性 液体饱和试样片材和测量所吸收的液体的量来测定的。所吸 收的液体的体积等价于在片材结构内的空隙体积。该百分重量增加 (PWI)表示为所吸收液体的克数/每克的在片材结构中的纤维再乘以 100,如以下所表示。更具体地说,对于所试验的各单层片材样品,选 择8个片材和裁切成1英寸×1英寸正方形(在纵向上1英寸和在横向 上1英寸)。对于多层产品样品,各层是作为独立实体来测量的。多层 样品应该从用于试验的各层位置上分离成独立的各单层和共8个片 材。称量和记录各试样的干燥重量,精确至0.0001克。将试样置于含 有比重为1.875克/每立方厘米的液体(可从Coulter Electronics Ltd.,Northwell Drive,Luton,Beds,England;Part No.9902458获得)的盘子中。在10秒后,用镊子在一个角的非常小 的边缘(1-2毫米)夹起该试样并从液体中取出。让该角在最上面来夹 持该试样,让过量液体经过30秒滴淌掉。将试样的较低角轻轻地接触 (低于1/2秒接触)在#4滤纸(Whatman Lt.,Maidstone,England)上, 以除去任何过量的最后部分液滴。立即称量该试样,在10秒之内,记 录该重量精确至0.0001克。各试样的PWI,表示为液体的 克数/每克的纤维,计算如下:
PWI=[(W2-W1)/W1]X100%
其中
“W1”是试样的干重,以克计;和
“W2”是试样的湿重,以克计。
全部八个独立试样的PWI按照以上所述方法来测定,八个试样的 平均值是样品的PWI。
该空隙体积比率是通过将PWI除以1.9(流体密度)将所得比率 表达为百分数来计算的,而空隙体积(gms/gm)简单地是重量增加率; 即,PWI除以100。
根据本发明,吸收性纸幅是通过将造纸纤维分散到水性供料(淤 浆)中并将该水性供料沉积到造纸机器的成型丝网上来制备的,典型地 经由从流料箱流出的喷流。任何合适的成型流程都可以使用。例如, 除了弗德林尼尔造纸机成形器之外的广泛但非穷举的清单包括新月形 成形器,C-形包裹双丝网成形器,S-形包裹双丝网成形器,或吸取胸 辊成形器。该成形织物能够是任何合适多孔单元,其中包括单层织物, 双层织物,三层织物,光聚合物织物,等等。在成形织物领域中的非 穷举的背景技术包括美国专利No.4,157,276;4,605,585;4,161,195; 3,545,705;3,549,742;3,858,623;4,041,989;4,071,050; 4,112,982;4,149,571;4,182,381;4,184,519;4,314,589; 4,359,069;4,376,455;4,379,735;4,453,573;4,564,052; 4,592,395;4,611,639;4,640,741;4,709,732;4,759,391; 4,759,976;4,942,077;4,967,085;4,998,568;5,016,678; 5,054,525;5,066,532;5,098,519;5,103,874;5,114,777; 5,167,261;5,199,261;5,199,467;5,211,815;5,219,004; 5,245,025;5,277,761;5,328,565;和5,379,808,全部这些专利以 它们的全部内容被引入这里供参考。特别为本发明可使用的一种成形 织物是由Voith Fabrics Corporation,Shreveport,LA制得的Voith 织物系列成形织物2164。
水性供料在成型丝网或织物上的泡沫形成法可以用作控制片材 在织物起皱之后的渗透性或空隙体积的手段。泡沫体形成技术已公开 在美国专利No.4,543,156和加拿大专利No.2,053,505中,它们的 公开内容被引入这里供参考。发泡的纤维供料是由纤维与发泡的液体 载体混合所得的水性淤浆制成,刚好在后者被引入到流料箱中之前。 提供到该系统中的该纸浆淤浆具有在约0.5重量百分数至约7重量百 分数纤维之间,优选在约2.5重量百分数至约4.5重量百分数之间的 稠度。该纸浆淤浆被添加到含有50-80%空气(按体积)的包括水,空 气和表面活性剂的起泡液中,利用来自自然紊流的简单混合作用和在 处理部件中所固有的混合作用来形成具有在约0.1wt%至约3wt%纤维 的范围内的稠度的起泡纤维供料。该纸浆作为低稠度淤浆的添加会导 致从成型丝网中回收过量的起泡液。过量的起泡液从系统中排出并可 以在其它地方使用或经过处理从中回收表面活性剂。
该供料可含有化学添加剂来改变所生产的纸的物理性能。这些化 学品能够由本领域中技术人员很好地理解并且可以按照任何已知的结 合方式来使用。此类添加剂可以是表面改性剂,软化剂,解粘剂,强 度助剂,胶乳,不透明剂,荧光增白剂,染料,颜料,施胶剂,阻隔 性化学品,助留剂,减溶剂,有机或无机交联剂,或它们的结合物; 这些化学品任选地包括多元醇,淀粉,PPG酯,PEG酯,磷脂,表面活 性剂,多胺,HMCP等等。
该纸浆能够与强度调节剂如湿强度剂,干强度剂和解粘剂/软化 剂等等混合。合适的湿强度剂是本领域中技术人员已知的。有用的强 度助剂的全面但非穷举的清单包括脲甲树脂,三聚氰胺甲醛树脂, 乙醛酸化聚丙烯酰胺树脂,聚酰胺-表氯醇树脂等等。热固性聚丙烯酰 胺是通过如下生产的:让丙烯酰胺与二烯丙基二甲基氯化铵(DADMAC) 反应生产出阳离子型聚丙烯酰胺共聚物,它最终与乙二醛反应生产出 阳离子交联湿强度树脂,乙醛酸化聚丙烯酰胺。这些材料一般描述在 授权于Coscia等人的美国专利No 3,556,932和授权于Williams等人 的美国专利No 3,556,933中,其中两者都以全部内容引入这里供公开。 这一类型的树脂是由Bayer Corporation以PAREZ 631NC商品名销售。 不同摩尔比的丙烯酰胺/-DADMAC/乙二醛可用于生产交联树脂,它可用 作湿强度剂。此外,其它二醛能够代替乙二醛来产生热固性湿强度特 性。特别有用的是聚酰胺-表氯醇湿强度树脂,它的例子是由Hercules Incorporated of Wilmington,Delaware以商品名Kymene 557LX和 Kymene 557H和由Georgia-Pacific Resins,Inc以商品名 销售。这些树脂和制造该树脂的方法已描述在美国专利No.3,700,623 和美国专利No.3,772,076中,每个专利以全部内容引入这里供参考。 聚合物-表卤代醇树脂的广泛描述已给出在Chapter 2:Alkaline- Curing Polymeric Amine-Epichlorohydrin,由Espy在Wet Strength Resins and Their Application(L.Chan,Editor,1994)之中,该 文献以全部内容被引入这里供参考。湿强度树脂的适度综合目录由 Westfelt描述在Cellulose Chemistry and Technology,13卷,p.813, 1979,它被引入这里供参考。
合适的临时湿强度剂同样地可以包括。有用的临时湿强度剂的全 面但穷举的清单包括脂肪族和芳族醛,其中包括乙二醛,丙二醛,丁 二醛,戊二醛和双醛淀粉,以及取代的或反应的淀粉,二糖,多糖, 脱乙酰壳多糖,或具有醛基和任选的氮基团的单体或聚合物的其它已 反应聚合物反应产物。适宜地与含醛的单体或聚合物反应的代表性含 氮的聚合物,包括乙烯基-酰胺,丙烯酰胺和相关含氮的聚合物。这些 聚合物为含有醛的反应产物赋予正电荷。另外,其它从市场上可买到 的临时湿强度剂,如由Bayer制造的PAREZ 745,与例如在美国专利 No.4,605,702中公开的那些一起,都能够使用。
该临时湿强度树脂可以是包括用于提高纸类产品的干和湿抗拉 强度的醛单元和阳离子单元的各种水溶性有机聚合物之中的任何一 种。此类树脂已描述在美国专利No 4,675,394;5,240,562;5,138,002; 5,085,736;4,981,557;5,008,344;4,603,176;4,983,748; 4,866,151;4,804,769和5,217,576中。可以使用由National Starch and Chemical Company of Bridgewater,N.J.以商标CO-1000 和CO-1000 Plus销售的改性淀粉。在使用以前,该阳离子醛 式水溶性聚合物能够通过将维持在大约240华氏度的温度和约2.7的 pH下的大约5%固体的水性淤浆预热大约3.5分钟来制备。最后,该淤 浆能够通过添加水来骤冷和稀释,生产在低于约130华氏度下大约 1.0%固体的混合物。
也可从National Starch and Chemical Company获得的其它临 时湿强度剂是以商标CO-1600和CO-2300销售的。这些 淀粉是作为胶态水分散体提供并且在使用之前不需要预热。
能够使用临时湿强度剂如乙醛酸化聚丙烯酰胺。临时湿强度剂如 乙醛酸化聚丙烯酰胺树脂是通过如下生产的:让丙烯酰胺与二烯丙基 二甲基氯化铵(DADMAC)反应生产出阳离子型聚丙烯酰胺共聚物,它最 终与乙二醛反应生产出阳离子交联临时性或半永久性湿强度树脂,乙 醛酸化聚丙烯酰胺。这些材料一般描述在授权于Coscia等人的美国专 利No 3,556,932和授权于Williams等人的美国专利No 3,556,933 中,其中两者都以全部内容引入这里供公开。这一类型的树脂是由 Bayer Industries以PAREZ 631NC商品名销售。不同摩尔比的丙烯酰 胺/DADMAC/乙二醛可用于生产交联树脂,它可用作湿强度剂。此外, 其它二醛能够代替乙二醛来产生湿强度特性。
合适干强度剂包括淀粉,瓜尔胶,聚丙烯酰胺,羧甲基纤维素等 等。特别有用的是羧甲基纤维素,它的例子是由Hercules Incorporated of Wilmington,Delaware以商品名Hercules CMC销 售的。根据一个实施方案,该纸浆可以含有约0-约15磅/吨的干强 度剂。根据另一个实施方案,该纸浆可以含有约1-约5磅/吨的干强 度剂。
合适的解粘剂同样地是本领域中技术人员已知的。解粘剂或软化 剂也可以被引入到纸浆中或在网幅形成之后喷雾在网幅上。本发明也 可以与软化剂材料一起使用,后者包括但不限于从部分地酸中和的胺 衍生的酰胺基胺盐类型。此类材料已公开在美国专利No.4,720,383 中。Evans,Chemistry and Industry,5 July 1969,pp.893-903; Egan,J.Am.Oil Chemist’s Soc.,Vol.55(1978),pp.118-121;和 Trivedi等人,J.Am.Oil Chemist’s Soc.,June 1981,pp.754-756, 以它们的全部内容引入这里供参考,指明软化剂常常仅仅作为复杂混 合物,而不是作为单一化合物来商购获得。尽管下面的讨论集中于主 要品种,但应该理解,实际上一般能够使用市场上可买到的混合物。
Quasoft 202-JR是合适的软化剂材料,它可以通过将油酸和二亚 乙基三胺的缩合产物加以烷基化来形成。使用不足的烷基化剂(例如, 硫酸二乙酯)和仅仅一个烷基化步骤,随后进行pH调节以使非乙基化 物质质子化的合成条件将得到由阳离子乙基化和阳离子非乙基化物质 组成的混合物。较少比例(例如,约10%)的所得酰胺基胺会环化得到 咪唑啉化合物。因为这些材料的仅仅咪唑啉部分是季铵化合物,在组 成上总体是pH-敏感的。因此,在使用这一类型的化学品的本发明实 施中,在流料箱中的pH应该是大约6到8,更优选6到7和最优选6.5 到7。
季铵化合物,如二烷基二甲基季铵盐也是合适的,特别当该烷基 含有约10到24个原子时。这些化合物的优点是对于pH相对不敏感。
能够使用可生物降解的软化剂。代表性可生物降解的阳离子型软 化剂/解粘剂已公开在美国专利No 5,312,522;5,415,737;5,262,007; 5,264,082;和5,223,096中,所有的这些专利以全部内容引入在这里 供参考。化合物是季铵化合物的可生物降解的二酯,季铵化的胺-酯, 和用季铵氯化物和二酯双二十二烷基二甲基氯化铵官能化的可生物降 解的植物油型酯,并且是代表性的可生物降解的软化剂。
在一些实施方案中,特别优选的解粘剂组合物包括季属胺组分以 及非离子表面活性剂。
该初生网幅典型地在造纸毡上脱水。任何合适的毡都可以使用。 例如,毡可具有双层基础编织物,三层基础编织物,和层压基础编织 物。优选的毡是具有层压基础编织设计的那些。对于本发明特别有用 的湿压制毡是由Voith Fabric制造的Vector 3。在压制毡领域中的 背景技术包括美国专利No 5,657,797;5,368,696;4,973,512; 5,023,132;5,225,269;5,182,164;5,372,876;和5,618,612。公 开在Curran等人的美国专利No.4,533,437中的不同压毡同样地可以 使用。
任何合适起皱传送带或织物都可以使用。合适的起皱织物包括单 层,多层,或复合的、优选开孔的结构。织物可具有下列特性中的至 少一种:(1)在起皱织物的与湿网幅接触的一侧(“顶”侧)上,纵向 (MD)线条的数量/每英寸(目数)是10到200和横向(CD)线条的数量/ 每英寸(织物经纬密度)也是10到200;(2)线条直径典型地小于 0.050英寸;(3)在顶侧上,在MD关节的最高点与CD关节的最高点 之间的距离是约0.001英寸到约0.02或0.03英寸;(4)在这两层 面之间有在湿模塑步骤中通过MD或CD线条形成的关节,给予该片材 以外形结构,为三维山/谷外观;(5)该织物能够以任何合适的方式 取向以便实现对于产品的加工和对于产品的性能而言的预期效果;长 的经线关节可以在顶侧上以增大在产品中的MD脊,或长的纬线关节可 以在顶侧上,如果在网幅从转移圆筒转移到起皱织物上时希望有更多 的CD脊影响起皱特性的话;和(6)该织物制成为显示出悦目的某些 几何图案,该图案典型地在每两个到50个经纱之间重复。合适的商 购的粗糙织物包括由Voith Fabrics制造的多种织物。
