首页 / 专利库 / 物理 / 吸附 / 吸附分离膜组件、吸附分离膜组件的制造方法及分隔构件

吸附分离膜组件、吸附分离膜组件的制造方法及分隔构件

阅读:68发布:2021-06-13

专利汇可以提供吸附分离膜组件、吸附分离膜组件的制造方法及分隔构件专利检索,专利查询,专利分析的服务。并且本 发明 提供一种 吸附 分离膜组件、吸附分离膜组件的制造方法及分隔构件,其利用具有吸附功能的中空 纤维 膜,就能够确保较高的可伸缩性。中空纤维膜组件(1)具备:包含多根具有吸附功能的中空纤维膜(2)的中空纤维膜束(3)、容纳中空纤维膜束(3)的 外壳 (4)、在中空纤维膜束(3)的端部将该中空纤维膜束(3)分隔为多个小束(3A、3B、3C、3D)的分隔构件(6A、6B),分隔构件(6A、6B)具有沿中空纤维膜2的长度方向贯通的贯通部(21、22、23、24、26)。而且,将中空纤维膜(2)的体积填充率设为30%以上且低于70%。由此,既能够确保中空纤维膜组件(1)的处理能 力 ,又能够将每单位膜体积的吸附容量保持为恒定,所以能够确保较高的可伸缩性。,下面是吸附分离膜组件、吸附分离膜组件的制造方法及分隔构件专利的具体信息内容。

1.一种吸附分离膜组件,其具备:
包含多根具有吸附功能的中空纤维膜的中空纤维膜束、
容纳所述中空纤维膜束的筒体、
将所述中空纤维膜束的至少一侧端部固定于所述筒体的固定层、以及
在所述固定层中将所述中空纤维膜束分隔为多个小束、且具有沿所述中空纤维膜束的长度方向贯通的贯通部的分隔构件,
其中,
所述固定层具有沿着所述中空纤维膜的长度方向在所述固定层厚度整个区域上延伸的固定剂密部,
该固定剂密部通过将构成所述固定层的固定剂填充于所述贯通部而形成,其中的中空纤维膜的密度为所述中空纤维膜的平均密度的1/3以下,
所述中空纤维膜束的纵向弯曲率是100%以上且120%以下;
相对于所述中空纤维膜束的占有截面积,所述固定剂密部的截面积为3%以上且低于
60%;
所述中空纤维膜束的占有截面积是指包含全部小束在内的最小的外接圆所占的截面积;
所述固定剂密部的截面积是在中空纤维膜束的占有截面积所含的部分中,填充固定剂的部分的截面积。
2.如权利要求1所述的吸附分离膜组件,其中,
在所述固定层中,所述中空纤维膜束被分割为多个小束,并且,各小束隔开间隔地配置。
3.如权利要求1所述的吸附分离膜组件,其中,
所述分隔构件通过将一对板构件相对配置而形成所述贯通部。
4.如权利要求1所述的吸附分离膜组件,其还具备分割机构,所述分割机构将由所述分隔构件分隔的所述中空纤维膜束分割。
5.如权利要求1所述的吸附分离膜组件,其还具备保护构件,所述保护构件将由所述分隔构件分隔的所述中空纤维膜束的外周覆盖
6.如权利要求1所述的吸附分离膜组件,其中,
所述分隔构件由一对相对配置的板构件组合成十字型而成。
7.如权利要求1所述的吸附分离膜组件,其用于生物用途的分离纯化。
8.一种吸附分离膜组件的制造方法,所述吸附分离膜组件具备:包含多根具有吸附功能的中空纤维膜的中空纤维膜束、容纳所述中空纤维膜束的筒体、以及将所述中空纤维膜束的至少一侧端部固定于所述筒体的固定层,
其中,所述吸附分离膜组件的制造方法包括:
通过向具备所述中空纤维膜束、所述筒体及固定剂注入构件的单元的端部填充固定剂,将所述中空纤维膜束固定于所述筒体,所述固定剂注入构件在所述中空纤维膜间形成间隙,朝着所述中空纤维膜束的长度方向延伸,从而形成所述中空纤维膜的密度为所述中空纤维膜的平均密度的1/3以下的固定剂密部,
通过将所述单元的所述端部切断,使所述中空纤维膜的端部开口;
其中,相对于所述中空纤维膜束的占有截面积,所述固定剂密部的截面积为3%以上且低于60%;
所述中空纤维膜束的占有截面积是指包含全部小束在内的最小的外接圆所占的截面积;
所述固定剂密部的截面积是在中空纤维膜束的占有截面积所含的部分中,填充固定剂的部分的截面积。
9.一种吸附分离膜组件的制造方法,所述吸附分离膜组件具备:包含多根具有吸附功能的中空纤维膜的中空纤维膜束、容纳所述中空纤维膜束的筒体、将所述中空纤维膜束的至少一侧端部固定于所述筒体的固定层、以及在所述固定层中将所述中空纤维膜束分隔为多个小束且具有沿所述中空纤维膜的长度方向贯通的贯通部的分隔构件,其中,所述吸附分离膜组件的制造方法包括:
通过向具备所述中空纤维膜束、所述筒体及所述分隔构件的单元的端部填充固定剂,将所述中空纤维膜束及所述分隔构件固定于所述筒体,从而形成所述中空纤维膜的密度为所述中空纤维膜的平均密度的1/3以下的固定剂密部,
通过将所述单元的所述端部切断,使所述中空纤维膜的端部开口;
其中,相对于所述中空纤维膜束的占有截面积,所述固定剂密部的截面积为3%以上且低于60%;
所述中空纤维膜束的占有截面积是指包含全部小束在内的最小的外接圆所占的截面积;
所述固定剂密部的截面积是在中空纤维膜束的占有截面积所含的部分中,填充固定剂的部分的截面积。

说明书全文

吸附分离膜组件、吸附分离膜组件的制造方法及分隔构件

技术领域

[0001] 本发明涉及吸附分离膜组件及其制造方法、吸附分离膜组件所使用的分隔构件。

背景技术

[0002] 作为现有的中空纤维膜组件,已知有具备由多根中空纤维膜构成的中空纤维膜束、容纳中空纤维膜束的筒体、一集在中空纤维膜束的端部将该中空纤维膜束分隔为多个膜束的分隔构件的中空纤维膜组件(例如,参照专利文献1、2)。在该中空纤维膜组件中,分隔构件通过将板组合成十字型等而构成,将中空纤维膜束在端部区划为例如四个。利用这种中空纤维膜组件,进行饮料品、化学制品及医药品等各种工业领域的有效物浓缩及杂质去除、或超纯制造、河水除浊及污水处理等各种水处理。
[0003] 现有技术文献
[0004] 专利文献
[0005] 专利文献1:日本特开2002-018244号公报
[0006] 专利文献2:日本特开2000-185220号公报

发明内容

[0007] 发明要解决的问题
