首页 / 专利库 / 物理 / 库仑势垒 / 一种单/多层异质量子点结构的制作方法

一种单/多层异质量子点结构的制作方法

阅读:912发布:2020-06-23

专利汇可以提供一种单/多层异质量子点结构的制作方法专利检索,专利查询,专利分析的服务。并且一种制作单/多层异 质量 子点结构的方法,这种结构用于制作发光器件和微 电子 器件的 活性层 ,选择合适的衬底材料,在该衬底上 外延 所需的 半导体 薄膜 材料作为衬底,然后对衬底材料表面进行 钝化 ,然后在钝化后的表面上生长一层纳米尺寸的岛状诱导层,再生长单/多层 量子点 结构,采用这种方法生长量子点工艺简单,量子点尺寸可调度大,并且适用于多种超晶格 外延生长 设备;在这种单/多层异质量子点结构中,由于量子限制效应导致三维方向上的载流子局域化;采用该新结构的半导体光电器件可以通过制作内 量子效率 高、 温度 特性稳定和开启 电压 低或 阈值 电压低的发光器件和电子器件。,下面是一种单/多层异质量子点结构的制作方法专利的具体信息内容。

1.一种制作单/多层异质量子点结构的方法,其特征在于,该方法 包括如下制备步骤:
步骤1:选择衬底材料,在该衬底上外延生长所需要的另一材料作为 下一步的衬底;
步骤2:对外延生长的材料表面进行钝化,以利于量子点的形成;
步骤3:在经钝化后的上述衬底上生长一层纳米尺寸的量子点作为 诱导层;
步骤4:然后在诱导层上再生长一层或多层异质量子点结构;所生 长的单/多层异质量子点结构可以作为光学器件或电子器件的活性层
2.根据权利要求1所述的一种单/多层异质量子点结构,其特征在 于,其中步骤1所说的衬底可以是异质衬底也可以是同质衬底;如:生 长III族氮化物就可以采用同质氮化镓单晶,或者异质的蓝宝石单晶, 尖晶石化硅,氮化化锌,硅上生长氧化铝复合衬底、硅上生 长氮化铝复合衬底、硅上生长氧化锌复合衬底等各种复合衬底;总之, 只要能够使在该衬底上外延的材料有较好的质量可以作为下一步生长量 子点诱导层的模板即可。
3.根据权利要求1所述的一种单/多层异质量子点结构,其特征在 于,其中步骤2所说的钝化可以用多种钝化方法,如:气体钝化,采用 氢气,氧气对表面进行钝化;或用液体、固体钝化,如各种硫化物,氧 化物等等;所说的钝化只要能够有效的填充衬底表面的悬挂键,提高表 面原子的跃迁势垒即可。
4.根据权利要求1所述的一种单/多层异质量子点结构,其特征在 于,其中步骤3所说的生长纳米尺寸的量子点诱导层时,应采用相应的 温度,该温度的范围视不同材料而定;温度影响表面能的大小,而表面 能的大小是决定外延是否按三维模式进行生长的关键。
5.根据权利要求1所述的一种单/多层异质量子点结构,其特征在 于,其中步骤4所说的生长一层或多层异质量子点结构,量子点可以是 单层也可以是多层,层数不限,每一层厚度为1纳米到500纳米;不同 层之间可以为不同材料,不同层之间也可以为相同材料;甚至可以不需 要生长这一层,而直接使用步骤3所生长的的量子点作为量子点活性层。
6.根据权利要求1所述的一种单/多层异质量子点结构,其特征在 于,其中步骤4所说的光学器件包括发光二极管激光二极管或光电探 测器等;电学器件包括库仑阻塞器件,量子存储器件等。