该起皱织物因此可以属于在Farrington等人的美国专利No. 5,607,551第7-8栏中描述的类型,以及描述在Trokhan的美国专利 No.4,239,065和Ayers的美国专利No.3,974,025中的织物类型。 此类织物可具有约20到约60网眼/每英寸并且是从直径典型为约 0.008英寸到约0.025英寸的单丝聚合物纤维形成的。经纬单丝两者 可以,但不一定地具有相同的直径。
在一些情况下该长丝经过编织和至少在Z-方向(该织物的厚度) 上互补迂回构型设计,可以获得第一组或阵列的两组长丝的共平面型 顶面-平面交叉;和预定第二组或阵列的亚顶面交叉。这些阵列是散布 的,这样顶面-平面交叉的各个部分在织物的顶面中限定了一排的柳条 吊篮状空腔,这些空腔在纵向(MD)和横向(CD)上以交错排列关系配置, 和因此各空腔覆盖了至少一个亚顶面交叉。这些空腔通过包括多个顶 面-平面交叉的各部分的桩状轮廓离散地在视野中包围在平面视图中。 织物的环可以包括热塑性材料的热定形单丝;共平面型顶面-平面交叉 的顶面可以是单平面的平整表面。本发明的特定实施方案包括缎纹编 织物以及三个或更多个梭口的杂混纹编织物,和约10×10到约120 ×120根长丝/每英寸(4×4到约47×47/每厘米)的网孔支数。 虽然网孔支数的优选范围是约18×16到约55×48根长丝/每英寸(9 ×8到约22×19/每厘米)。
代替压印织物,干燥器织物可以用作起皱织物,如果希望这样的 话。合适织物已描述在授权于Lee的美国专利No 5,449,026(编织式 样)和5,690,149(堆叠MD扁纱式样)以及授权于Smith的美国专利No. 4,490,925(螺旋形式样)。
在杨克圆筒上使用的起皱粘合剂优选能够在中等水分下与该网 幅配合以便促进从起皱织物上转移到该杨克圆筒上并且当它在圆筒上 被干燥(优选用高容量干燥罩)到95%或更高的稠度时牢固地将该网幅 固定到杨克圆筒上。该粘合剂对于在高生产率下的稳定系统操作是关 键的并且是一种吸湿性、可再润湿的、基本上非交联的粘合剂。优选 粘合剂的例子是包括在Soerens等人的美国专利No.4,528,316中描 述的一般类型的聚(乙烯醇)。其它合适粘合剂已公开在2002年4月 12日提交的标题为“Improved Creping Adhesive Modifier and Process for Producing Paper Products”的悬而未决的美国临时专 利申请序列号No.60/372,255(代理人案卷No.2394)。‘316专利和’ 255申请的公开内容被引入这里供参考。合适的粘合剂任选在其中提 供改性剂等等。在很多情况下优选在粘合剂中少量地或根本不使用交 联剂;使得该树脂在使用中基本上是不可交联的。
本发明参考附图,尤其图1和2来评价。图1显示了沿着织物起 绉的片材10的MD方向的横截面(120X),示出了纤维富集的、伞形的 区域12。可以看出该网幅具有与纵向之间横向的微型褶皱,即脊或折 皱在CD上延伸(进入照片中)。将会认识到,纤维富集区域12的纤维 具有在CD上偏向的取向,尤其在区域12的右侧,其中该网幅接触起 皱织物的关节。该喷流/成型丝网速度δ(喷流速度-丝网速度)对于拉 伸比率有重要影响,这可从图2中看出;该影响明显不同于在普通湿 压产品中见到的影响。
图2是MD/CD拉伸比率(断裂强度)-对-在流料箱喷流速度与成型 丝网速度(fpm)之间的差异的曲线图。上面的U形曲线代表普通的湿压 制的吸收性片材。下面的、较宽的弯曲代表了本发明的织物起绉的产 品。从图2中容易地认识到,根据本发明在喷流/丝网速度δ的宽范围 中实现了低于1.5左右的MD/CD拉伸比率,该范围比所示CWP曲线的 范围大了两倍以上。因此,流料箱喷流/成型丝网速度的控制可用来实 现希望的片材性能。
从图2中还看出,在正方形以下的MD/CD比率(即低于1)是困难 的;如果不是不可能用常规处理获得的话。此外,正方形或以下片材 是由本发明形成的,没有大量的纤维聚集物或“絮凝物”,这对于具 有低MD/CD拉伸比率的CWP产品来说不是这种情况。这一差异部分地 可能归因于为了在CWP产品获得低拉伸比率所需要的较低速度δ并且 部分地归因于以下事实:当根据本发明该网幅从转移面上起绉时,纤 维再分配在起皱织物上。
在许多产品中,横向性能比MD性能更重要,特别在CD湿强度是 关键的商品手巾中。产品报废的主要来源是“选出(tabbing)”或撕去 手巾的仅仅一片,而不是预定片材。根据本发明,通过流料箱对成型 丝网速度δ的控制以及织物起皱,CD相对拉伸率可以有选择地提高。
图3是织物起绉网幅的织物侧的显微照片(10X);在图2中再次 看出,片材10具有由较低基重连接区域14连接的多个非常显著的高 基重、纤维富集的区域12,后者具有在横向(CD)上偏向取向的纤维, 该片材具有在伞形的或纤维富集的区域之间的方向上偏向的纤维取 向。
在图1中也看出了取向偏向,尤其对于当在区域12的中心制备 试样时已经裁切下该伞形的、纤维富集的区域12的CD偏向纤维的情 况。在区域12的左侧,在该连接区域中可以看出,纤维沿着在纤维富 集区域之间的纵向上更多地偏向。这些结构特征在图3中在较低放大 倍数下也容易观察到,其中在区域14中的纤维偏向在伞形的区域之间 延伸。
图4是适合于实施本发明的具有普通的双丝网成形段17,运转毡 19,瓦式加压区16,起皱织物18和杨克式干燥器20的造纸机15的 示意图。成形段12包括一对成形用织物22、24,后者由多个辊26, 28,30,32,34,36和成形辊38所支持。流料箱40将造纸供料以喷 流形式提供给在成形辊38和辊26的辊隙和织物之间的辊隙42。相对 于成形用织物的喷流速度的控制是控制拉伸比率的重要方面,这可由 本领域中的技术人员认识到。供料形成初生网幅44,后者借助于真空, 例如通过真空箱46,在织物上脱水。
该初生网幅前进到被多个辊50,52,54,55支持的造纸毡48并 且该毡与瓦式压辊56接触。当被转移到该毡上时该网幅具有低稠度。 转移可以由真空来协助;例如辊50可以是真空辊(如果希望的话)或现 有技术中已知的拾取器或真空瓦。当该网幅到达该瓦式压辊时,该网 幅在进入到在瓦式压辊56和转移辊60之间的辊隙58中时具有10-25 %,优选20-25%左右的稠度。转移辊60可以是加热辊,如果希望的 话。代替瓦式压辊,辊56能够是普通的吸入压力辊。如果使用瓦式压 辊的话则令人希望的和优选的是,辊54是在毡进入到瓦式压辊辊隙中 之前有效从毡上除去水的真空辊,因为来自供料中的水将在瓦式压辊 辊隙中被加压进入到该毡中。在任何情况下,在换向过程中在54处使 用真空辊或STR典型地是确保网幅保持与该毡接触所希望的,本领域 中技术人员将可以从图中看出。
网幅44借助加压瓦62被湿压到在辊隙58中的毡上。该网幅因 此在58上压缩脱水,在这一工艺的这一阶段中典型地使稠度提高了 15或更多点。在58处显示的构型一般被称作瓦式压辊;对于本发明, 圆筒60作为转移圆筒来运转,它在运转时将网幅44以高速(典型地 1000fpm-6000fpm)输送到起皱织物上。
圆筒60具有光滑表面64,如果需要,它可以提供粘合剂和/或防 粘剂。网幅44粘附于圆筒60的转移面64上,当该网幅在由箭头66 指示的纵向上继续行进时该圆筒60在高的角速度下旋转。在该圆筒 上,网幅44具有纤维的一般随机表观分布。
方向66称为该网幅的纵向(MD)和造纸机10的纵向;而横向(CD) 是在该网幅的平面上垂直于MD的方向。
网幅44典型地在10-25%左右的稠度下进入辊隙58中并且脱水 和干燥到约25到约70%的稠度,然后转移到起皱织物18上,如在该 图中所示。
织物18承载在多个辊68,70,72和压力夹辊或实心压力辊74 上,使得与转移圆筒60之间形成织物起绉辊隙76,如图中所示。
该起皱织物限定在起皱织物18适合于接触辊60的距离上的起皱 辊隙;即,对于网幅施加较大压力使之紧贴在该转移圆筒上。为此目 的,支承(或起皱)辊70可以具有柔软的可变形表面,它将增加起皱辊 隙的长度和增加在织物和片材之间的织物起皱角度并且接触点或瓦式 压辊能够用作辊70以便在高冲击织物起皱辊隙76中增加与该网幅之 间的有效接触,其中网幅44转移到织物18上并在纵向上行进。通过 在起绉辊隙处使用不同的设备,有可能调节织物起皱角度或与起绉辊 隙之间的引出角度。因此,有可能通过调节这些辊隙参数来影响纤维 的再分布的性质和量,可能在织物起皱辊隙76处发生的层离/解粘。 在一些实施方案中希望重新构造Z轴方向纤维间特性,而在其它情况 下希望仅仅在网幅的平面上影响性能。该起皱辊隙参数能够在各个方 向上影响纤维在网幅中的分布,其中包括在Z轴方向以及该MD和CD 上诱导变化。在任何情况下,从转移圆筒转移到起皱织物上是高冲击 性的,在于该织物比该网幅更缓慢地运行并且发生相当大的速度变化。 典型地,在从转移圆筒转移到织物上的过程中,该网幅在任何地方起 绉10-60%和甚至更高。
起皱辊隙76一般在约1/8″到约2″,典型地1/2″到2″的任何地 方的织物起皱辊隙距离上延伸。对于32根CD线条/每英寸的起皱织物, 网幅44因此将在辊隙中任何地方遇到约4到64根纬线长丝。
在辊隙76中的轧点压力,即,在支承辊70和转移辊60之间的 荷载适宜是20-100,优选40-70磅/每线性英寸(PLI)。
在织物起皱后,该网幅继续沿着MD 66前进,在这里它被湿压到 在转移辊隙82中的杨克圆筒80上。在辊隙82处的转移可以在一般约 25-约70%的网幅稠度下进行。在这些稠度下,难以将该网幅足够稳 固地粘附于圆筒80的表面84上以便从织物上彻底地除去该网幅。典 型地,如上所述的聚(乙烯醇)/聚酰胺粘合剂组合物在86处施涂,根 据需要来定。
如果希望,可以在67处采用真空箱以便提高厚度。典型地,使 用约5英寸水柱至约30英寸水银柱之间的真空。
该网幅在属于加热式圆筒的杨克圆筒80上并利用在杨克罩88中 的高喷流速度冲击空气流来干燥。随着该圆筒旋转,网幅44通过起皱 刮刀89从圆筒上起绉并缠绕在卷收辊90上。从杨克式干燥器上将纸 起皱可以通过使用波形的起皱刮刀来进行,如在美国专利No. 5,690,788中公开的一种,该专利的公开内容被引入供参考。波形的 起绉刮刀的使用已经表明赋予几个优点,当用于薄织物产品的生产中 时。通常,使用波形刮刀起绉的薄织物产品具有更高的厚度(caliper), 增大的CD拉伸率,和更高的空隙体积,与使用普通的起绉刮刀生产的 可比的薄织物产品相比。受到波形刮刀的使用之影响的所有这些变化 倾向于与该薄织物产品的改进的柔软度触觉有关。
任选提供具有辊85(a),85(b)的压延站85,以便压延片材,如 果需要的话。
当使用湿起绉方法时,代替杨克干燥器,能够使用冲击空气干燥 器,穿透空气干燥器,或多个圆筒干燥器。冲击空气干燥器公开在下 面专利和申请中,它们的公开内容被引入这里供参考:
Ilvespaaet等人的美国专利No.5,865,955。
Ahonen等人的美国专利No.5,968,590。
Ahonen等人的美国专利No.6,001,421。
Sundqvist等人的美国专利No.6,119,362。
美国专利申请No.09/733,172,标题“Wet Crepe,Impingement -Air Dry Process for Making Absorbent Sheet”,现在与美国专 利No.6,432,267。
穿透干燥设备是现有技术中众所周知的和已描述在Cole等人的 美国专利No.3,432,936中,它的公开内容被引入这里供参考,与公 开了圆筒干燥系统的美国专利No.5,851,353一样。
代表性实施例
通过使用图4的一般类型的装置,以各种重量,起皱比率等等制 备吸收性片材。这一材料在低的干拉伸比率下显示出高CD拉伸率,特 别在图5-9中可以看出。从前面的讨论和下面的实施例可以认识到, 纤维富集区域和连接区域的相对基重,伞形化程度,纤维取向和网状 结构的几何结构通过材料和织物的适当选择,以及控制织物起绉比率, 辊隙参数和喷流/丝网速度δ来控制。
代表性产品的数据对于基片给出在表1中和对于转化片材给出在 表2中。
与下面的表和实施例有关,下列缩写有时出现:
BRT    -浴用薄织物
CD,MD -没有进一步说明,指拉伸强度
CD%,MD% -在指定方向上的断裂拉伸率
CMC   -羧甲基纤维素
CWP   -普通的湿压(辊)
FC    -织物起绉或织物起绉比率
GM,GMT -几何平均值,典型地拉伸
Mod   -模量
比率(Ratio) -干拉伸比率,MD/CD
SPR  -实心压力辊,在图4中见到的辊74
STR  -吸取转向辊,在图4中见到的辊54
T    -吨
TAD  -穿透空气干燥的
‘819 -指在USP 6,827,819的压花图案
表1-代表性实施例1-194-基片数据