[0008] 当利用中空纤维膜组件对面向各种工业领域及面向各种水处理的纯化或浓缩的实际工艺进行设计时,大多基于利用小型尺寸的中空纤维膜组件的事前评价,计算出实际工艺所需要的大型尺寸的中空纤维膜组件的数量。在此,为了简便地计算出所需要的中空纤维膜组件的数量,重要的是要充分确保中空纤维膜组件的可伸缩性。可伸缩性是中空纤维膜组件的大小(具体而言,由中空纤维膜的长度、内外径、中空纤维膜束的中空纤维膜的根数所确定的总膜量)和处理能(例如,每单位时间的处理水量、吸附对象物的吸附量等)的关联性,如果将中空纤维膜组件制成规定倍数的大小,则优选处理能力也随之正确地变成规定倍。如果可伸缩性高而稳定,则在实际工艺中,就能够以充分的精度设计所期望的能力。另一方面,在中空纤维膜组件的可伸缩性低的情况和/或每个中空纤维膜组件在可伸缩性上具有偏差的情况下,在实际工艺中,不能发挥所期望的能力,很有可能搞错实际工艺的设计。
[0009] 但是,中空纤维膜分为:具有“筛分功能”的尺寸分离膜、和具有“吸附功能”的吸附膜。
[0010] 筛分功能是根据相对于多孔质膜的细孔径而言的大小来分离的功能。在具有该功能的尺寸分离膜中,小于膜的细孔径的溶质成分或溶剂成分穿过膜,但大于膜的细孔径的溶质成分被膜阻止,从而进行分离。作为具有筛分功能的尺寸分离膜,具有所谓的超滤膜、微滤膜、纳滤膜、透析膜、反渗透膜等。这种尺寸分离膜主要用于上水处理、下水处理、食品的浓缩分离、超纯水纯化、一般工业污水的处理等用途。特别是,在上水处理及下水处理中,不是如上所述的小规模的试验性导入,而是从一开始就进行实际工艺尺寸的研讨。
[0011] 如果连续使用这种尺寸分离膜,则会因网眼堵塞而处理量下降,但由于处理液的品质依靠筛分功能来维持,所以处理液的品质不会变差。因此,尺寸分离膜主要看重的是处理量及寿命的要求。
[0012] 另一方面,吸附功能是根据对于膜的细孔表面上的相互作用力之差进行分离的功能。在具有该功能的吸附膜中,根据对膜的细孔表面的相互作用力,与细孔表面具有亲和性的成分贮留于多孔质膜的多孔质表面上而被浓缩,而与膜的细孔表面之间不具有相互作用的成分或具有排斥力的成分穿过多孔质膜,由此进行分离。作为具有吸附功能的吸附膜,包括:离子吸附膜、疏水性相互作用型吸附膜、亲和型吸附膜等。这种吸附膜主要作为蛋白质的纯化、抗体纯化、DNA去除、病毒去除等生物用途、及金属离子的回收等用途进行使用。特别是,在生物用途等纯化对象液体昂贵的情况下,通常以小尺度的实验数据为基础,进行实际工艺的设计。
[0013] 如果连续使用这种吸附膜,不仅通过网眼堵塞而处理量下降,而且由于吸附膜独特的吸附穿透的影响,处理液的品质也会下降。吸附穿透是指未完全吸附的吸附对象物泄漏到膜的渗透侧的现象。为了避免这种吸附穿透引起的吸附对象物的泄漏,在吸附膜中,与尺寸分离膜相比,要求可伸缩性特别高且稳定。
[0014] 特别是,在医药品的纯化等精密地规定要去除的杂质的量(或者,要回收的有效成分的量)等的用途中,可伸缩性成为极其重要的问题。即,例如,在吸附去除杂质的情况下,需要切实地防止因中空纤维膜组件的处理能力低于假定能力而在成为医药品的处理液中混入杂质之类的事态。因此,需要根据要纯化的原液的量及物质的含量,直接地规定使用哪种程度的大小的中空纤维膜组件较好,从而切实地发挥与其大小相对应的期望的处理能力。即,要求中空纤维膜组件具有较高的可伸缩性。
[0015] 因此,本发明者们对于使用了具有吸附功能的中空纤维膜的中空纤维膜组件(以下,有时简单地表示为吸附分离膜组件)的可伸缩性进行了深入研究,经上述研究认识到,中空纤维膜组件的可伸缩性受到中空纤维膜束的占有体积相对于中空纤维膜组件筒体的容积的体积填充率的影响,通过将中空纤维膜的体积填充率设为规定范围内,能够提高中空纤维膜组件的可伸缩性,且使其稳定化。另外,目前,关于使用了中空纤维膜的中空纤维膜组件,没有将体积填充率和可伸缩性关联在一起进行讨论,经过对与尺寸分离膜相比更加要求高可伸缩性的吸附分离膜组件进行研究,已查明,体积填充率是极其重要的。
[0016] 本发明是基于这种认识而完成的,其目的在于提供一种吸附分离膜组件、吸附分离膜组件的制造方法及分隔构件,所述吸附分离膜组件可利用具有吸附功能的中空纤维膜来确保较高的可伸缩性。特别是,本发明的目的在于,利用本发明的吸附分离膜组件的制造方法及分隔构件,可以制造出能得到更加稳定的体积填充率的吸附分离膜组件。
[0017] 解决问题的方法
[0018] 本发明的吸附分离膜组件具备:包含多根具有吸附功能的中空纤维膜的中空纤维膜束、容纳中空纤维膜束的筒体、以及将中空纤维膜束的至少一端部进行固定的固定层,其中,固定层具有沿中空纤维膜束的长度方向且在固定层厚度整个区域上延伸的固定剂密部。在此,固定剂密部是指,在具备固定剂、中空纤维膜及其他部件的固定层各要素区域中,固定剂为主要的构成成分的区域。
[0019] 在制造吸附分离膜组件时,通过向具备中空纤维膜束和筒体的单元的端部填充固定剂来形成固定层,但如果在固定层中确保沿中空纤维膜束的长度方向在固定层整个厚度上延伸的成为固定剂密部的空间,则可使该空间作为固定剂填充时的缓冲空间和/或流路发挥功能(详细内容后面进行阐述)。由此,能够减小固定剂填充时作用于中空纤维膜束端部的载荷,所以能够抑制中空纤维膜束的纵向弯曲。
[0020] 即使将中空纤维膜束相对于筒体的体积填充率设计为最佳值,中空纤维膜束的纵向弯曲因填充固定剂而增大时,也会导致中空纤维膜束相对于筒体的体积填充率大于设计值。就吸附分离膜组件而言,其吸附量(即,直至达到吸附穿透为止,吸附分离组件能够吸附对象物的量)会因该体积填充率而改变,所以需要避免达到过剩的体积填充率。
[0021] 在此,对体积填充率和吸附分离膜组件的吸附量的关系进行说明。对从中空膜的内表面侧流动液体、且从外表面侧得到处理液作为渗透液的情况进行考查。中空纤维膜通过内表面侧和外表面侧的压力差(以下,称为膜间压差),进行液体渗透。而且,平均每单位时间渗透的液体的量依赖于膜间压差。在中空纤维膜束容纳于筒体的吸附分离膜组件中,如果增大中空纤维膜的体积填充率,则中空纤维膜束的外表面侧和筒体的内表面侧之间的空间就会减小。因此,中空纤维膜的外表面侧的处理液在沿中空纤维膜的长度方向向筒体的端部侧面的开口部(从这里排出处理液)移动时,会受到较大的压力损失。即,如果增大体积填充率,则中空纤维膜的内表面侧的压力分布不会变化,仅在中空纤维膜的外表面侧,压力分布沿中空纤维膜的长度方向发生变化,所以膜间压差的偏差增大。由此,组件内全部的中空纤维膜应该在整个区域上均等地供给至分离处理的组件由于在局部流通了过剩的处理液,所以各中空纤维膜开始出现吸附穿透的时刻产生差异。需要在吸附分离膜发生吸附穿透开始以前就结束分离处理,所以在如上所述各中空纤维膜开始出现吸附穿透的时刻产生差异的情况下,即使还残留有可吸附的未穿透的中空纤维膜,作为吸附分离膜组件整体而言的功能也已经结束。同样地,从中空纤维的外表面侧向内表面侧渗透液体的情况下也是如此。