说明书全文

技术领域

发明涉及半导体材料与器件,特别是指一种单/多层异质量子点结 构的制作方法。

背景技术

单/多层异质量子点结构涉及以下内容:按材料分包括以锗、等单 质半导体材料,也包括III族氮化物,磷化物,砷化物及II-VI族等化合物 半导体;按体系尺寸划分,为纳米尺度,属于介观体系、量子体系研究 领域。按生长方法分包括以金属有机物化学气相沉积,分子束外延,热壁 外延等为代表的超晶格外延生长技术,即可以生长原子量级的超薄薄漠 和突变界面的外延生长技术;按外延材料种类分包括以化学组份不同, 禁带宽度不同材料为代表的异质外延。按器件功能分则包括发光二极管激光二极管、探测器等光电器件和库仑阻塞器件,量子存储器件等电子 器件。
量子点是尺寸在纳米量子的微小晶体结构,其典型特征是电子波函 数的完全局域化和能谱的量子化。量子点结构具有一些十分显著的量子 化效应,它直接影响量子点的各种物理性质,如电子结构,输运性质以 及光学性质等。因此具有极为广阔的器件应用前景。在光器件方面,主 要应用于制作发光管、激光器和探测器等。电子器件方面可用于制作单 电子晶体管,存储器以及数字信息传输、计算单元等,有望在量子计算 中发挥重要的作用。量子点发光器件具有发光线宽窄,阈值电流低,温 度特性好的优点。由于同样的原因,量子点探测器具有探测窗口窄,探 测灵敏度高的优点。
低维半导体材料这个概念的提出不久,直到二十世纪八十年代才制 作出零维半导体材料。特别值得注意的是,目前国际上最新的量子点结 构的应用研究迅速转移到目前极有可能获得某些突破的量子信息处理上 来,但其量子点结构仍然是普通的量子点结构。在这个领域,多种研究 方法或技术路线并存,任何一种好的方案都有可能获得某些突破,从而 形成主流的技术路线。
目前人们生长量子点的方法主要有:(1)采用现代成熟的半导体集 成电路工艺,特别是光刻工艺,制作纳米量级的量子点。(2)在各种自 然表面或人工做出图形的衬底上生长量子点,如小度表面、超台阶面、 高指数表面,以及V型槽,解理异质结构的侧面上生长或在掩膜表面上 选择局部生长等等。由于这些衬底表面上某些位置点的能量更低,外延 生长时所吸附的原子趋向于沉积在这些点上,从而形成量子点。(3)应 变自组织生长方法。在外延薄膜时,外延层厚度存在一个临界厚度L,当 外延层厚度未超过临界厚度时,外延是二维平面生长,随着浸润层厚度 增加,应变能不断积累,当浸润层厚度达到临界厚度时,外延生长过程 则由二维平面生长转变为三维岛状生长,形成三维的团簇,成为量子点 的阵列。其他还有采用表面活性剂等方法。
采用如上方法生长量子点存在一些问题,主要的有:
(1)光刻法会在量子点表面产生许多的位错。当位错存在时,电 子和空穴可以进行非辐射复合,从而降低辐射复合的几率,降低量子点 的发光效率;同理,量子点的温度特性也会受到影响。这对制作电子器 件也是不利的。
(2)光刻法还有工艺复杂,成本高的缺点,当光刻线宽需要降低 时会大幅度提高工艺成本,而且工艺更复杂,导致成品率下降。
(3)利用表面凹坑的存在来生长量子点的缺点是:不能在各种需 要的衬底表面上形成和衬底表面凹坑无关的的量子点及其阵列结构,这 使其应用存在很大的局限性。
(4)自组装量子点方法的缺点是:由于其生长机理利用了S-K生 长模式,量子点的尺寸大小会受到限制,可调范围较小;此外,必须要 采用实时监控,目前只能在分子束外延(MBE)生长方法中采用。而不 能用于其他生长方法,如工业生产中采用的金属有机物化学气相沉积法 (MOCVD),热壁外延法,氢化物气相沉积法(HVPE)等。