  实施例   基重   lb/3000   ft^2   厚度   8片   密/8片   拉伸   MD   g/3in   拉伸率   MD   %   拉伸   CD   g/3 in   拉伸率   CD   %   拉伸   GM   g/3in.   干拉伸   比率   %   1   24.8   77.1   1031   37.1   587   7.6   778   1.75   2   25.4   76.4   1107   37.2   621   7.0   829   1.78   3   24.6   77.9   948   37.3   539   7.4   715   1.76   4   25.6   75.9   1080   36.0   580   7.0   791   1.86   5   24.9   79.6   967   37.0   521   7.4   709   1.86   6   25.0   76.0   814   28.9   487   5.2   628   1.67   7   12.3   58.3   725   33.4   288   8.3   456   2.52   8   12.6   59.2   861   33.3   281   9.8   491   3.07   9   12.4   57.5   790   32.9   297   9.9   484   2.66   10   12.2   56.1   857   31.7   289   9.3   497   2.97   11   12.5   65.7   561   55.9   291   10.4   404   1.93   12   12.2   66.9   576   59.4   218   12.8   355   2.64   13   12.2   68.0   771   54.9   240   14.8   430   3.22   14   12.1   68.3   697   55.4   217   15.8   389   3.21   15   20.0   74.0   768   62.3   484   10.4   610   1.59   16   21.2   68.8   785   58.1   561   6.6   664   1.40   17   12.2   57.6   777   33.1   252   10.0   443   3.08   18   12.4   58.6   787   31.8   273   7.6   464   2.88   19   11.8   54.6   642   29.9   228   8.8   383   2.81   20   12.2   57.3   678   33.0   231   8.6   396   2.93   21   12.6   59.9   700   33.7   251   8.7   419   2.79   22   12.6   59.6   675   34.0   224   7.6   389   3.01   23   12.5   56.9   755   33.6   263   8.3   445   2.88   24   11.9   56.8   724   31.1   262   7.4   435   2.76   25   12.0   55.2   770   32.5   252   7.4   440   3.06   26   25.0   76.6   1245   46.6   769   7.0   979   1.62   27   24.4   67.7   1105   45.4   761   6.5   916   1.45   28   24.3   65.3   911   44.4   818   5.4   863   1.11   29   24.5   65.6   888   44.5   770   5.3   827   1.15   30   21.1   77.5   464   43.4   370   6.2   414   1.25   31   20.9   71.1   494   41.6   378   5.7   432   1.30   32   21.0   67.1   660   43.4   491   5.3   569   1.35   33   20.7   64.4   625   41.4   520   4.9   569   1.20   34   20.9   64.4   695   42.4   557   5.0   622   1.25   35   21.8   88.5   728   48.5   617   4.8   670   1.18   36   21.4   65.7   1012   48.8   806   6.5   903   1.26   37   20.8   77.6   673   47.9   605   6.0   638   1.11   38   20.6   75.7   682   46.7   701   5.5   691   0.97   39   20.6   64.2   722   44.2   699   5.5   710   1.03   40   20.8   64.8   726   44.0   684   5.1   705   1.06
表1-代表性实施例1-194-基片数据(续)
  实施例   基重   lb/3000   ft^2   厚度   8片   密耳/8片   拉伸   MD   g/3in   拉伸率   MD   %   拉伸   CD   g/3in   拉伸率   CD   %   拉伸   GM   g/3in.   干拉伸   比率   %   41   21.2   65.4   829   45.8   804   5.4   816   1.03   42   21.2   70.2   780   49.3   729   5.8   754   1.07   43   21.0   68.8   790   46.6   743   5.7   765   1.06   44   21.6   72.9   793   52.0   770   6.1   781   1.03   45   19.9   70.7   519   53.9   579   6.8   548   0.90   46   22.4   74.5   746   57.2   773   6.4   759   0.96   47   21.7   68.3   664   54.3   702   6.7   683   0.95   48   23.8   75.2   573   71.9   621   7.6   596   0.92   49   24.0   74.0   583   46.1   646   5.5   613   0.90   50   23.0   71.9   543   44.4   557   5.4   550   0.98   51   23.5   69.2   679   53.4   612   6.2   644   1.11   52   23.6   73.0   551   44.6   571   6.1   561   0.96   53   23.6   70.0   603   47.0   737   5.6   666   0.82   54   23.3   73.4   510   59.3   617   6.0   561   0.83   55   24.5   74.0   545   62.3   682   6.8   608   0.80   56   24.2   72.6   569   68.4   676   6.4   620   0.84   57   24.0   70.9   499   59.7   610   8.4   552   0.82   58   24.2   79.5   651   66.3   723   6.1   686   0.90   59   24.0   63.9   528   58.0   670   6.5   595   0.79   60   23.0   63.9   509   57.2   598   7.7   552   0.85   61   23.7   67.6   525   53.8   726   7.4   617   0.72   62   23.7   97.2   657   50.1   785   5.3   718   0.83   63   24.3   65.6   702   43.3   712   4.5   706   0.99   64   22.8   55.2   578   37.6   757   5.2   661   0.76   65   23.1   51.2   592   33.1   813   5.0   694   0.73   66   23.0   68.1   544   59.7   549   7.7   546   0.99   67   24.3   65.0   819   40.3   671   7.5   741   1.22   68   23.0   60.7   614   37.5   667   5.8   639   0.92   69   23.4   61.4   795   40.0   836   5.8   814   0.95   70   23.4   60.3   753   38.4   789   5.7   771   0.95   71   24.3   87.6   737   45.8   833   6.1   784   0.88   72   22.9   59.8   586   36.6   614   5.7   600   0.95   73   25.4   57.3   978   34.9   1043   5.4   1009   0.94   74   23.9   62.6   497   34.1   528   5.4   512   0.94   75   23.5   64.9   554   34.9   394   9.7   466   1.41   76   23.3   63.6   506   37.9   644   5.7   570   0.79   77   21.9   60.6   543   36.1   629   5.5   585   0.86   78   21.9   62.2   538   37.4   629   5.6   581   0.85   79   21.5   51.1   527   32.7   610   5.1   566   0.87
表1-代表性实施例1-194-基片数据(续)
  实施例   基重   lb/3000   ft^2   厚度   8片   密耳/8片   拉伸   MD   g/3in   拉伸率   MD   %   拉伸   CD   g/3 in   拉伸率   CD   %   拉伸   GM   g/3 in.   干拉伸   比率   %   80   21.7   61.5   505   34.4   610   5.8   555   0.83   81   21.1   52.6   441   27.5   576   5.2   504   0.77   82   21.9   63.3   416   33.3   493   5.4   453   0.85   83   21.5   53.8   412   27.1   463   5.4   437   0.89   84   21.5   53.7   505   35.5   476   7.7   490   1.06   85   21.6   64.7   552   41.1   525   7.9   538   1.05   86   21.5   63.2   587   43.9   746   6.5   661   0.79   87   21.5   50.5   571   38.2   715   6.1   638   0.80   88   21.8   59.6   456   34.2   528   5.8   490   0.87   89   21.6   58.7   539   35.3   639   5.8   587   0.84   90   21.6   60.6   612   36.9   395   7.9   492   1.55   91   21.7   58.5   991   41.0   568   7.2   750   1.75   92   22.2   56.4   811   37.0   1051   5.0   923   0.77   93   22.9   84.6   1199   54.9   1318   5.6   1257   0.91   -   -   -   -   -   -   -   -   94   22.3   91.2   976   52.2   1205   5.8   1084   0.81   95   22.8   85.2   1236   53.7   1481   5.6   1353   0.83   96   22.9   84.7   1303   57.5   1553   5.9   1421   0.84   97   22.6   66.6   567   80.9   676   8.5   619   0.84   98   22.3   66.1   423   72.5   624   9.2   513   0.68   99   21.9   63.1   455   73.1   514   9.7   483   0.89   100   22.3   67.1   538   72.5   590   9.2   563   0.91   101   22.1   65.3   1141   48.0   769   7.6   937   1.48   102   22.1   66.3   851   47.2   638   7.9   735   1.34   103   22.1   64.5   780   45.6   568   7.4   665   1.37   104   21.9   63.2   678   43.2   630   6.0   653   1.08   105   21.9   64.5   547   48.3   680   7.0   610   0.80   106   21.9   65.4   582   51.0   711   6.9   643   0.82   107   21.6   65.5   603   51.9   466   9.0   530   1.29   108   21.9   64.6   457   48.3   591   6.7   520   0.77   109   16.7   48.0   2146   26.3   904   6.3   1393   2.37   110   17.1   52.1   2103   27.1   831   5.9   1322   2.53   111   21.1   65.0   692   46.6   596   6.6   642   1.16   112   22.0   57.1   2233   50.7   1658   6.9   1924   1.35   113   21.0   62.7   1452   70.4   776   11.9   1061   1.87   114   21.6   63.5   1509   68.7   1066   10.7   1267   1.42   115   20.6   63.2   1369   69.2   948   10.8   1138   1.45   116   20.7   61.8   1434   70.4   943   10.1   1162   1.53   117   21.6   69.9   1322   70.5   964   10.6   1129   1.37   118   23.4   63.5   1673   50.2   1310   6.7   1480   1.28