[0022] 因此,使固定层的固定剂密部作为固定剂填充时的缓冲空间和/或流路发挥功能而抑制中空纤维膜束的纵向弯曲,由此可抑制中空纤维膜束相对于筒体的体积填充率显著偏离设计值而导致的过剩,进而防止吸附分离膜组件的吸附量下降,维持高而稳定的可伸缩性,并防止实际工艺中吸附分离膜组件的功能下降,即,防止处理液的品质下降。
[0023] 另外,本发明可以使固定剂密部的截面积相对于中空纤维膜束的占有截面积为3%以上且低于60%。这样,通过将固定剂密部的截面积相对于中空纤维膜束的占有截面积设为3%以上且低于60%,能够抑制纵向弯曲。在此,中空纤维膜束的占有截面积是在中空纤维膜组件的固定层的端面中存在中空纤维膜束的区域的大致外接圆所占的截面积。
[0024] 另外,本发明可以在固定层中,将中空纤维膜束分割为多个小束,并将各小束隔开间隔地配置。小束彼此既可以一部分隔开间隔(部分接触)地配置,也可以完全离开地配置。通过使中空纤维膜束分割为多个小束而配置,在制造吸附分离膜组件时,在填充固定剂时,能够使小束间的空间作为成为固定剂密部的空间发挥功能,即,作为固定剂填充时的缓冲空间和/或流路发挥功能。特别是,通过小束彼此完全离开地进行配置,小束间的空间不仅作为缓冲空间发挥功能,而且也作为流路发挥功能。详细内容后面进行描述,所述流路是向中空纤维膜束和筒体之间的宽敞的空间引导固定剂的空间,由此,能够使缓冲空间进一步扩展。作为结果,能够切实地在固定剂填充时减小作用于中空纤维膜束的端部的载荷,能够抑制中空纤维膜束的纵向弯曲。
[0025] 另外,本发明可以进一步具备分隔构件,所述分隔构件在固定层中将中空纤维膜束分隔为多个小束,并具有沿中空纤维膜束的长度方向贯通的贯通部。这样,通过用具有沿长度方向贯通的贯通部的分隔构件将中空纤维膜束分隔为多个小束,在制造吸附分离膜组件时,在填充固定剂时,可以使分隔构件的贯通部发挥成为固定剂密部的空间的功能,即,发挥固定剂填充时的缓冲空间和/或流路的功能,从而可以在固定层上形成沿中空纤维膜束的长度方向并在固定层厚度整个区域上延伸的固定剂密部。由此,能够减小由于填充固定剂而作用于中空纤维膜的端部的载荷,能够抑制中空纤维膜束的纵向弯曲。另外,通过该分隔构件,固定剂被区划为各小束。形成固定层的固定剂在固化时会发热,且固定剂块越大,固化发热量就越大,所以冷却收缩也增大。因此,通过这样区划固定剂块,每一个固定剂块的固化发热量变小,冷却收缩得到抑制,所以能够防止固定层的剥离及裂纹发生。
[0026] 另外,本发明可以使分隔构件的贯通部发挥填充固定剂时的缓冲空间和/或流路的功能,从而在固定层中形成沿中空纤维膜束的长度方向并在固定层厚度整个区域上延伸的固定剂占有部(即,仅由固定剂构成的固定剂密部)。由此,能够切实地减小填充固定剂时作用于中空纤维膜束的端部的载荷,能够抑制中空纤维膜束的纵向弯曲。并且,因为填充于贯通部的固定剂也由分隔构件来区划,所以能够防止固定层的剥离及裂纹的发生。
[0027] 另外,本发明的分隔构件可通过对置配置一对板构件来形成贯通部。另外,可使分隔构件的贯通部发挥填充固定剂时的缓冲空间以及流路的功能,从而在固定层中形成沿中空纤维膜束的长度方向并在固定层厚度整个区域上延伸的固定剂密部。另外,通过由一对板构件形成分隔构件,能够以与设计相同的实际尺寸简便地构筑缓冲空间和流路。另外,能够防止通过分隔构件区划固定剂块引起的固定层的剥离及裂纹发生。
[0028] 另外,本发明可以进一步具备对由分隔构件分隔的中空纤维膜束进行分割的分割机构。这样,中空纤维膜束由分割机构进行分割,从而能够将中空纤维膜束小束化。
[0029] 另外,本发明可以进一步具备对由分隔构件分隔的中空纤维膜束的外周进行覆盖的保护构件。通过这种保护构件,能够保护中空纤维膜束的外周。另外,能够进一步确保中空纤维膜束彼此之间的间隙和/或防止中空纤维膜束的中空纤维膜散乱,能够进一步确保可伸缩性。
[0030] 另外,本发明的分隔构件可将一对相对配置的板构件组合为十字型。这样,通过将分隔构件制成简单的十字型,能够更容易地形成贯通部,而由于分隔构件为单纯结构,因而能够相应地增加所填充的中空纤维膜的根数。另外,能够使分隔构件的贯通部发挥填充固定剂时的缓冲空间和流路的功能,从而在固定层上形成沿中空纤维膜束的长度方向并在固定层厚度整个区域上延伸的固定剂密部。另外,也能够防止由分隔构件区划固定剂引起的固定层的剥离及裂纹的发生。
[0031] 另外,本发明可以用于生物用途的分离纯化。由此,能够以所期望的能力且以充分的精度进行生物用途的分离纯化。
[0032] 本发明的吸附分离膜组件的制造方法所涉及的吸附分离膜组件具备:包含多根具有吸附功能的中空纤维膜的中空纤维膜束、容纳中空纤维膜束的筒体、以及将中空纤维膜束的至少一端部固定于筒体的固定层,所述吸附分离膜组件的制造方法的特征在于,通过向具备中空纤维膜束、筒体及固定剂注入构件的单元的端部填充固定剂,将中空纤维膜束固定于筒体,所述固定剂注入构件在中空纤维膜间形成间隙,朝着中空纤维膜束的长度方向延伸;通过将单元的端部切断,使中空纤维膜的端部开口。另外,固定剂注入构件既可以是与切断后的单元的端部一同被去除的程度的长度,也可以是残留于吸附分离膜组件的固定层的长度。
[0033] 在本发明的吸附分离膜组件的制造方法中,在中空纤维膜间形成间隙的固定剂注入构件通过向中空纤维膜束的长度方向延伸,能够作为填充固定剂时的缓冲空间和/或流路发挥功能,从而可以在固定层中形成在固定层厚度整个区域上延伸的固定剂密部。因此,能够实现与上述的吸附分离膜组件同样的作用、效果。由此,根据本发明的吸附分离膜组件的制造方法,能够制造具有稳定的体积填充率且具有高而稳定的可伸缩性的吸附分离膜组件。
