首页 / 专利库 / 物理 / 近红外 / 一种近红外探测器

一种近红外探测器

阅读:503发布:2020-05-13

专利汇可以提供一种近红外探测器专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 近红外 探测器,该近红外探测器包括:衬底;生长在所述衬底上的 缓冲层 ;生长在所述缓冲层背离所述衬底一侧的吸收层;填入在所述吸收层中的 氧 化铟 锡 纳米粒子 ;生长在所述吸收层背离所述缓冲层一侧的 窗口层 。该近红外探测器解决了 现有技术 中近红外探测器存在的问题,具备低暗 电流 和高 量子效率 特点。,下面是一种近红外探测器专利的具体信息内容。

1.一种近红外探测器,其特征在于,所述近红外探测器包括:
衬底;
生长在所述衬底上的缓冲层;
生长在所述缓冲层背离所述衬底一侧的吸收层;
填入在所述吸收层中的氧化铟锡纳米粒子;
生长在所述吸收层背离所述缓冲层一侧的窗口层。
2.根据权利要求1所述的近红外探测器,其特征在于,所述衬底为n型磷化铟单晶衬底或n型砷化镓单晶衬底。
3.根据权利要求1所述的近红外探测器,其特征在于,所述缓冲层为铟镓砷缓冲层。
4.根据权利要求1所述的近红外探测器,其特征在于,所述吸收层为铟镓砷吸收层。
5.根据权利要求4所述的近红外探测器,其特征在于,所述铟镓砷吸收层中铟组分大于
0.53。
6.根据权利要求1所述的近红外探测器,其特征在于,所述氧化铟锡纳米粒子为氧化铟锡纳米颗粒或氧化铟锡纳米薄膜。
7.根据权利要求1所述的近红外探测器,其特征在于,当所述氧化铟锡纳米粒子为氧化铟锡纳米颗粒时,所述氧化铟锡纳米颗粒均匀填入所述吸收层中。
8.根据权利要求1所述的近红外探测器,其特征在于,所述窗口层为p型铟铝砷窗口层或p型铟砷磷窗口层或p型磷化铟窗口层。

说明书全文

一种近红外探测器

技术领域

[0001] 本发明涉及光电子材料与器件应用技术领域,更具体地说,尤其涉及一种近红外探测器。

背景技术

[0002] 在物联网检测传感系统中,光电传感器作为其关键部件具有重要的地位,在智能家居、远程医疗以及环境保护等领域具有广泛的应用前景。
[0003] 其中,近红外探测器是红外系统、热成像系统的核心组成部分,在医学诊断、环境监测以及夜视成像等方面都有极大需求。由于通过InGaAs铟镓砷三元化合物半导体材料制成的探测器在热电制冷或室温下工作都具有优异的性能,且工艺简单、加工成本低,同时具有良好的稳定性和抗辐照性能,因此InGaAs铟镓砷三元化合物半导体材料器件得到快速的发展和应用。
[0004] 但是,鉴于InGaAs铟镓砷三元化合物半导体材料禁带宽度连续可调,因此随着In组分的增加,对应的波长覆盖整个近红外波段。且外延材料与衬底晶格失配越来越严重,使具备高量子效率和低暗电流的高性能器件难度大幅度提升。