表1-代表性实施例1-194-基片数据(续)
  实施例   基重   lb/3000   ft^2   厚度   8片   密耳/8   片   拉伸   MD   g/3in   拉伸率   MD   %   拉伸   CD   g/3in   拉伸率   CD   %   拉伸   GM   g/3in.   干拉伸   比率   %   119   22.6   63.1   689   52.3   589   7.4   637   1.17   120   22.7   57.6   638   50.7   532   8.1   583   1.20   121   22.7   54.4   706   50.6   568   7.4   633   1.24   122   22.4   55.7   640   49.2   583   7.7   611   1.10   123   23.1   57.7   559   46.4   513   7.1   535   1.09   124   23.0   57.6   617   49.0   488   7.0   548   1.27   125   22.9   57.6   597   49.2   478   7.4   534   1.25   126   22.7   56.5   641   49.2   599   6.8   620   1.07   127   22.7   59.6   583   49.4   519   7.4   549   1.13   128   23.0   58.2   702   52.7   586   7.6   641   1.20   129   23.5   59.1   713   52.3   579   7.1   642   1.23   130   23.3   58.9   626   49.3   560   7.6   592   1.12   131   22.7   58.8   624   75.1   587   10.9   605   1.06   132   23.0   59.8   683   78.7   572   11.5   625   1.19   133   22.8   56.9   852   51.7   695   6.8   769   1.23   134   22.9   55.8   896   50.9   709   6.9   796   1.27   135   22.9   56.7   849   50.5   607   6.8   716   1.42   136   23.5   57.6   843   49.4   702   6.5   769   1.20   137   23.2   55.0   615   50.5   684   5.3   648   0.90   138   22.9   58.9   702   76.5   533   10.8   612   1.32   139   21.2   50.8   1068   53.8   996   7.8   1031   1.07   140   20.9   52.0   993   39.2   829   7.6   906   1.20   141   20.9   51.4   1062   53.1   846   7.8   948   1.26   142   20.6   51.7   712   49.2   601   9.1   651   1.19   143   20.7   60.2   877   59.2   594   9.8   722   1.48   144   20.8   60.0   801   63.3   474   10.5   616   1.69   145   18.9   56.0   669   61.6   459   10.9   554   1.46   146   17.0   51.2   555   50.9   580   7.8   567   0.96   147   23.0   53.7   649   29.5   585   4.6   615   1.11   148   20.1   52.2   1098   52.0   1048   5.7   1072   1.05   149   20.1   53.6   517   45.4   472   6.1   494   1.10   150   20.4   55.4   601   43.2   500   5.4   548   1.20   151   20.4   52.8   864   33.6   600   5.0   720   1.44   152   20.5   55.0   798   32.5   745   4.6   771   1.07   153   20.6   58.5   712   38.1   636   5.4   673   1.12   154   20.6   60.5   725   39.3   635   5.3   678   1.14   155   20.6   61.2   680   40.1   592   5.4   634   1.15   156   20.5   60.5   725   36.4   648   5.2   685   1.12   157   20.3   60.0   635   35.9   610   5.3   620   1.05   158   20.4   58.7   713   37.5   604   5.7   655   1.18   159   20.5   61.1   743   36.7   651   5.6   695   1.14
表1-代表性实施例1-194-基片数据(续)
  实施例   基重   lb/3000   ft^2   厚度   8片   密耳/8   片   拉伸   MD   g/3 in   拉伸率   MD   %   拉伸   CD   g/3 in   拉伸率   CD   %   拉伸   GM   g/3in.   干拉伸   比率   %   160   19.8   60.0   691   40.7   611   4.9   650   1.13   161   19.7   59.0   761   40.9   682   4.9   720   1.12   162   20.2   60.4   729   39.2   678   5.0   702   1.08   163   20.0   60.3   781   40.6   665   5.1   720   1.17   164   20.1   58.1   708   36.3   645   5.3   676   1.10   165   20.0   56.8   760   36.7   663   4.9   709   1.15   166   19.9   57.2   684   39.3   610   5.8   645   1.12   167   21.0   63.8   810   48.0   885   6.2   846   0.91   168   20.8   66.5   758   54.1   656   7.3   705   1.15   169   21.0   66.1   696   53.0   619   7.5   656   1.12   170   20.9   66.2   637   52.6   540   7.6   586   1.18   171   21.3   63.6   641   30.1   531   4.4   583   1.21   172   21.4   78.7   580   30.8   486   4.3   530   1.20   173   21.0   65.8   570   21.4   479   4.1   521   1.20   174   20.8   71.5   978   52.5   859   6.5   916   1.14   175   20.0   57.0   714   41.5   644   5.2   678   1.11   176   20.4   65.6   560   41.2   746   4.7   647   0.75   177   20.2   67.7   489   41.6   648   4.7   563   0.76   178   20.4   67.1   543   39.6   662   4.6   599   0.82   179   20.2   67.9   500   39.7   646   4.6   568   0.77   180   20.4   69.5   497   39.5   650   4.8   568   0.76   181   19.8   66.2   476   38.5   602   4.4   535   0.79   182   20.5   68.8   682   42.3   665   5.4   673   1.03   183   20.3   71.0   672   41.1   668   5.7   670   1.01   184   20.2   69.8   672   42.1   613   5.3   641   1.10   185   21.0   72.4   693   42.1   670   5.9   681   1.03   186   21.0   73.2   801   43.2   752   5.6   776   1.07   187   20.6   70.0   774   43.3   746   5.9   759   1.04   188   20.5   76.6   670   60.7   644   6.9   657   1.04   189   20.3   74.2   649   57.1   671   7.0   660   0.97   190   20.3   77.6   765   58.6   719   7.5   740   1.07   191   20.3   78.9   764   62.5   710   7.5   736   1.08   192   20.5   78.8   776   62.7   696   7.5   735   1.12   193   20.6   78.9   889   64.5   776   7.8   830   1.15   194   20.7   67.4   1368   43.5   1305   5.2   1335   1.05
表2-代表性实施例195-272-成品数据