[0034] 本发明的吸附分离膜组件的制造方法涉及的吸附分离膜组件具备:包含多根具有吸附功能的中空纤维膜的中空纤维膜束、容纳中空纤维膜束的筒体、将中空纤维膜束的至少一端部固定于筒体的固定层、以及在固定层中将中空纤维膜束分隔为多个小束且具有沿中空纤维膜的长度方向贯通的贯通部的分隔构件,所述吸附分离膜组件的制造方法的特征在于,通过向具备中空纤维膜束、筒体及分隔构件的单元的端部填充固定剂,将中空纤维膜束及分隔构件固定于筒体;通过将单元的端部切断,使中空纤维膜的端部开口。
[0035] 在本发明的吸附分离膜组件的制造方法中,分隔构件具有沿中空纤维膜的长度方向贯通的贯通部。因此,能够实现与上述的吸附分离膜组件同样的作用、效果。由此,根据本发明的吸附分离膜组件的制造方法,能够制造具有稳定的体积填充率且具有高而稳定的可伸缩性的吸附分离膜组件。
[0036] 本发明的分隔构件设置于吸附分离膜组件上,在中空纤维膜束的端部将中空纤维膜束分隔为多个膜束,并具有沿轴线方向贯通的贯通部,所述吸附分离膜组件具备:包含多根具有吸附功能的中空纤维膜的中空纤维膜束、容纳中空纤维膜束的筒体、以及将中空纤维膜束的至少一端部固定于筒体的固定层。
[0037] 本发明的分隔构件具有沿轴线方向即在组装于吸附分离膜组件上时沿着中空纤维膜长度方向的方向贯通的贯通部。因此,应用了本发明的分隔构件的吸附分离膜组件能够实现与上述的吸附分离膜组件同样的作用、效果,能够制造具有稳定的体积填充率且具有高而稳定的可伸缩性的吸附分离膜组件。
[0038] 本发明的吸附分离膜组件具备:包含多根具有吸附功能的中空纤维膜的中空纤维膜束、容纳中空纤维膜束的筒体、以及将中空纤维膜束的至少一端部固定的固定层,其中,组件形态的动态吸附容量相对于中空纤维膜的单纤维形态的动态吸附容量之比为90%以上100%以下。
[0039] 在此,动态吸附容量是表示平均每单位膜体积的吸附性能的指标。在吸附穿透之前,向吸附分离膜组件或吸附膜自身供给指标物质,可通过用发生吸附的指标物质的量除以评价所使用的吸附膜的总膜体积来求出。即,组件形态的动态吸附容量是用组件来进行该评价时的吸附性能,所述单纤维形态的动态吸附容量是将组件拆解而取出所填充的中空纤维膜进行评价时的吸附性能。
[0040] 根据本发明的吸附分离膜组件,在从小型尺寸到大型尺寸组件的全部尺寸上都能以组件形态得到与单纤维形态的动态吸附容量大致相同的动态吸附容量。结果是,能够在不同尺寸的吸附分离膜组件间确保高而稳定的可伸缩性,在实际工艺中,能够以充分的精度设计所期望的能力。
[0041] 另外,本发明的吸附分离膜组件中,中空纤维膜的占有体积相对于筒体的容积的体积填充率设为30%以上且低于70%。由此,既能够确保相对于组件的设置面积而言的处理能力,又能够将平均每单位膜体积的吸附性能保持为恒定,所以能够确保高而稳定的可伸缩性。另外,组件形态的动态吸附容量相对于中空纤维膜的单纤维形态的动态吸附容量之比可达到90%以上100%以下。
[0042] 发明的效果
[0043] 根据本发明的吸附分离膜组件、吸附分离膜组件的制造方法及分隔构件,利用具有吸附功能的中空纤维膜,就能够确保高而稳定的可伸缩性。特别是,就吸附分离膜组件的制造方法及分隔构件而言,能够制造出可获得更为稳定的体积填充率的吸附分离膜组件。附图说明
[0044] 图1是表示本发明实施方式的中空纤维膜组件沿长度方向的剖面构成的概要结构图;
[0045] 图2是表示本发明实施方式的中空纤维膜组件的固定层的横向剖面构成的概要结构图;
[0046] 图3是为制造本发明实施方式的中空纤维膜组件而事前组装的单元的分解立体图;
[0047] 图4是表示本发明实施方式的中空纤维膜组件的制造方法的流程图
[0048] 图5是以横向剖面构成来表示向图3所示的组装单元中填充固定剂的情形的概要图;
[0049] 图6是表示向图3所示的组装单元中填充固定剂的情形的概要图;
[0050] 图7是表示向图3所示的组装单元中填充固定剂的情形的概要图;
[0051] 图8是表示将图3所示的组装单元的两端部切断后的情形的概要图;
[0052] 图9是表示体积填充率和组件的动态吸附容量之间的关系的曲线图;
[0053] 图10是表示中空纤维膜束的纵向弯曲状态的概要图,(a)表示的是中空纤维膜束未纵向弯曲的状态,(b)表示的是中空纤维膜束纵向弯曲后的状态;
[0054] 图11是表示变形例的中空纤维膜组件的固定层的横向剖面构成的概要结构图;
[0055] 图12是表示图11(b)所示的中空纤维膜组件的制造工序的概要图;
[0056] 图13是表示变形例的中空纤维膜组件的固定层的横向剖面构成的概要结构图;
[0057] 图14是表示变形例的中空纤维膜组件的固定层的横向剖面构成的概要结构图;
[0058] 图15是表示变形例的中空纤维膜组件的固定层的横向剖面构成的概要结构图;
[0059] 图16是表示对分隔构件和固定剂的边界进行鉴定的方案的方框图
[0060] 图17是表示实施例及比较例的体积填充率和吸附容量性能比之间的关系的曲线图。
[0061] 附图标记
[0062] 1  中空纤维膜组件(吸附分离膜组件)
[0063] 2  中空纤维膜
[0064] 2a、2b  端部
[0065] 3  中空纤维膜束
[0066] 3A、3B、3C、3D  小束
[0067] 3a、3b     中空纤维膜束的端部
[0068] 4     外壳(筒体)
[0069] 4A     空间
[0070] 4B     空间
[0071] 4C     空间
[0072] 6、6A、6B       分隔构件
[0073] 7、7A、7B       固定层
[0074] 8        保护构件
[0075] 11       外壳主体部(筒体)
[0076] 11a、11b      切断余量
[0077] 12A、12B       盖
[0078] 13A、13B      固定器
[0079] 14A、14B     管部
[0080] 16A、16B    管部
[0081] 21、22、23、24、26   贯通部
[0082] 31、32、33、34    壁部
[0083] 31a、31b    板构件
[0084] 32          壁部
[0085] 32a、32b       板构件