发明内容

本发明的目的是提供一种单/多层异质量子点结构的制作方法,其是 采用简便易行的工艺方法生长尺寸可调范围大的高密度量子点。而且这 种方法目前适用于目前各种外延生长技术,并且不受衬底的限制(不必 有纳米量级的凹坑)。这种方法可以用于制作发光器件和电学器件的活性 层。制作出亮度高、温度特性好、开启电压低的发光器件,以及新一代 的量子电子器件。
本发明的技术方案是:
本发明一种制作单/多层异质量子点结构的方法,其特征在于,该方 法包括如下制备步骤:步骤1:选择衬底材料,在该衬底上外延生长所 需要的另一材料作为下一步的衬底;步骤2:对外延生长的材料表面进 行钝化,以利于量子点的形成;步骤3:在经钝化后的上述衬底上生长 一层纳米尺寸的量子点作为诱导层;步骤4:然后在诱导层上再生长一 层或多层异质量子点结构;所生长的单/多层异质量子点结构可以作为光 学器件或电子器件的活性层
其中步骤1所说的衬底可以是异质衬底也可以是同质衬底;如:生 长III族氮化物就可以采用同质氮化镓(GaN)单晶,或者异质的蓝宝石, 硅单晶(Si),尖晶石(MgAl2O4),化硅(SiC),氮化(AlN),化 锌(ZnO),硅上生长氧化铝复合衬底(Al2O3/Si)、硅上生长氮化铝复合 衬底(AlN/Si)、硅上生长氧化锌复合衬底(ZnO/Si)和AlN/SiC等等各 种复合衬底;总之,只要能够使在该衬底上外延的材料有较好的质量可 以作为下一步生长量子点诱导层的模板即可。
其中步骤2所说的钝化可以用多种钝化方法,如:气体钝化,采用 氢气,氧气对表面进行钝化;或用液体、固体钝化,如各种硫化物,氧 化物等等;所说的钝化只要能够有效的填充衬底表面的悬挂键,提高表 面原子的跃迁势垒即可。
其中步骤3所说的生长纳米尺寸的量子点诱导层时,应采用相应的 温度,该温度的范围视不同材料而定;温度影响表面能的大小,而表面 能的大小是决定外延是否按三维模式进行生长的关键。
其中步骤4所说的生长一层或多层异质量子点结构,量子点可以是 单层也可以是多层,层数不限,每一层厚度为1纳米到500纳米;不同 层之间可以为不同材料,不同层之间也可以为相同材料;甚至可以不需 要生长这一层,而直接使用步骤3所生长的的量子点作为量子点活性层。
其中步骤4所说的光学器件包括发光二极管,激光二极管或光电探 测器等;电学器件包括库仑阻塞器件,量子存储器件等。
附图说明
为了进一步说明本发明的特征和效果,下面结合附图和实施例对本 发明做进一步的说明,其中:
图1是该样品的原子显微镜俯视图;
图2是该量子点的光致发光光谱图;
图3是根据本发明第一实施例的III族氮化物量子点发光二极管的截 面图。