  实施例   压花   感觉柔   软度   柔软度   450GMT   BW   厚度   MD   CD   GMT   MD%   CD%   MDBr   Mod   CDBr   Mod   GMBr   Mod   MD/C   D   195   无   15.6   15.9   20.3   58.8   578   478   526   32.9   4.3   17.6   112.1   44.4   1.21   196   ‘819   16.3   16.2   18.7   70.9   509   346   420   25.4   6.1   20.0   57.1   33.8   1.47   197   无   15.3   15.6   22.3   68.2   561   556   559   53.9   6.9   10.4   81.5   29.1   1.01   198   ‘819   15.9   16.0   21.2   75.1   504   495   499   46.0   7.7   10.9   64.6   26.6   1.02   199   无   15.6   16.2   23.6   65.8   613   596   604   34.6   4.9   17.7   123.9   46.8   1.03   200   ‘819   16.3   16.1   20.9   72.6   450   354   399   23.0   5.4   19.6   65.1   35.7   1.27   201   无   15.4   16.0   22.2   62.9   614   618   616   36.0   4.9   17.1   125.7   46.3   0.99   202   ‘819   15.8   16.1   21.6   74.6   579   493   534   28.7   6.1   20.2   81.1   40.4   1.17   203   无   15.9   16.1   22.9   65.7   505   503   504   30.3   5.3   16.6   96.0   39.9   1.00   204   ‘819   16.3   16.2   21.8   78.7   468   400   432   24.6   6.4   19.0   62.8   34.5   1.17   205   无   15.5   16.2   23.0   64.8   605   677   640   37.2   4.6   16.3   145.6   48.7   0.89   206   ‘819   15.9   16.2   21.6   76.7   510   520   515   28.1   6.2   18.2   83.9   39.1   0.98   207   无   15.8   16.1   22.6   68.7   493   559   525   46.6   5.5   10.6   101.7   32.8   0.88   208   ‘819   16.1   16.1   20.7   73.7   457   446   451   37.7   6.7   12.1   67.1   28.5   1.03   209   无   15.2   15.6   23.4   67.3   496   628   558   45.4   6.0   10.9   104.9   33.8   0.79   210   ‘819   15.9   16.1   22.1   76.4   498   514   506   40.0   6.7   12.5   76.5   30.9   0.97   211   无   15.4   15.8   22.6   70.1   567   561   564   50.8   5.0   11.1   111.9   35.3   1.01   212   ‘819   16.2   16.3   20.7   75.8   505   447   475   36.8   6.8   13.7   66.1   30.1   1.13   213   无   15.7   16.1   24.2   67.0   536   583   559   47.5   6.9   11.3   84.4   30.9   0.92   214   ‘819   16.2   16.2   21.7   72.9   444   427   435   38.6   7.8   11.5   54.9   25.1   1.04   215   无   16.3   16.6   22.2   62.0   495   567   529   46.7   6.0   10.6   94.3   31.6   0.87
表2-代表性实施例195-272-成品数据(续)
  实施例   压花   感觉柔软度   柔软度   450GMT   BW   厚度   MD   CD   GMT   MD%   CD%   MDBr   Mod   CDBr   Mod   GMBr   Mod   MD/   CD   216   ‘819   16.3   16.2   20.8   68.2   414   427   420   37.7   7.0   11.0   60.9   25.9   0.97   217   无   16.3   16.6   22.7   60.7   519   540   530   50.8   6.3   10.2   86.1   29.7   0.96   218   ‘819   16.6   16.6   21.3   68.0   483   438   460   42.4   7.6   11.4   58.0   25.7   1.10   219   无   16.0   16.7   24.1   64.6   593   711   649   51.0   6.8   11.6   104.5   34.9   0.83   220   ‘819   16.3   16.7   22.3   71.9   547   561   554   42.8   7.9   12.8   72.0   30.3   0.97   221   无   16.3   16.6   23.3   66.0   537   532   534   50.9   7.1   10.5   74.9   28.1   1.01   222   ‘819   16.3   16.1   20.6   70.2   426   379   402   37.4   8.5   11.4   44.7   22.5   1.12   223   无   15.9   16.4   22.8   56.4   565   610   587   30.5   5.0   18.5   123.1   47.7   0.93   224   ‘819   16.6   16.4   20.9   68.2   440   362   399   25.3   5.7   17.4   63.4   33.2   1.22   225   ‘819   16.9   16.5   22.5   68.2   347   330   338   23.3   6.2   14.9   53.3   28.2   1.05   226   ‘819   16.8   16.6   21.9   67.5   524   299   396   29.9   9.8   17.5   30.5   23.1   1.75   227   ‘819   16.6   16.6   21.0   68.6   443   435   439   26.6   6.0   16.7   73.2   35.0   1.02   228   ‘819   16.8   16.7   20.8   60.6   429   432   430   23.3   5.5   18.5   76.4   37.6   0.99   229   ‘819   16.6   16.4   20.7   68.9   373   392   382   19.3   5.6   19.5   70.3   37.0   0.95   230   ‘819   16.9   16.6   20.4   61.5   364   360   362   17.7   5.1   20.9   70.7   38.4   1.01   231   ‘819   17.3   16.7   20.4   70.6   314   286   300   17.4   5.8   17.9   49.4   29.7   1.10   232   ‘819   17.4   16.9   20.3   65.1   306   284   295   15.7   5.9   19.3   48.5   30.6   1.08   233   ‘819   16.7   16.5   20.4   64.4   452   355   401   25.5   8.1   18.2   44.1   28.3   1.27   234   ‘819   16.5   16.4   20.3   69.9   484   385   432   27.5   7.9   17.5   48.3   29.1   1.26   235   ‘819   16.1   16.2   20.4   69.1   488   497   492   27.7   6.8   17.6   72.2   35.7   0.98   236   ‘819   16.3   16.5   20.7   65.3   482   549   514   27.3   6.3   17.9   86.6   39.4   0.88   237   ‘819   18.3   18.0   20.3   64.7   403   325   362   22.9   5.7   17.6   56.8   31.6   1.24   238   ‘819   17.7   17.6   20.2   65.9   463   393   427   24.4   5.9   19.0   67.0   35.7   1.18   239   ‘819   18.2   17.9   20.3   63.3   494   278   371   25.0   7.8   19.8   35.9   26.6   1.78   240   ‘819   17.9   18.1   20.4   68.2   494   515   504   55.8   8.4   8.9   61.7   23.4   0.96   241   ‘819   17.8   17.8   20.3   65.4   467   424   445   50.6   8.7   9.2   48.8   21.2   1.10   242   ‘819   15.7   16.7   20.9   68.0   938   579   737   35.0   7.4   26.8   78.7   45.9   1.62   243   ‘819   16.1   16.5   20.6   68.9   709   456   569   32.9   7.6   21.6   60.0   35.9   1.55   244   ‘819   16.8   16.9   20.1   67.1   556   434   491   30.6   6.7   18.2   65.1   34.4   1.28   245   ‘819   16.3   16.2   20.3   67.0   471   345   403   37.6   8.7   12.6   39.8   22.4   1.37   246   ‘819   16.4   16.2   20.4   67.8   397   438   417   34.1   7.1   11.7   61.1   26.7   0.91   247   ‘819   16.7   16.7   21.2   60.9   525   422   471   34.6   7.5   15.2   56.3   29.2   1.24   248   ‘819   15.8   16.2   22.0   60.5   628   520   571   66.4   11.2   9.4   47.5   21.1   1.21   249   ‘819   16.1   16.4   22.1   59.4   636   458   540   62.9   10.8   10.1   42.0   20.6   1.39   250   B&S,M   17.3   17.0   19.2   64.3   479   295   376   33.8   6.1   14.3   49.6   26.6   1.62   251   Mos.Iris   17.5   17.5   20.0   59.7   517   372   439   36.7   6.2   14.1   59.7   29.0   1.39   252   B&S,M   16.6   16.5   19.8   67.0   487   359   418   27.0   5.5   17.7   65.0   34.3   1.36   253   B&S,M   16.9   16.6   19.1   65.0   453   303   370   26.0   5.2   17.4   58.0   31.6   1.50   254   B&S,M   17.0   17.0   19.4   69.1   537   379   451   25.6   5.3   20.8   73.8   39.2   1.42
表2-代表性实施例195-272-成品数据(续)