[0086] 33          壁部
[0087] 33a、33b       板构件
[0088] 34          壁部
[0089] 34a、34b       板构件
[0090] 41、42         平板
[0091] 43、44        平板
[0092] 50          单元
[0093] 51A、51B       帽
[0094] 51a          管部
[0095] 71          分隔构件
[0096] 72          分隔构件
[0097] 73          分隔构件
[0098] 74          分隔构件
[0099] 76           分割网状部件(分割机构)
[0100] 77          隔离物
[0101] 78         分隔构件
[0102] 81          固定剂注入构件
[0103] BD   固定剂

具体实施方式

[0104] 下面,参照附图对本发明的最佳实施方式进行说明。
[0105] 图1是表示本发明实施方式的中空纤维膜组件1沿长度方向的剖面构成的概要结构图。图2是表示本发明实施方式的中空纤维膜组件1的固定层的横向剖面构成的概要结构图。图3是为制造本发明实施方式的中空纤维膜组件1而事先组装的单元的分解立体图。如图1及图2所示,中空纤维膜组件1具备:包含多根具有吸附功能的中空纤维膜2的中空纤维膜束3、容纳中空纤维膜束3的筒状外壳(筒体)4、配置于中空纤维膜束3的端部3a、3b的分隔构件6A、6B、以及将中空纤维膜束3的端部3a、3b固定于外壳4的固定层7A、7B。另外,也将该中空纤维膜组件1叫做吸附分离膜组件。
[0106] 中空纤维膜束3由分隔构件6分隔为多个小束3A、3B、3C、3D。在固定于外壳4的状态下,各小束3A、3B、3C、3D以相互不接触的方式充分地隔开间隔而配置。例如,如图3所示,各小束3A、3B、3C、3D也可以分别用保护构件8覆盖外周。该保护构件8是具有网眼的网状构造物。在本实施方式中,为了覆盖将中空纤维膜束3划分为四个的小束3A、3B、3C、3D,保护构件8具有截面扇形的形状。保护构件8的原材料没有特别限定,可使用公知的原材料。例如,可以从聚酯、尼龙、聚乙烯、聚丙烯、聚氯乙烯、聚偏二氯乙烯、聚氟乙烯、聚偏二氟乙烯、聚砜、聚酸酯等高分子材料、不锈等金属材料、及玻璃纤维、碳纤维等无机材料中选定。特别是,在医药品用途或饮料品用途中,从溶解析出安全性的观点或各个用途所需要的耐加热灭菌处理性或耐化学清洗性出发,优选从聚乙烯、聚丙烯、聚砜、聚碳酸酯或聚氟乙烯等材质中选择。关于保护构件8的具有网眼的网的网眼形状及网眼尺寸,只要是不会阻碍向中空纤维膜供给流体的形状及尺寸即可,没有特别限制。例如,既可以是格子状的编织品,也可以是开有矩形或圆形孔眼的注塑品。
[0107] 构成中空纤维膜束3的中空纤维膜2是所谓的具有“吸附功能”的吸附膜,在两侧的端部2a、2b开有口。
[0108] 作为吸附膜式的中空纤维膜2,只要具有吸附功能即可,关于原材料及吸附作用点的微细构造,没有限定,可使用公知的原材料及构造。另外,例如,也可以使用通过将下述公知技术(国际公开第2009/054226号、美国专利第5547575号说明书、美国专利第6780327号说明书、日本特表2006-519273号公报、日本特开2009-53191号公报等)应用于中空纤维膜而得到的吸附膜式的中空纤维膜。
[0109] 吸附膜由发挥吸附功能的吸附作用点以及用于保持作为渗透膜的形状的基体材料膜构成。发挥吸附功能的吸附作用点通过将具有吸附功能的官能团导入基体材料多孔质表面来形成。作为具有吸附功能的官能团,例如可以举出:磺酸基、羧酸基、磷酸基等阳离子交换基、伯基及伯铵基、仲氨基及仲铵基、叔氨基及叔铵基、季铵基等阴离子交换基、烷基或芳香族类官能团等疏水性基团、亚氨基二乙酸基或乙二胺四乙酸基等螯合型官能团、由蛋白质A或生物相关物质构成的亲和型官能团。这些官能团也可以组合多种进行使用。
[0110] 吸附作用点的微细构造只要具有吸附功能即可,没有特别限制,例如,既可以直接与作为基体材料的中空纤维膜2的表面进行化学结合,也可以通过涂布而物理地固定于中空纤维膜2的多孔体。或者,既可以形成直链状的微细结构,也可以采用交联结构。
[0111] 作为构成吸附膜的基体材料膜,可使用公知的超滤膜或微滤膜。例如,作为基体材料膜的原材料,可使用:聚偏二氟乙烯、聚乙烯、聚丙烯、聚砜、聚醚砜、聚苯醚、聚丙烯腈、纤维素或纤维素衍生物、聚乙烯醇等高分子材料等及它们的复合材料、或化铝、氧化锆等无机材料。另外,在通过对中空纤维膜2实施化学处理或物理处理而在随后对吸附点进行加工的情况下,需要选定不会因加工条件而发生变质或分解的原材料。另外,在由于使用用途而发生温度负荷、化学药品负荷、使用压力或振动等物理负荷的情况下,可根据各自的用途,从公知的原材料中选择适当的原材料。作为基体材料膜的更优选的原材料,可使用聚乙烯、聚丙烯、聚偏二氟乙烯、聚砜。
[0112] 中空纤维膜2的平均细孔径可根据处理液,选择适当的尺寸。优选为0.001μm以上10μm以下,更优选为0.01μm以上10μm以下,进一步优选为0.1μm以上1μm以下。
[0113] 中空纤维膜2中细孔所占的体积比例即孔隙率只要是在实用上没有问题的范围即可,可任意选择。优选为5%以上99%以下,更优选为10%以上95%以下,进一步优选为30以上90%以下。
[0114] 平均细孔径及孔隙率的测定可通过例如Marcel Mulder著“膜技术”(株式会社IPC(株式会社アイピーシー))记载的本领域技术人员知晓的通常方法来进行。作为测定法的具体例,可以举出:利用电子显微镜的观察、泡点法、压汞法、渗透率法等。
[0115] 作为中空纤维膜2的截面尺寸,优选内径为50μm~10mm,更优选为100μm~4mm,可优选使用内/外径比为0.2~0.8的范围的膜。
[0116] 作为中空纤维膜2的形状,可使用直线状的中空纤维膜,或者,使用卷缩加工成的中空纤维膜(卷曲纤维)。