具体实施方式

为了实现本发明的目的,采用了以下方法。
本发明先选取所需半导体材料作为衬底,对表面进行钝化,以降低 衬底表面的表面能,这样随后生长的低温层就会以三维生长的模式淀积 到衬底表面上,于是形成一层纳米量级的岛状结构作为诱导层,再生长 单层或多层所需的异质量子点结构。
目前已知的外延生长模式有三种:F-vdM(Frank-var der Merwe)模 式,V-M(Volmer-Webber)模式,S-K(Stranski-Krastanov)模式。外延生长过程 中到底是二维还是三维生长模式占统治地位,取决于衬底、界面和外延 层之间的表面能。当外延层表面能和界面能总和大于衬底表面能时,则 发生V-W生长,即岛状生长,于是可以形成量子点。钝化衬底表面的目 的就是降低衬底表面的表面能。淀积到衬底上的第一层纳米尺寸的量子 点不作为活性层,而利用垂直耦合效应以其作为调整层,在上面再生长 一层或数数层量子点结构。
为了更好的说明本发明的意义,下面对以上所提到的词汇做进一步 解释。
所说的“半导体材料”,包括单质半导体材料,如硅、锗等。也包括 III族氮化物,磷化物,砷化物及II-VI族等化合物半导体。
所说的“异质”,指的是两种成分不同的半导体材料。两者最本质的 区别是禁带宽度不同,即两种半导体材料中,导带底的能量之间或价带 顶之间的能量之间有一个能量差。
所说的“钝化”含义如下:可以是多种钝化方法。可以是气体钝化, 如采用氢气,氧气对表面进行钝化。也可以是液体、固体钝化,如各种 硫化物,氧化物等等。只要能够有效的填充衬底表面的悬挂键,提高表 面原子的跃迁势垒即可。
所说的“单/多层薄膜”含义如下:单层薄膜是指一层和界面两边材 料部不同的薄膜。多层薄膜则是指数层薄膜结构,每层薄膜由不同材料 构成。
我们利用该方法生长了铟镓氮量子点。如图1所示为该样品的原子 力显微镜俯视图,由图可见,已经形成了纳米量级的量子点。由于这些 点大小为纳米量级,所以可以形成量子限制效应。请参阅图2为该量子 点的光致发光光谱图。图中还给出了相同生长条件下,生长相同时间的 单层铟镓氮薄膜的光致发光谱图作为对比。通过对比可以发现,量子点 样品的发光效率要高得多。
实施例:III族氮化物量子点发光二极管
图3表示根据本发明第一实施例的III族氮化物量子点发光二极管的 截面图。该结构的制备包括以下步骤:
步骤1:选择衬底材料,在该衬底上外延生长所需要的另一材料作 为下一步的衬底;如采用(0001)面蓝宝石(C-Al2O3)1作衬底;在(0001) 面蓝宝石衬底上外延生长一层氮化镓的缓冲层2,缓冲层10-50nm厚, 生长温度是450-600℃;在缓冲层上生长一定厚度的N型氮化镓3,生长 温度1000-1100℃,厚度为0.5-4微米。
步骤2:对外延生长的材料表面进行钝化,以利于量子点的形成; 也就是对氮化镓3薄膜进行钝化。
步骤3:在经钝化后的上述衬底上生长一层纳米尺寸的量子点作为 诱导层;也就是在氮化镓模板上生长低温氮化镓量子点4,作为调整层; 在氮化镓量子点上面覆盖一层或多层InGaN量子点,作为器件的活性层。 具体生长条件及多层膜的结构视所设计的结构而定。
步骤4:然后在诱导层上再生长一层或多层异质量子点结构;所生 长的单/多层异质量子点结构可以作为光学器件或电子器件的活性层;在 活性层的上面生长0.5到3微米的P型层。
其中的衬底除(0001)面蓝宝石(C-Al2O3)外,也可以采用任何一个 面的蓝宝石做衬底,或者氮化镓(GaN)单晶,硅单晶(Si),尖晶石 (MgAl2O4),碳化硅(SiC),氮化铝(AlN),氧化锌(ZnO),硅上生长氧 化铝复合衬底(Al2O3/Si)、硅上生长氮化铝复合衬底(AlN/Si)、硅上生 长氧化锌复合衬底(ZnO/Si)和AlN/SiC等等各种复合衬底。总之,只 要能够使在该衬底上外延的III族氮化物有较好的质量可以作为GaN量子 点的模板即可。虽然在多种衬底上外延都可以得到同样的效果,我们认 为目前以(0001)面蓝宝石做衬底较好,该衬底和其他衬底相比具有廉 价,易于获得的优点。
前述各材料的外延生长方法采用MOCVD方法是目前最好的方式。
前述中的钝化可以是各种有效的钝化方法。包括各种氧化剂,硫化 物,氢化物。只要能够有效的填充氮化镓表面的悬挂键,增大表面扩散 势垒即可。
前述中量子点可以是单层也可以是多层,层数不限,每一层厚度为 1纳米到500纳米。不同层之间可以为不同材料,例如图3中所标示的 A、B、C分别表示不同的异质材料层;不同层之间也可以为相同材料。 例如A层和C层相同又与B层不同,从而构成一个双异质结构。该层结 构中采用了本发明。当以这样的III族单/多层量子点为器件的活性层时, 制作的发光器件将会具有高的发光效率,低的开启电压(阈值电压),以 及优良的温度特性。
本发明与以往的技术相比,该发明具有以下意义:
1)适用于目前常用的各类外延生长设备,如分子束外延(MBE), 金属有机气相沉积法(MOCVD),氢化物气相沉积法(HVPE),热壁外 延等等。
2)适用于常用各类村底材料,对这些材料而言,都可以进行相应 的表面钝化,从而降低表面能。也就是说可以采用这种方法生长各材料 系的量子点。
3)由V-M(Volmer-Webber)生长模式的原理可知利用这种生长方法 可以生长不同尺度的量子点,调节幅度较大。
4)该方法工艺成本低,不需添加任何新的工艺设备即可完成。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