  实施例   压花   感觉柔软   度   柔软度   450GMT   BW   厚度   MD   CD   GMT   MD%   CD%   MDBr   Mod   CDBr   Mod   GMBr   Mod   MD/   CD   255   Mos.Iris   17.6   17.7   19.9   65.1   571   398   477   28.4   5.4   20.1   73.8   38.5   1.43   256   B&S,M   17.0   16.9   19.3   65.8   507   347   419   25.2   5.4   20.0   64.3   35.8   1.46   257   Mos.Iris   18.1   18.3   19.5   65.4   603   427   507   31.9   5.1   18.9   83.8   39.8   1.41   258   B&S,M   18.0   18.0   18.7   67.3   553   373   454   28.9   4.9   19.1   76.2   38.1   1.48   259   B&S,M   17.9   18.0   19.0   69.0   594   385   478   30.0   5.3   20.8   74.3   39.0   1.54   260   B&S   17.1   17.0   19.6   68.1   521   334   417   30.2   6.5   17.5   51.9   30.1   1.56   261   B&S   16.3   16.3   20.5   76.4   513   401   454   39.0   8.1   13.1   49.3   25.4   1.28   262   DH   16.9   17.0   21.9   70.0   672   353   487   19.0   5.0   35.0   71.0   50.0   1.90   263   B&S   16.8   17.1   22.1   64.0   700   406   533   21.0   4.0   34.0   94.0   57.0   1.72   264   无   16.6   17.3   22.5   63.0   814   518   649   23.0   4.0   35.0   137.0   69.0   1.57   265   DH   16.6   17.4   21.8   68.0   1166   407   688   23.9   6.2   49.0   66.0   57.0   2.86   266   DH   17.6   17.7   17.0   65.0   583   413   491   31.0   6.0   19.0   69.0   36.0   1.41   267   DH   17.8   17.7   22.8   77.0   485   385   432   32.0   6.0   15.0   68.0   32.0   1.26   268   DH   16.4   16.6   23.0   85.0   658   370   493   29.0   6.0   23.0   58.0   36.0   1.78   269   DH   17.9   18.0   21.1   78.0   565   393   471   30.0   5.0   19.0   77.0   38.0   1.44   270   DH   17.8   18.3   21.4   84.0   792   431   584   31.0   6.0   25.0   76.0   44.0   1.84   271   M3   18.6   18.5   20.8   104.0   629   291   428   25.0   7.0   25.0   41.0   32.0   2.16   272   DH   17.4   18.0   21.5   86.0   844   468   628   32.0   6.0   26.0   84.0   47.0   1.80   273   B&S   16.4   16.2   21.0   72.8   482   367   421   21.8   4.7   22.2   78.4   41.7   1.32   274   B&S   16.2   16.1   20.4   77.9   498   332   407   22.1   4.9   22.5   67.5   39.0   1.50   275   B&S   16.5   16.3   20.5   71.3   459   309   377   16.5   4.6   27.9   67.9   43.5   1.49   255   Mos.Iris   17.6   17.7   19.9   65.1   571   398   477   28.4   5.4   20.1   73.8   38.5   1.43   256   B&S,M   17.0   16.9   19.3   65.8   507   347   419   25.2   5.4   20.0   64.3   35.8   1.46   257   Mos.Iris   18.1   18.3   19.5   65.4   603   427   507   31.9   5.1   18.9   83.8   39.8   1.41   258   B&S,M   18.0   18.0   18.7   67.3   553   373   454   28.9   4.9   19.1   76.2   38.1   1.48   259   B&S,M   17.9   18.0   19.0   69.0   594   385   478   30.0   5.3   20.8   74.3   39.0   1.54   260   B&S   17.1   17.0   19.6   68.1   521   334   417   30.2   6.5   17.5   51.9   30.1   1.56   261   B&S   16.3   16.3   20.5   76.4   513   401   454   39.0   8.1   13.1   49.3   25.4   1.28   262   DH   16.9   17.0   21.9   70.0   672   353   487   19.0   5.0   35.0   71.0   50.0   1.90   263   B&S   16.8   17.1   22.1   64.0   700   406   533   21.0   4.0   34.0   94.0   57.0   1.72   264   无   16.6   17.3   22.5   63.0   814   518   649   23.0   4.0   35.0   137.0   69.0   1.57   265   DH   16.6   17.4   21.8   68.0   1166   407   688   23.9   6.2   49.0   66.0   57.0   2.86   266   DH   17.6   17.7   17.0   65.0   583   413   491   31.0   6.0   19.0   69.0   36.0   1.41   267   DH   17.8   17.7   22.8   77.0   485   385   432   32.0   6.0   15.0   68.0   32.0   1.26   268   DH   16.4   16.6   23.0   85.0   658   370   493   29.0   6.0   23.0   58.0   36.0   1.78   269   DH   17.9   18.0   21.1   78.0   565   393   471   30.0   5.0   19.0   77.0   38.0   1.44   270   DH   17.8   18.3   21.4   84.0   792   431   584   31.0   6.0   25.0   76.0   44.0   1.84   271   M3   18.6   18.5   20.8   104.0   629   291   428   25.0   7.0   25.0   41.0   32.0   2.16   272   DH   17.4   18.0   21.5   86.0   844   468   628   32.0   6.0   26.0   84.0   47.0   1.80
薄织物产品
用这里所述的高含固量织物起绉工艺制造的薄织物产品(非永久 湿强度等级,其中柔软度是关键参数)能够使用许多与用于制造手巾产 品(永久湿强度等级,其中吸收性是重要的,在使用中的强度是关键的, 和柔软度不如在薄织物等级中那么重要)时的相同工艺参数。在任一种 类中,能够制造1-层和2-层产品。
纤维:使用高用量的硬木纤维最佳地生产软薄织物产品。这些 纤维没有较长的、较强的软木纤维那样粗糙。此外,这些较细、较短 的纤维显示出高得多的支数(counts)/每克的纤维。在负像侧,这些硬 木纸浆一般含有更细物,它是用于制造纸浆的木结构所引起。除去这 些精细物能够增加在最终纸片材中存在的实际纤维的数目。同时,除 去这些微细物会减少在干燥过程中的粘结潜力,使得用化学品或在造 纸机的干燥端用刮刀起皱来容易地使该片材解粘。从高纤维支数/每克 纸浆获得的关键益处是片材不透明度或缺乏透明度。因为甚至在片材 被触碰之前在视觉上判断薄织物片性能的一大部分,所以,这一光学 性能是质量感知的重要贡献者。软木纤维通常需要提供网眼状结构, 硬木纤维能够在该结构上排列来优化柔软度和光学性质。但甚至对于 软木而言,纤维粗糙度和纤维根数/每克是重要的性能。长的、薄的、 柔性、软木纤维状北方软木比长的、粗糙的,厚的、硬质南方软木有 更多根的纤维/每克。纤维选择的净结果是,对于这一技术,与全部其 它技术一样,北方软木和低微细物,低粗糙度硬木象桉树木材一样可 以制造出在给定的拉伸下比北方硬木更软而且比南方硬木还更加软的 片材。
化学品:薄织物片材一般使用各种化学品来帮助满足关于特性 和柔软度的消费者需求。一般,更优选将干强度化学品施加于纸浆掺 混物的长纤维部分上,而不太优选使用匀浆机来扩展拉伸。匀浆精练 会产生微细物和倾向于形成更多的更高粘结强度的粘结键,因为匀浆 精炼使纤维更柔性,这会提高在干燥过程中纤维-纤维接触的潜力。另 一方面,干强度添加剂会提高可用粘结键的强度,但不增加粘结键的 数目。此类片材然后终结变得内在地更具柔性,甚至在织物起绉方法 的织物起皱步骤之前。将解粘化学品施加于硬木部分上是令人希望的, 因此这些硬木纤维具有较低的彼此粘结的倾向,但保存了粘结于软木 纤维的网络上的能力,该能力主要是纸的工作拉伸强度的关键所在。 在一些情况下,临时湿强度剂也可以与软木和硬木纤维一起添加来改 进湿强度特性的感知,但不牺牲冲洗能力或腐化池安全性。
织物起绉:这一工艺步骤主要带来薄织物片材的独特和令人希 望的性能。增加织物起皱会提高厚度和减少拉伸。此外,织物起皱改 变了在基础片材中测量的拉伸比率,让片材具有相等的MD/CD拉伸或 让片材具有比CD拉伸更低的MD拉伸。然而,希望薄织物片材在两个 方向上显示出相等的拉伸,因为大多数的产品是以与片材方向无关的 方式使用。例如,在卫生纸中的“捅透(poke through)”受到这一拉 伸比率连同以下事实的影响:织物起皱比普通的技术产生更高的CD 拉伸率,尤其在较低的MD/CD比率下。对于其它技术,相同的拉伸材 料难以穿过高速加工设备,归因于在边缘上引发的撕裂倾向于在整个 片材上传播,从而引起破裂的倾向。与普通的产品相反,利用本发明 方法制造的相同拉伸比率的织物起绉片材保留了沿着MD方向撕裂的 倾向,因此显示出了自体愈合的倾向,使得首先边缘撕裂并开始传播 到该片材中。这一出乎意外的和独特的性能连同在这一步骤中伸入到 该片材中的该拉伸耐拔拉的性能一起允许在1或1以下的拉伸比率下 有高效、高速的操作。此外,这些相同的性能导致了在最终产品的穿 孔上净撕裂。薄织物产品的织物起绉水平是约30%到约60%。尽管更 高水平的是可能的,但是这一范围考虑到各种各样的质量水平,但在 造纸机的生产能力上没有变化。
织物:织物的设计是该工艺的突出方面。但是织物的参数超过 了编织到其中的凹陷(depressions)的尺寸和深度。它们的形状和布置 也是非常重要的。构成机织织物的线条的直径同样是重要的。例如, 处在凹陷(该片材起绉进入该凹陷中)的引导边缘上的关节(knuckle) 的尺寸决定了织物起绉比率和基重的参数,在这些参数下在片材中出 现孔穴。该挑战,尤其对于薄织物等级,是使这些凹陷变得尽可能深 且同时有尽可能最细的线条直径,因此允许更大的织物起绉比率,从 而在给定的比率下导致更大的片材厚度。显然,织物设计需要根据所 生产的片材的重量来变化。例如,具有高的强度,厚度和柔软度的很 高质量的、优质的2-层手纸能够在44M-设计织物上制造。该44G也能 够用于制造具有非常好的结果的更重(至多2x)重量单层片材。织物设 计的另一个性能是在片材中形成图案。一些织物设计能够赋予非常值 得注意的图案而其它织物设计会产生似乎消失在背景中的图案。常常 消费者想看到在倒置时进入到片材中的压花图案并且在这种情况下较 少片材图案也许是更令人希望的。一些等级可以在没有压花的情况下 制造出来和因此由织物起皱步骤赋予的更明显图案将帮助为片材赋予 “优质”外观。消费者倾向于将素片材看作低质量、低价的产品。