[0117] 外壳4具备:筒状的外壳主体部11、配置于外壳主体部11的两端的盖12A、12B、将盖12A、12B固定于外壳主体部11的固定器具13A、13B。作为外壳主体部11、盖12A、12B、固定器具13A、13B的原材料,没有特别限定,可使用聚氯乙烯、聚砜、聚碳酸酯、ABS等高分子材料、及不锈钢或铝等金属材料。外壳主体部11的两端分别由固定层7A、7B进行密封。另外,在外壳主体部11两端部内壁中与固定层7A、7B粘接的部分,为了提高与固定剂的粘接力,也可以实施内槽加工或表面粗糙加工等。外壳4被该固定层7A、7B区划为三个空间。具体而言,外壳
4具有:由固定层7A和盖12A构成的空间4A、由固定层7B和盖12B构成的空间4B、以及由外壳主体部11和固定层7A、7B构成的空间4C。中空纤维膜2的端部2a相对于空间4A而开口,中空纤维膜2的端部2b相对于空间4B而开口。另外,与空间4A连通的是形成于盖12A的管部14A,与空间4B连通的是形成于盖12B的管部14B。与空间4C连通的是形成于外壳主体部11的管部
16A、16B。
[0118] 分隔构件6A、6B在中空纤维膜束3的端部3a、3b将该中空纤维膜束3分隔成多个小束3A、3B、3C、3D。分隔构件6A、6B具有规定的截面形状,并沿轴线L1延伸。将分隔构件6A、6B的轴线L1与外壳4的轴线配置为一致。分隔构件6A、6B的轴线方向(即,轴线L1延伸的方向)与中空纤维膜2的长度方向大致平行,与分隔小束3A、3B、3C、3D的方向垂直。该分隔构件6A、6B具有沿中空纤维膜2的长度方向(即,轴线方向)贯通的贯通部21、22、23、24、26。如图2及图3所示,分隔构件6A、6B呈现具有四个壁部31、32、33、34的十字状。壁部31将小束3A和小束
3B隔开。壁部32将小束3B和小束3C隔开。壁部33将小束3C和小束3D隔开。壁部34将小束3D和小束3A隔开。贯通部21形成于壁部31。贯通部22形成于壁部32。贯通部23形成于壁部33。贯通部24形成于壁部34。贯通部26相当于各壁部31~34的根部,形成于分隔构件6A、6B的中央位置(配置轴线L1的位置)。作为分隔构件6A、6B的原材料,没有特别限定,可优选使用公知的高分子材料、无机材料、金属材料。例如,优选从与构成中空纤维膜组件的固定剂、中空纤维膜、外壳主体相同的原材料中选定。例如可以使用:环氧树脂、聚氨酯树脂、有机树脂、聚偏二氟乙烯、聚乙烯、聚丙烯、聚砜、聚醚砜、聚苯醚、聚氯乙烯、聚碳酸酯、ABS树脂等高分子材料、氧化铝或氧化锆等无机材料、不锈钢或铝等金属材料。从与固定剂的粘接性良好且相对于固定剂不产生剥离等异常这种观点出发,更优选采用与固定剂相同的原材料。另外,为了提高与固定剂的粘接力,分隔构件的表面也可以实施表面粗糙加工。
[0119] 具体而言,壁部31由相互对置的一对板构件31a、31b构成。在板构件31a和板构件31b之间形成贯通部21。该贯通部21沿中空纤维膜2的长度方向贯通,并且在外周方向上(板构件31a、31b的前端侧)开口。壁部32由相互对置的一对板构件32a、32b构成。在板构件32a和板构件32b之间形成贯通部22。该贯通部22沿中空纤维膜2的长度方向贯通,并且在外周方向上(板构件32a、32b的前端侧)开口。壁部33由相互对置的一对板构件33a、33b构成。在板构件33a和板构件33b之间形成贯通部23。该贯通部23沿中空纤维膜2的长度方向贯通,并且在外周方向上(板构件33a、33b的前端侧)开口。壁部34由相互对置的一对板构件34a、34b构成。在板构件34a和板构件34b之间形成贯通部24。该贯通部24沿中空纤维膜2的长度方向贯通,并且在外周方向上(板构件34a、34b的前端侧)开口。贯通部26形成于各板构件的连结部分,沿中空纤维膜2的长度方向贯通。壁部31、32、33、34具有充分确保各小束3A、3B、3C、3D彼此的间距的厚度。因此,在外壳4的空间4C内,在各小束3A、3B、3C、3D彼此之间形成充分的间隙SP。
[0120] 图2及图3所示的分隔构件6A、6B通过将相互平行配置的平板41、42和垂直于该平板41、42且相互平行配置的平板43、44在各自的中央位置进行接合而构成。平板41构成板构件31a和板构件33a。平板42构成板构件31b和板构件33b。平板43构成板构件32a和板构件34a。平板44构成板构件32b和板构件34b。分隔构件6A、6B可通过如下方式来构成,例如,在平板41、42的中央位置形成槽(slit),在平板43、44的中央位置形成槽,然后将各自的槽对接连结。或者,也可以通过切削加工为这种形状来构成分隔构件6A、6B,也可以通过成型为这种形状来构成分隔构件6A、6B。
[0121] 固定层7A将外壳4的外壳主体部11的一端部密封。固定层7A以包围中空纤维膜束3的一端部3a和分隔构件6A的方式形成。固定层7B将外壳4的外壳主体部11的另一端部密封。固定层7B以包围中空纤维膜束3的另一端部3b和分隔构件6B的方式形成。作为固定层7A、7B的材质,没有特别限制,但通常使用双液混合型固化性树脂或热塑性树脂。作为双液混合型固化性树脂,是通过将具有反应性的多种化合物混合而固化的树脂,通常也叫做双液型粘接剂(two-component adhesive)、双液型浇铸剂(two-component resin)的树脂,在使用时,将叫做主剂和固化剂的两种组分混合并使其固化。例如,优选使用:由含有异氰酸酯作为反应性基的主剂和含有含活泼氢的有机化合物的固化剂构成的聚氨酯树脂、由含有环氧基作为反应性基的主剂和含有含活泼氢的有机化合物或有机酸酐的固化剂构成的环氧树脂、由含有乙烯基的聚硅氧烷和含有氢化甲硅烷基的聚硅氧烷构成的有机硅树脂等。另外,作为热塑性树脂,优选该树脂的熔点比构成中空纤维膜的聚合物的熔点低,且对于过滤对象原水而言物理及化学性质稳定的树脂。具体而言,可以举出:聚氨酯或聚酯、聚乙烯、聚丙烯等热塑性树脂及蜡类等。固定层7A、7B由来自这些材质的至少一种以上的材质构成。构成固定层7A、7B的固定剂也填充于分隔构件6A、6B的贯通部21、22、23、24、26,形成固定剂密部。