发明内容

[0005] 为解决上述问题,本发明提供了一种近红外探测器,解决了现有技术中近红外探测器存在的问题,具备低暗电流和高量子效率特点。
[0006] 为实现上述目的,本发明提供如下技术方案:
[0007] 一种近红外探测器,所述近红外探测器包括:
[0008] 衬底;
[0009] 生长在所述衬底上的缓冲层
[0010] 生长在所述缓冲层背离所述衬底一侧的吸收层;
[0011] 填入在所述吸收层中的化铟纳米粒子
[0012] 生长在所述吸收层背离所述缓冲层一侧的窗口层
[0013] 优选的,在上述近红外探测器中,所述衬底为n型磷化铟单晶衬底或n型砷化镓单晶衬底。
[0014] 优选的,在上述近红外探测器中,所述缓冲层为铟镓砷缓冲层。
[0015] 优选的,在上述近红外探测器中,所述吸收层为铟镓砷吸收层。
[0016] 优选的,在上述近红外探测器中,所述铟镓砷吸收层中铟组分大于0.53。
[0017] 优选的,在上述近红外探测器中,所述氧化铟锡纳米粒子为氧化铟锡纳米颗粒或氧化铟锡纳米薄膜
[0018] 优选的,在上述近红外探测器中,当所述氧化铟锡纳米粒子为氧化铟锡纳米颗粒时,所述氧化铟锡纳米颗粒均匀填入所述吸收层中。
[0019] 优选的,在上述近红外探测器中,所述窗口层为p型铟砷窗口层或p型铟砷磷窗口层或p型磷化铟窗口层。
[0020] 通过上述描述可知,本发明提供的一种近红外探测器包括:衬底;生长在所述衬底上的缓冲层;生长在所述缓冲层背离所述衬底一侧的吸收层;填入在所述吸收层中的氧化铟锡纳米粒子;生长在所述吸收层背离所述缓冲层一侧的窗口层。
[0021] 该近红外探测器通过在吸收层中填入氧化铟锡纳米粒子,将近红外探测器与氧化铟锡纳米粒子相集成,由于氧化铟锡纳米粒子对光的局域限制产生的吸收增强作用,实现近红外探测器具备低暗电流和高量子效率的特点;并且通过调控材料组分、形态、尺寸和密度等实现了氧化铟锡纳米粒子中的共振频率的可调控性,进而将近红外光吸收的可控性增强。附图说明
[0022] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
[0023] 图1为本发明实施例提供的一种近红外探测器的结构示意图。