起绉:因为在本发明的典型织物起绉工艺中该片材被转移到杨 克式干燥器中以便进行最后干燥,该片材能够(和通常)从这一干燥器 上起绉进一步增强该柔软度。薄织物产品从可以为片材增加厚度和柔 软度的这一起皱步骤大大地受益。在该片材的杨克(干燥器)侧上尤其 倾向于形成光滑表面。此外,因为卷筒起绉和织物起绉的比率能够与 生产速率(卷筒速度)无关地进行变化,在改变最终片材的性能上有相 当大的宽容度。提高该卷筒起绉/织物起绉比率会减少纸的双侧边度, 因为较低织物起绉将需要一定水平的MD拉伸。在纸中有不突出的“眉 毛”结构,它会影响两侧边度。此外,提高该比率也会提高该不透明 度和在相同的所测量的厚度(caliper)下的厚度(thickness)的感知。 常常希望维持合理的比率(比如说25-50%卷筒起绉/织物起绉)以增强 与片材的外观质量有关的这些“无形”性能的消费者感知度。
压延:无论如何,更多的压延是更好的,只要在片材中维持合 理水平的厚度以供后续转换(convert)用。太少的厚度则需要太多的 压花,这会降低总质量。因此,生产优质卫生纸的一个策略是使用最 粗糙的织物但在片材中不形成孔穴,降低织物起皱水平,这样更多的 MD拉伸率将来自卷筒起绉部分和仍然在压延之前获得足够的厚度,从 而在压延步骤中除去这一厚度的至少约20-40%。这些压延水平倾向于 减少片材的侧边度。另外地,优质片材能够用更细的织物但以更低的 卷筒起绉/织物起绉比率来制备。因为更细织物生产出更多、更小的圆 穹,更多织物起皱能够用于获得希望的厚度但不过度增大侧边度。在 大多数情况下,获得了减少的侧边度。在这一情况下卷筒起绉/织物起 绉比率能够低到约5-10%。压延因此能够最大化来实现希望的柔软度。 当因为织物起皱显著地降低拉伸强度而使用较强纤维时和当织物的设 计在片材中产生低于平均两侧边度时,这一方法是令人希望的。
手巾产品
手巾产品按照与薄织物片材类似的方式在各种工艺参数上表现。 然而,在很多情况下手巾产品利用相同的参数但在相反的方向上有在 相同方向上的一些。例如,两种产品形成希望的厚度,因为厚度直接 与在薄织物产品中的柔软度和在手巾产品中的吸收性相关。在下面参 数中,仅仅讨论与薄织物情形之间的差异。
纤维:手巾在使用时需要功能性强度,这通常指当润湿时的情 形。为了达到这些所需的拉伸,长的软木纤维是以与薄织物产品的比 率大致相反的比率来使用。70到90%软木纤维的比率是常见的。匀浆 法能够使用但倾向于闭合该片材,以致于后续的织物起皱不能“打开” 该结构。这导致更缓慢的吸收速率和更低的容量。与薄织物产品不同, 微细物(fines)能够在手巾片材中使用,只要不使用太多的硬木就行, 因为这再次倾向于闭合该片材并且还会减少它的拉伸能力。
化学品:令人吃惊地,解粘剂也能够用于手巾!但它们的使用 必须审慎地进行。同样地,纤维的匀浆精炼需要调节到较低水平,以 保持该片材畅通和快的吸收。因此通常添加化学品强度剂。当然必须 添加湿强度化学品以防止在使用中的扯碎。但为了达到高的湿拉伸水 平,湿拉伸与干拉伸的比率必须最大化。如果干拉伸水平变得太高, 则手巾片材变得太“纸状”并且由消费者判断为低质量。因此,添加 湿强度剂和CMC来将CD湿/干比率从典型的25%提高到希望的30-35% 范围。然后为了生产更软片材(和因此由消费者感觉为更优质的片材), 能够添加解粘剂,后者优先地减少CD干拉伸,与湿值相比。解粘剂和 软化剂也能够被喷雾到片材上,在此之后干燥进一步改进触觉性能。
织物起绉:增加该织物起皱会直接提高该吸收性。因此希望将 织物起皱最大化。然而,FC也减少拉伸,因此有一个必须维持的平衡。 手巾片材有时不能显示出高水平的MD拉伸,因为所使用的分配器 (dispensers)的类型。在这些情况下FC必须也加以限制。因此,手巾 需要平均比薄织物片材更粗糙的织物设计。此外,因为这些湿片材典 型地显示出相当大的湿强度,它们更难以在与薄织物片材相同的稠度 下模塑。
织物:更粗糙的织物对于手巾一般是令人希望的。双层手巾片 材典型地以良好结果在44G或36G织物或更粗糙织物上制得,虽然良 好结果能够用更细织物获得,尤其如果该织物起绉比率得到提高。单 层片材常常需要甚至更粗糙的织物连同其它技术一起来制备可接受的 片材。在片材中更长的纤维和更高的强度允许这些织物的使用和在片 材中出现孔穴之前有更高的FC比率。
起绉:在手巾片材上进行极少的起皱。起皱确实提高厚度,但 按照与CWP片材类似的方式来进行。这一厚度在润湿时会消失并且该 片材膨胀。当润湿时,从织物起皱产生的厚度在功能上象干海绵。该 片材在Z方向上膨胀并能够在MD与CD方向上收缩。这一行为大大地 增加手巾的可觉察的吸收性并使它们看起来类似TAD手巾。在很多情 况下,Taurus技术的锯齿状刮刀与织物起绉工艺的结合使用可以改进 手巾片材的吸收性,厚度,和柔软度。该CD刚硬性下降,同时CD拉 伸率得到提高。在刮刀上产生的厚度越高允许更多的压延和因此带来 更多的片材光滑度。在一些情况下希望在不起绉的情况下从杨克式干 燥器上拔起该片材。这也许是盥洗室手巾的情况,其中柔软度与在卷 筒上获得更多纸片材相比是次要的。参见Druecke等人的美国专利No. 6,187,137以及与本申请同日提交的悬而未决的美国专利申请No 和          ,代理案卷No 12389P1和12611P1。
压延:由于两个关键理由,手巾片材从压延受益。首先,压延 使该片材变光滑和改进该触觉感。其次,它“压破”由织物为该片材 的触感赋予更多Z方向深度所产生的圆穹并且常常在给定的厚度下改 进吸收性能。
薄织物的数据概述
几个造纸机加工工具和压花图案用来生产1层零售和商品的草 纸。工艺参数包括:织物起绉%,卷筒起绉%,软化剂添加量,软化剂 类型,软化剂定位,纤维类型,HW/SW比率,压延荷载,橡胶和钢压 延,起皱织物式样,MD/CD比率和杨克式涂覆化学品。压花图案包括: ‘819,M3,双心,蝶形和旋流形,有微型(Micro)和马赛克(Mosaic) 彩虹的蝶形和旋流形。最佳的商品1层草纸(BRT)原型含有40%北方HW 和60%再生纤维,在20磅基重和450GMT,实现17.5感觉柔软度。最 佳的零售1层BRT原型含有80%南方HW和20%南方SW,在20.5磅基 重和450GMT,实现16.9感觉柔软度。
该目标包括确定:使用南方硬木(HW)和软木(SW)生产具有17.0 的感觉柔软度的1层零售薄织物的工艺要求;使用HW和再生纤维生产 具有17.0的感觉柔软度的1层商品薄织物的工艺要求以及纤维和其它 工艺参数对于感觉柔软度和物理性能的影响。
17.0的该商品1层BRT感觉柔软度是在20磅基重下实现的。消 费者试验将决定了减少的基重对于产品的消费者接受程度的影响。
通过使用南方HW和SW以21.4磅/3000平方英尺制造1层零售 薄织物,在450GMT下实现的最高感觉柔软度是16.9。
通过使用南方HW和SW以20.5磅/3000平方英尺制造1层零售 薄织物,在450GMT下实现的最高感觉柔软度是16.9。
通过使用40%HW和60%再生纤维(FRF)以20.2磅/3000平方英 尺制造1层商品薄织物,在450GMT下实现的最高感觉柔软度是17.5。 对于这里报道的全部工作,平均感觉柔软度是16.9。通过使用100%FRF 以22.1磅/3000平方英尺制造1层商品薄织物PS,在450GMT下实 现的最高感觉柔软度是16.4。
通过使用Aracruz HW和Marathon SW以19.8磅/3000平方英 尺制造1层零售薄织物,在450GMT下实现的最高感觉柔软度是18.3。 对于这里报道的全部工作,平均感觉柔软度是18.0。
钢/钢压延导致在等同荷载下更高的厚度减少和更高的感觉柔软 度,与橡胶/钢丝压延相比。
增加压延荷载似乎增大了感觉柔软度,但在高于65PLI下压延 会减少柔软度,当使用原始的HW和再生纤维时。对于HW和SW,80PLI 是上限。
在恒定的行起绉%下,织物起绉%的增加导致CD拉伸率的提高和 CD破裂模量的下降。然而,在恒定的GMT下成品感觉柔软度没有受影 响。
在恒定的行起绉%下,改变织物起绉%-对-卷筒起绉%的各自量不 影响感觉柔软度。
在这一研究中使用的起皱织物的类型影响到基片厚度,但不显著 地影响感觉柔软度。粗网眼织物产生更高基片厚度和允许更高压延水 平。
具有1.0MD/CD拉伸比率(MD拉伸等于CD拉伸)的1-层BRT在感 觉柔软度上等于具有1.8的传统MD/CD比率(更高的MD拉伸)的1-层 BRT。在这种情况下,柔软度取决于GMT,但不是CD强度或CD模量。
造纸供料效果
在表3和4中的纤维混合物是在类似的工艺条件下进行,并生产 1层BRT。感觉柔软度进行测量并使用来自附件的数据中的强度-柔软 度值用下式调节到450GMT:(感觉柔软度)+((450-GMT)* (-0.0035))。桉树和Marathon SW造纸供料导致比其它供料高得多的 柔软度。该南方HW和SW供料目前用于零售2-层薄织物。它是在PM#2 上开发1-层BRT原型时目前使用的造纸供料。用Marathon SW替代南 方SW稍微地改进柔软度(第一表)。迄今,16.9是在450GMT下实现 的最佳感觉柔软度(第二表)。仅仅含有南方纤维的全部工作的平均值 是16.4。在450GMT下实现该17.0感觉柔软度目标代表了重要的技 术挑战。本发明的织物起绉工艺生产出极低模量片材,它是零售或商 品BRT可接受的。然而,因为该片材用织物贴附于杨克干燥器上,在 干燥器上有较少的接触面积。在杨克起皱过程中,与通常用毡贴附于 杨克干燥器上相比,该片材表面发生更低程度光滑化。这导致法兰绒 状触感,与普通起皱的丝状触感不同。片材的气流侧,与在普通的湿 压起皱中一样,不如干燥器侧光滑。在1-层产品中该气流侧有助于总 体柔软度,因为它不能象在2-层产品中那样隐藏到内部。这一结合会 导致更低的感觉柔软度评级。改进柔软度的当前途径是用较粗糙的起 皱织物增长厚度,添加软化剂和用“高”荷载压延使该片材变光滑并 减少两侧边度。薄织物(商品)供料,用于1-层BRT,将是40%北方HW 和60%再生纤维。在下表中,FRF是Fox River再生的湿式叠加纤维 (wet-lap)。FRF是高亮度再生纤维。尽管仅仅少数的数据点,17.5 感觉柔软度迄今为止是最佳的。平均值迄今是16.9。这里该17.0柔 软度目标是较低挑战。在下面表中的全部数据是掺混式基片的。HW和 SW通常在单独的制浆机中制备并且从不同的柜中运行。该纤维通常在 扇式中掺混,产生纤维的均质掺混物。
表3

表4


橡胶/钢压延
为了减少1层BRT的双侧边度,橡胶辊和普通的钢压延辊与普通 的钢/钢压延对比。该橡胶辊放置在片材的干燥器侧。下表5-7显示了 使用不同硬度的橡胶辊时压延荷载对于基片厚度的影响。两个橡胶辊 对于等同的压延荷载导致类似水平的厚度减少。该钢/钢辊在等同荷载 下导致高得多的厚度减少,从下面的图中看出。比(标称)80P+J辊 更硬的56P+J辊应该在等同荷载下已引起更多厚度损失。该(标称)80 P+J辊先前已经使用和它的实际测量P+J值是70。它的覆盖厚度是5/8 英寸,相比之下对于56P+J辊是1英寸。对于具有5/8-英寸覆盖厚 度的70P+J辊而言的计算辊隙宽度稍微低于具有1-英寸覆盖度的56 P+J辊的值。这解释了对于“80P+J”辊见到的更高的厚度减少。
表5
  压延机类型   压延机荷载,   PLI   8个片材厚   度,密耳*   厚度减少,%   80P+J/钢   0   88.5   -   80P+J/钢   25   77.5   12.4   80P+J/钢   55   71.1   19.7   80P+J/钢   80   67.1   24.2   80P+J/钢   100   64.4   27.2
*21磅(lb)基片
表6
  压延机类型   压延机荷载,   PLI   8个片材厚   度,密耳*   厚度减少,%   56P+J/钢   0   89.4   -   56P+J/钢   25   80.0   11.7   56P+J/钢   50   75.7   15.4   56P+J/钢   50   75.9   15.1   56P+J/钢   80   72.4   18.9   56P+J/钢   80   73.2   18.1   56P+J/钢   100   72.9   18.4   56P+J/钢   200   65.9   26.3   56P+J/钢   200   65.6   26.6
*23磅(lb)基片
表7
  压延机类型   压延机荷载,   PLI   8个片材厚   度,密耳*   厚度减少,%   钢/钢   0   86.1   -   钢/钢   25   69.4   19.3   钢/钢   25   72.8   15.4   钢/钢   50   61.4   28.7   钢/钢   50   61.8   28.2   钢/钢   80   55.5   35.5   钢/钢   100   54.7   36.4   钢/钢   200   49.5   42.4
*23磅(lb)基片
随着压延载荷增长,对于全部类型的压延辊,双侧边度显著减少。 然而,用橡胶/钢辊压延的片材触感不如钢/钢压延基片那样柔软。图 9表明在给定的GMT下,感觉柔软度比钢/钢压延片材高了约0.4柔软 度单位。