[0122] 在此,固定剂密部是指在具备固定剂、中空纤维膜、及分隔构件的固定层中,中空纤维膜的密度为中空纤维膜的平均密度的1/3以下的固定层要素区域。从固定剂密部在组件制造工序的固定剂填充时作为缓冲空间发挥功能,从而抑制中空纤维膜束的纵向弯曲的观点出发,优选为1/5以下,更优选为1/10以下。中空纤维膜束的平均密度及固定剂的密度可利用组件固定层的截面来确认。在此所说的中空纤维膜束的平均密度是指后面详细描述的相对于纤维束占有截面积的各中空纤维膜束(例如,小束)的占有截面积之和。
[0123] 从防止划分固定剂块引起的固定层的剥离及裂纹发生的观点出发,分隔构件6A、6B的平均长度优选为固定层7A、7B的平均厚度的50%以上,更优选为65%以上,进一步优选为80%以上。另外,分隔构件也可以从固定层7A、7B的界面突出出来,但优选完全容纳于固定层内。另外,固定层7A、7B的平均厚度及分隔构件6A、6B的平均长度都是指外壳4的轴线方向的尺寸。
[0124] 在如上所述构成的中空纤维膜组件1中,要处理的流体从管部14B流入外壳4,在经由中空纤维膜2内的中空部而在中空纤维膜2内通过时,进行通过成分和非通过成分的分离,通过成分经由空间4C,从管部16A和/或16B导出。非通过成分从管部14A流出,可以再次向管部14B循环。另外,要处理的流体的循环方向也可以相反。或者,要处理的流体从管部16A流入外壳4,在经由该空间4C而在中空纤维膜2内通过时,进行通过成分和非通过成分的分离,通过成分通过该中空纤维膜2的中空部,从管部14A和/或14B导出。一部分非通过成分可以从管部16B流出,并再次向管部16A循环。另外,要处理的流体的循环方向也可以相反。
[0125] 接着,参照图3~图8对本实施方式的中空纤维膜组件1的制造方法进行说明。如图4所示,在中空纤维膜组件1的制造方法中,从将中空纤维膜2整理成束的工序开始(步骤S10)。在S10的工序中,通过将多个中空纤维膜2整理成束,构成中空纤维膜束3。此时,如图3所示,分为四个小束3A、3B、3C、3D,也可以在各自的膜束上包覆保护构件8。
[0126] 接着,进行对构成中空纤维膜束3的各中空纤维膜2进行填塞的工序(步骤S20)。在S20的工序中,在各中空纤维膜2的端部封入填塞料。填塞料使用例石膏。另外,也可以将整束工序S10和填塞工序S20的顺序颠倒过来。
[0127] 接着,进行固定剂密封之前的单元50的组装(步骤S30)。如图3及图6所示,在S30的工序中,将组装有中空纤维膜束3及分隔构件6A、6B的单元50组装在外壳主体部11内。在单元50的状态下,外壳主体部11在两端部具有在填充固定剂后进行切断而留下的切断余量11a、11b。另外,单元50具备罩在外壳主体部11的两端部的帽51A、51B。帽51A、51B具有用于使固定剂流入外壳主体部11内的管部51a。另外,在向外壳主体部11组装中空纤维膜束3及分隔构件6A、6B时,也可以在以事先分成四个小束3A、3B、3C、3D的状态组装有中空纤维膜束
3之后,再组装分隔构件6A、6B。或者,也可以在将一束的中空纤维膜束3组装在外壳主体部
11内之后,组装分隔构件6A、6B,由此将中空纤维膜束3分为小束3A、3B、3C、3D。
[0128] 接着,对单元50的两端部进行固定剂(固定剂最终固化成为固定层)的填充(步骤S40)。在S40的工序中,如图5~图7所示,从帽51A、51B的管部51a,向单元50的外壳主体部11内填充固定剂BD。另外,图5是表示图6及图7沿CL1线的剖面的图。图6及图7仅表示有小束3A、3D及分隔构件6A的壁部34的部分,但固定剂BD液流在其他小束3B、3C及其他壁部31、32、
33也同样,在分隔构件6B侧也同样。另外,图5~图7是用于表示固定剂BD液流的概要图,并不限定中空纤维膜2、帽51A、外壳主体部11、分隔构件6A等尺寸。从管部51a填充的固定剂BD流入外壳主体部11的壁面和中空纤维膜束3之间、中空纤维膜束3和分隔构件6A、6B之间、以及中空纤维膜束3中的中空纤维膜2彼此之间。此时,固定剂BD也流入分隔构件6A、6B的贯通部21、22、23、24、26内。填充后的固定剂BD在外壳主体部11的端部,构成固化后变为固定层
7A、7B的层。
[0129] 固定剂BD的填充可通过利用离心力的所谓的离心浇铸法来进行。单元50以水平横卧的状态安装于离心力套组,以铅垂轴为旋转轴,在水平面上旋转。配置单元50使作为粘接对象的端部侧成为离心方向的外侧。通过离心力套组的旋转产生的离心力使处于流动状态的未固化的固定剂BD从罐中挤出,从管部51a流入外壳主体部11。在外壳主体部11的一端侧形成固定层7A以后,通过同样的方法,在另一端侧也形成固定层7B。另外,也可以将旋转中心设定在单元50的中央位置,同时向单元50的两端侧填充固定剂BD。另外,也可以采用在静置下填充固定剂BD并使其固化的所谓静置粘接法。固定剂BD的填充完成时,通过将该固定剂BD层静置而使其固化,形成固定层7A、7B。
[0130] 但是,在现有的中空纤维膜组件中,就从管部51a注入的固定剂BD而言,在帽51A中从中空纤维膜2彼此之间的端面及中空纤维膜束3的端面与帽51A之间填充进去。但是,它们之间的间隙非常狭窄,固定剂BD的流入阻力大,所以直到填充完成,需要很长时间。其结果是,来自管部51a的注入速度和向这些狭窄空间的注入速度不平衡(来自管部51a的注入速度快),如图10(b)所示,现有的中空纤维膜组件中,中空纤维膜束3由于固定剂BD的注入压力而被推动,从而,中空纤维膜束3发生纵向弯曲。
[0131] 与此相对,如本实施方式所述,在使用具有沿中空纤维膜束3的长度方向贯通的贯通部的分隔构件的情况下,如图5及图6所示,可将分隔构件6A的贯通部21、22、23、24、26作为暂时缓解注入后的固定剂BD的注入压力的所谓的“缓冲空间”来利用(第一缓冲空间)。另外,如本实施方式所述,在使用使一对板构件相对配置形成的分隔构件的情况下,也可使贯通部21、22、23、24作为与外壳主体部11的内壁和中空纤维膜束3的外周部之间的广阔空间(第二缓冲空间)联络的流路而发挥功能。即,分隔构件6A的贯通部自身变为缓冲空间,而且也成为与其他缓冲空间联络的流路。并且,贯通部由于被板构件包围,所以能够实现流路的切实的尺寸设计。由此,能够高效地缓和固定剂BD的注入压力。由分隔构件6A获得的第一及第二缓冲空间通过暂时贮留固定剂DB,来吸收来自管部51a的固定剂BD的快速注入。而且,由于能够顺利地以较长时间将暂时贮留下来的固定剂BD注入中空纤维膜束3和分隔构件之间及中空纤维膜束3中的中空纤维膜2彼此之间,所以能够高效地抑制纵向弯曲。其结果是,如图10(a)所示,本实施方式的中空纤维膜组件1沿着外壳的轴线方向将中空纤维膜束3维持为直线状。如本实施方式所述,使一对板构件相对配置形成的分隔构件从如下观点出发而优选,即,自身成为缓冲空间,并且成为与其他缓冲空间联络的流路,因而能够简便地确保大的缓冲空间,并且高效地抑制纵向弯曲。另外,通过将一对板构件配置为十字型,也能够确保将中空纤维膜束3容纳于外壳内的空间大,更优选。