具体实施方式

[0024] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0025] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0026] 参考图1,图1为本发明实施例提供的一种近红外探测器的结构示意图。
[0027] 所述近红外探测器包括:
[0028] 衬底11;
[0029] 具体的,所述衬底11为高掺杂的n型磷化铟InP单晶衬底或n型砷化镓GaAs单晶衬底。
[0030] 生长在所述衬底11上的缓冲层12;
[0031] 具体的,所述缓冲层12为高掺杂的铟镓砷InGaAs缓冲层。
[0032] 生长在所述缓冲层12背离所述衬底一侧的吸收层13;
[0033] 具体的,所述吸收层13为非故意掺杂的铟镓砷InGaAs吸收层;
[0034] 需要说明的是,所述InGaAs吸收层中In组分大于0.53,也就是说,InxGa1-xAs,0.53<x<1。
[0035] 填入在所述吸收层13中的氧化铟锡纳米粒子15;
[0036] 具体的,所述氧化铟锡ITO纳米粒子15为氧化铟锡ITO纳米颗粒或氧化铟锡ITO纳米薄膜;
[0037] 当所述氧化铟锡ITO纳米粒子15为氧化铟锡ITO纳米颗粒时,将所述氧化铟锡ITO纳米颗粒均匀排布在所述吸收层13中,并且与所述缓冲层12之间保持优选距离,该优选距离可根据具体情况而定。
[0038] 生长在所述吸收层13背离所述缓冲层12一侧的窗口层14。
[0039] 具体的,所述窗口层14为高掺杂的p型铟铝砷InAlAs窗口层或p型铟砷磷InAsP窗口层或p型磷化铟InP窗口层。
[0040] 下面对本发明的具体原理进行详细阐述。
[0041] 首先根据背景技术可知,鉴于InGaAs铟镓砷三元化合物半导体材料禁带宽度连续可调,因此随着In组分的增加,对应的波长可覆盖整个近红外波段。且外延材料与衬底晶格失配越来越严重,使具备高量子效率和低暗电流的高性能器件难度大幅度提升。
[0042] 而经研究发现表面等离激元效应(Surface Plasmon Resonance,简称SPR)不仅在光伏器件中具备很好的光捕获能,还可以提高光伏器件的光电转换效率;SPR可以产生很强的近场增强效应,同时也会增强散射截面值。因此,SPR是增强探测器光信号吸收的一种有效途径。并且,SPR增强光伏器件的性能已广泛应用于光电子研究领域。针对目前宽波段InGaAs铟镓砷近红外探测器的性能还无法满足实际应用需求的问题,可通过SPR共振和局域化作用来提高器件的光电转换效率,进而获得高量子效率以及低暗电流的近红外探测器。
[0043] 而高掺杂半导体材料氧化铟锡ITO由于在近红外区域具备低损耗特点,是潜在的近红外SPR材料。通过采用Drude模型可以证实氧化铟锡ITO材料在近红外波段具备实现等离激元的电场局域、增强、低损耗等特性。并且半导体材料可弥补传统金属材料的不足。其一,半导体材料的载流子浓度可以通过掺杂浓度进行调节,由此可相对容易对SPR峰位进行调控;其二,半导体材料的载流子浓度适当的减小也可以降低带内损耗。
[0044] 在本发明实施例中,将InGaAs铟镓砷近红外探测器与氧化铟锡ITO纳米粒子相集成设置,有效利用了InGaAs铟镓砷近红外探测器结构对近红外光的响应速度快的特点以及氧化铟锡ITO纳米粒子在近红外波段的SPR效应;通过SPR效应将光场的能量局域到氧化铟锡ITO纳米粒子周围,显著提高氧化铟锡ITO纳米粒子周围的探测材料对光的吸收效率,进而有效降低了吸收层的厚度,从而降低器件暗电流和对探测材料外延生长的要求。并且,SPR会聚的光场能量能够激发更多的带间跃迁电子,提高InGaAs铟镓砷近红外探测器的光电转换效率。同时,通过调控材料组分、形态、尺寸以及密度等实现了氧化铟锡纳米粒子中的共振频率的可调控性,进而将近红外光吸收的可控性增强。
[0045] 针对本发明上述实施例,在本发明一优选实施例中,提供了一种截至波长为2.5μm的近红外探测器,包括:n型磷化铟InP单晶衬底;在所述n型磷化铟InP单晶衬底上生长厚度约为100nm、掺杂浓度为2×1018cm-3的n型In0.8Ga0.2As缓冲层;在所述n型In0.8Ga0.2As缓冲层16 -3
背离所述n型磷化铟InP单晶衬底一侧生长厚度为2μm、掺杂浓度为8×10 cm 的n型In0.8Ga0.2As吸收层;同时在所述n型In0.8Ga0.2As吸收层中填入粒径为5nm、Sn掺杂浓度15%的氧化铟锡纳米粒子;在所述n型In0.8Ga0.2As吸收层背离所述n型In0.8Ga0.2As缓冲层一侧生长厚度为1μm、掺杂浓度2×1018cm-3为的p型InAs0.6P0.4窗口层,形成PIN近红外探测器结构。
[0046] 其具体实施方式为:在掺硫S的n型磷化铟InP单晶衬底上,采用金属有机化合物化学气相沉积系统(Metal-organic Chemical Vapor Deposition。简称MOCVD)在该衬底上使用两步法外延生长掺Si的In0.8Ga0.2As材料,首先在温度为450℃时生长一层厚度约为100nm、掺杂浓度为2×1018cm-3的n型In0.8Ga0.2As缓冲层,然后升高温度至580℃,在升温过程中n型In0.8Ga0.2As缓冲层退火重结晶,释放由晶格失配所造成的应力,在550℃恒温下保持3min-5min;之后生长一层厚度为2μm、掺杂浓度为8×1016cm-3的n型In0.8Ga0.2As吸收层,并在其中填入粒径为5nm、Sn掺杂浓度15%的氧化铟锡纳米粒子;最后生长一层厚度为1μm、掺杂浓度2×1018cm-3为的p型InAs0.6P0.4窗口层,形成PIN近红外探测器结构。
[0047] 需要说明的是,上述的全部数据在本发明实施例中并不作限定,具体的数值可根据具体情况而定。
[0048] 对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