几个基片通过使用该钢/钢辊在不同的荷载下压延。压延站位于 造纸机上的卷筒之前。这些基片然后在转化成1-层BRT过程中被压花。 下面的图显示,压延机荷载对于含有优质纤维(即桉树HW和Marathon SW)的片材的感觉柔软度有较小影响。对于含有北方HW和Fox River 次级纤维的片材,柔软度在65PLI压延机荷载下得到改进,但是当压 延机荷载增加到80PLI时会减少。随着压延机荷载增加,该南方片材 稍微地增加柔软度。可变的工艺条件和不同的压花图案使得难以定量 化对于柔软度的压延效应。然而,似乎表明一些压延会改进柔软度, 但过度压延会降低柔软度。
喷软化剂对比
Hercules D1152,TQ456和TQ236作为被加到片材的气流侧上的 喷雾软化剂来进行对比。下面表显示该结果。当对于GMT进行调节时, 在软化剂之间没有柔软度差异。Hercules M-5118也作为喷雾软化剂 来试验。这一材料是聚丙二醇醚,是现有技术中已知的。然而,当它 以2磅/T的量被喷雾到片材的气流侧上时,尽管该片材处于4-英尺干 燥器(转移圆筒,图3)上,该片材无法粘附于该起皱织物上。当喷雾 位于片材的干燥器侧上时,在吸取转向辊(STR)之前的毡上或在实心压 力辊(SPR)之前的起皱织物上,该片材分别都不粘附于4-英尺干燥器 或杨克式干燥器上。另一种软化剂不导致粘合性问题和不会负面影响 在2磅/吨下的杨克涂覆。然而,在4磅/吨和更高的涂覆量下,全部 导致不稳定的杨克涂层。结果给出在表8中。
表8
  压花图案   压延辊   喷雾软   化剂   软化剂,   磅/吨   在450GMT下   的感觉柔软度   ‘819   80P+J/钢   TQ236   2   16.1   ‘819   80P+J/钢   D1152   2   16.1   ‘819   56P+J/钢   D1152   2   16.2   ‘819   56P+J/钢   TQ456   2   16.1
湿端软化剂对比
软化剂以高达16磅/吨的水平在稠厚备料(通常HW)中的湿端添 加是可能的,但不产生杨克涂层不稳定性。下面的表显示了Hercules TQ236,TQ456,D1152和Clearwater CS359的对比。全部是在类似工 艺条件下进行。该钢/钢压延机辊的荷载是50PLI。‘819压花图案用 于转换(convert)。在相同的添加率和GMT下,全部软化剂表现相同。 对于增加均浆精炼以补偿软化剂(它用作解粘剂)的增加,没有发现柔 软度改进。在这种情况下仅仅该南方SW被均浆精炼和软化剂仅仅添加 到南方HW中。这是“少而强的键”理论的试验。为了强度仅仅均浆精 炼该SW,更大量的软化剂可以添加到HW中在理论上改进柔软度。仅 仅均浆精炼该SW(片材的20%)没有导致更软的片材。虽然没有得到感 觉试验小组的证实,D1152选择为软化剂的选择,主要基于柔软度的 主观评价。结果概括在表9中。
表9
  供料   匀浆机,   HP   压延机,   PLI   湿端软   化剂   软化剂,磅/   吨   感觉柔软   度,450   GMT   SHW/SW   没有荷载   50   TQ236   4.0   16.5   SHW/SW   46   50   TQ236   8.0   16.4   SHW/SW   42   50   TQ456   16.0   16.6   SHW/SW   43   50   D1152   4.5   16.2   SH HW/SW   43   50   D1152   7.5   16.4   SHW/SW   43   50   D1152   9.0   16.8   SHW/SW   没有荷载   50   CS 359   4.0   16.3   NHW/FRF   没有荷载   80   D1152   8.0   16.8
压花图案影响
不同的压花图案用来确定具体的图案是否与织物起绉基片相互 作用来产生高柔软度。过去的研究表明大多数的压花图案不改进基片 柔软度,除了强度下降外。在大多数情况下工艺条件是类似的,但对 于下面的对比不是恒定的。然而,它们是足够相似的以便确定是否发 生了较大的柔软度改进。下面表表明,任何试验的图案都没有导致较 大的柔软度改进。“双心”,“819”(美国专利No.6,827,819)和“蝶 形和旋流形”图案看来似乎达到等同的感觉柔软度。参见下面的表 10-13。一般来说,“马赛克彩虹(Mosaic Iris)”图案引起了比“有 微形图的蝶形和旋流形(Butterflies and Swirls with Micro)”图 案更高的感觉柔软度值。以这一有限的数据为基础,该“有微形图的 蝶形和旋流形”图案不为织物起绉基片推荐。“M3”和“马赛克彩虹” 压花图案对于恒定的供料和GMT为表10中的那些给予相等的柔软度 值,和应该认为相同的。
表10-南方HW/南方SW

表11-40%北方HW/60%Fox River再生纤维(FRF)

表12-40%桉树HW/60%Fox River再生纤维(FRF)
  实施例   压花图案   GMT   感觉柔软度   在450GMT下的柔软度   255   马赛克彩虹   477   17.6   17.7   254   蝶形和旋流形,有   微形图   451   17.0   17.0   256   蝶形和旋流形,有   微形图   419   17.0   16.9
表13-桉树HW/Marathon SW
  实施例   压花图案   GMT   感觉柔软度   在450GMT   下的柔软度   271   M3   428   18.6   18.5   271   M3   584   17.8   18.3   257   马赛克彩虹   507   18.1   18.3   259   蝶形和旋流形,有   微形图   478   17.9   18.0   258   蝶形和旋流形,有   微形图   454   18.0   18.0
织物起绉对卷筒起绉
在恒定的行起绉下,但有各种各样的织物起绉%,生产基片。通 过将转移圆筒速度(也接近成形速度)除以卷筒速度来计算行起绉或总 体起绉率。从这一数值中减去1。所得值乘以100并以%表达。对于织 物起绉,转移圆筒速度除以杨克干燥器速度,因为这也是起皱织物速 度,然后减去1和乘以100。对于卷筒起绉,该杨克速度除以该卷筒 速度然后减去1和乘以100。一般,该转移圆筒速度和卷筒速度保持 不变和杨克速度变化以产生不同的织物/卷筒起绉条件。基片数据显示 在最高的卷筒起绉下发生最高的MD拉伸。在最高的织物起绉率下发生 最低的几何平均(GM)破裂模量和最高的CD拉伸率。这些片材中任何一 种都没有出现任何运行性能问题。除杨克速度之外,其它工艺参数变 量保持不变,但杨克涂覆添加除外,后者对于实施例56来说有所提高。 对于物理性能,该片材在使用的最大范围的织物/卷筒起绉条件下都十 分相似。结果概括在表14中。对于这些试验,该转移圆筒是4-英尺 直径干燥器。
表14

全部片材通过不使用压花图案或使用在美国专利No.6,827,819 中所述的图案被转换到制成的1-层BRT辊上。在下面的表15和16中 见到的物理数据非常类似于以上的基片数据。具有全织物起绉和没有 卷筒起绉(实施例57)的片材具有显著更高的CD拉伸率和较低的CD破 裂模量。GM模量一般是较低的。然而,感觉柔软度数据对于任何片材 都没有表明柔软度优点。
表15

表16

起皱织物效果
各种起皱织物设计用来生产用于转换成1-层BRT的基片。下表 17显示了在类似工艺条件下的基片数据。在起绉织物类型的行中,该 MD和CD长丝支数例如显示为42×31。首先显示MD支数。MD或CD指 在该织物的相对于片材的那一侧上的最长关节。M,G和B指编织式样。 最高的未压延厚度是用56×25网眼织物实现的。这允许较高水平的压 延,尽管仍然在转换的产品中实现了目标辊直径和坚实度。较高水平 的压延应该减少双侧边度并改进柔软度。
表17

当使用’819图案转换时,该56×25G片材,在80PLI压延下, 一般具有较高的感觉柔软度。
MD/CD拉伸比率效果
该织物起绉工艺能够在比普通的湿压和TAD工艺宽得多的范围中 容易地控制MD/CD拉伸比率。已经获得了4.0到0.4的比率,无需让 该工艺受到它的限制因素影响。传统上,薄织物产品要求MD拉伸(倍 数)高于CD拉伸(倍数)以使成形最大化。为了最大柔软度,CD拉伸(倍 数)保持尽可能低的。这增加了消费者在使用时的破坏风险。如果CD 拉伸增加和MD拉伸减少,GMT保持恒定。因此,在相同的总强度下将 有更低破坏机会。下面表显示了两个独立试验的1-层成品BRT数据, 其中MD/CD拉伸比率是变化。在下面表18中比较实施例90,89,107 和108。降低该MD/CD比率同时提高CD和GM模量。然而,当被认为 是GMT的原因时,感觉柔软度没有显著地受影响。CD强度增加约100 克/3英寸。这将大大地减少在使用中破坏的风险。由于低强度,基片 的能伸长的属性将防止破裂。对于高速工业操作,穿孔叶片型可能需 要加以改变来适应低强度和高的拉伸率。
表18
  供料  80%EUC  20%MAR  80%EUC  20%MAR   70%NAHHW   30%NAHSW   70%NAHHW   30%NAHSW   实施例   90   89   107   108   MD/CD   1.78   1.18   1.37   0.91   感觉柔软度   18.2   17.7   16.3   16.4   在450GMT下的柔   软度   17.9   17.6   16.1   16.3   GMT   371   427   403   417   BW   20.3   20.2   20.3   20.4   厚度   63.3   65.9   67.0   67.8   MD拉伸   494   463   471   397   CD拉伸   278   393   345   438   MD拉伸率   25.0   24.4   37.6   34.1   CD拉伸率   7.8   5.9   8.7   7.1   MD破裂模量   19.8   19.0   12.6   11.7   CD破裂模量   35.9   67.0   39.8   61.1   GM破裂模量   26.6   35.7   22.4   26.7
南方HW水平
南方HW水平对于感觉柔软度的影响示于下面的表19中。在75% HW下没有观察到柔软度改进。在两种情况下,柔软度都远远低于17.0 的目标值。使用80P+J橡胶/钢压延辊。
表19
  实施例   压花图案   南方HW,%   在450GMT下   的感觉柔软度   196   ‘819   75   16.2   200   ‘819   50   16.1
织物起绉-对-喷雾软化剂
工艺参数加以控制以确定哪一个使用南方HW和SW导致17.0的 成品感觉柔软度,如果有的话。一个此类的对比是在为了控制强度使 用高织物起绉率但没有喷雾软化剂的基片与为了控制强度使用喷雾软 化剂但有低织物起绉率的基片之间进行。表20表明,当对于GMT调节 时,柔软度是等同的。在两种情况下,柔软度都远远低于17.0的目标 值。使用80P+J橡胶/钢压延辊。
表20
  PM#2   Rol1#   压花图案   喷雾软化剂,   磅/吨(lb/T)   织物起绉   率,%   在450GMT下的感   觉柔软度   200   ’819   2   31   16.1   198   ‘819   0   56   16.1
模塑箱真空
模塑箱位于起皱织物之上,在起绉辊和实心压力辊之间。在这一 点上片材固含量通常是在38和44%之间。真空对于片材厚度的影响能 够在该表中看出。对于在模塑箱中21英寸水银柱真空,观察到″8个 片材厚度″的几乎8密耳的增加。这是约14%提高。两个辊用钢/钢辊 在50PLI下进行压延。厚度形成的量取决于织物编织(fabric weave) 的粗糙度和所施加的真空量。其它片材性能没有显著地受影响。使用 模塑箱进行干燥。在杨克罩温度中没有显著的变化,在杨克式处理之 后片材水分从2.66提高到3.65%。真空拖动该片材深入到该起皱织物, 因此,与杨克(Yankee)之间有较少的接触,需要更多干燥来维持片材 水分。参见表21。在这种情况下该杨克罩温度没有调节。
表21
  起皱织物   模塑箱真   空,in.Hg  8个片材厚   度,密耳   扫描测量仪   片材水分,%   44G   0   56.7   2.66   44G   21   64.6   3.65
在织物起绉下,片材水分对于基片性能的影响
通过控制工艺参数,进入到该工艺的织物起皱部分中的片材水分 能够变化。在装有120mm瓦式压机和22磅片材的所使用的造纸机上, 固含量从约34变化到46%。对于低含固量条件,STR真空减少,瓦式 压机荷载降低,和4-英尺干燥器蒸汽减少。为了在卷筒上将这一片材 干燥到约2%水分,杨克蒸汽和罩温度不得不提高。低含固量基片在GMT 上比高含固量片材低了约270克/3英寸。参见下表。这主要归因于 在较低瓦式压机荷载下发生的较低压缩率。该织物起皱步骤将该纤维 在较大程度上重排,但显然它不能完全地解开压制操作所引起的全部 压缩。其它物理性能,包括SAT容量,不是显著不同的,当考虑强度 差异时。这一实验应该通过仅仅使用真空和蒸汽改变片材固含量在恒 定的压制下重复。然而,以这些实验为基础,在这里研究的范围中片 材固含量对于基片性能的影响无法预期是显著的。干燥影响是显著的, 因此值得扩大所试验的固含量范围。结果总结在下表22中。
表22

尽管本发明已经与几个实施例相关地进行了描述,在本发明的精 神和范围内的对于这些实施例的改进对于本领域中技术人员来说是显 而易见的。考虑到上述讨论,现有技术中的相关知识和以上关于背景 和详细说明所讨论的包括悬而未决的专利申请在内的参考文献,它们 的公开内容全部被引入这里供参考,因此进一步描述认为是不必要的。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