[0132] 如图7所示,过剩填充的固定剂BD从形成于外壳主体部11的侧面的管部16A、16B溢流,固定剂BD的界面与管部16A、16B的内壁大致相等。
[0133] 而且,如果固定剂BD固化而形成固定层7A、7B,就会在分隔构件6A、6B的贯通部21、22、23、24、26上沿着中空纤维膜束3的长度方向且布满固定层7A、7B整个厚度地形成固定剂密部。
[0134] 接着,进行单元50的两端部的切断(步骤S50)。通过将单元50的端部切断而形成中空纤维膜2的开口端部2a、2b。具体而言,如图7及图8所示,从提高切断后的作业性的观点出发,在CL1所示的部分进行切断。由此,帽51A、51B、外壳主体部11的切断余量11a、11b、密封有填塞料的中空纤维膜2的端部(由填塞料填塞的部分)、分隔构件6A、6B的端部被去除。另外,从组件的尺寸稳定性的观点出发,也可以在CL2所示的部分进行切断。在此情况下,帽51A、51B、中空纤维膜2的端部(由填塞料填塞的部分)、分隔构件6A、6B的端部被去除。
[0135] 接着,进行盖12A、12B及固定器具13A、13B的安装(步骤S60)。S60的工序结束时,图4所示的工序结束,中空纤维膜组件1完成。
[0136] 这样制造的中空纤维膜组件1在制造时使得在组件形态下的动态吸附容量相对于中空纤维膜在单纤维形态下的动态吸附容量之比为90%以上100%以下。
[0137] 另外,这样制造的中空纤维膜组件1将中空纤维膜束3的占有体积相对于外壳主体部11的容积的体积填充率设为30%以上且低于70%。体积填充率的下限值优选设为40%以上,更优选设为50%以上,进一步优选设为55%以上。另外,体积填充率的上限值优选设为低于70%,更优选设为低于68%。即,最优选设为55%以上且低于68%。
[0138] 对体积填充率的算出方法进行详细说明,在完成的中空纤维膜组件1中,当将外壳主体部11的内容积设为Vh,且将中空纤维膜束3的体积设为Vf时,体积填充率Rv用公式(1)表示。
[0139] Rv=Vf/Vh  (1)
[0140] 中空纤维膜束3的体积Vf用公式(2)表示。
[0141] Vf=(Do/2)2×π×L’×n  (2)
[0142] Do是中空纤维膜2的平均外径,L’是中空纤维膜2的平均有效长度,n是填充于外壳4的中空纤维膜2的填充根数。
[0143] 外壳主体部11的内容积Vh用公式(3)表示。
[0144] Vh=(Dh/2)2×π×L  (3)
[0145] Dh是外壳主体部11的平均内径,L是中空纤维膜组件1的固定层7A、7B的界面间距离。
[0146] 体积填充率Rv通过将中空纤维膜组件1拆解且对中空纤维膜2的填充根数n、中空纤维膜2的平均有效长度L’、中空纤维膜2的平均外径Do、外壳主体部11的平均内径Dh、固定层7A、7B的界面间距离L进行实际测量来计算。将中空纤维膜组件1拆解,从固定层7A、7B的界面切取中空纤维膜束3,统计填充根数n。从中空纤维膜束3的整个区域均等地抽取相当于填充根数n的10%的根数样本,测定各自的长度及外径,计算出平均值,求出平均有效长度L’及平均外径Do,通过上式(2),求出中空纤维膜束3的体积Vf。另一方面,从拆解后的外壳主体部11,实际测量外壳的平均内径Dh及固定层7A、7B的界面间距离L,通过公式(3),求出外壳主体部11的内容积Vh。
[0147] 在此,参照图9及图10进一步对体积填充率进行详细说明。在图9中,横轴是体积填充率[%],其表示相对于外壳主体部11的容积的中空纤维膜束3的占有体积,纵轴是吸附容量[mg/mL],其表示组件形态下每单位膜体积[mL]的中空纤维膜2对吸附对象物的吸附量[mg]。
[0148] 如图9所示,使用了吸附膜式的中空纤维膜2的中空纤维膜组件1在体积填充率较小的情况下,不论增减体积填充率,组件形态的动态吸附容量都大致恒定,可确保较高的可伸缩性。但是,如果体积填充率超过规定的值,则组件形态的动态吸附容量就随着体积填充率增加而下降,所以不会确保较高的可伸缩性。本发明者们对体积填充率和组件形态的动态吸附容量之间的关系进行了研究,发现,在体积填充率低于70%时,组件形态的动态吸附容量保持为大致恒定。另一方面,如果体积填充率低于30%,则被填充的中空纤维膜的总体积就相对于外壳尺寸而变小,因此,相对于设置面积而言,组件的吸附处理能力下降,处理效率下降。
[0149] 因此,通过将中空纤维膜2相对于外壳主体部11的体积填充率控制为30%以上且低于70%,既能够确保吸附处理能力,又能够将组件形态的动态吸附容量保持为大致恒定(即,与单纤维形态的动态吸附容量大致相同)。从小型尺寸到大型尺寸,可以始终以组件形态来发挥与单纤维的动态吸附容量相同的动态吸附容量而不依赖于组件的尺寸,所以能够在不同尺寸的组件间确保较高的可伸缩性。
[0150] 可是,如图10(b)所示,如果通过固定剂BD的注入压力来推动中空纤维膜束3,就会发生纵向弯曲。即使将体积填充率设计成30%以上且低于70%,如果中空纤维膜束3的纵向弯曲较大,则也会导致体积填充率大于设计值。
[0151] 用纵向弯曲的程度(纵向弯曲率)来评价体积填充率的设计值和制造后的值的偏离。详细内容后面进行描述,在设体积填充率为Rv、设理论体积填充率为Rv0的情况下,用公式(4)定义纵向弯曲率W。
[0152] W=Rv/Rv0  (4)
[0153] 理论体积填充率Rv0是完全没有纵向弯曲(即,填充于中空纤维膜组件的所有的中空纤维膜2都在固定层间配置成直线状)的状态下的体积填充率,并且是在上述的求算中空纤维膜束3的体积的公式(2)中,将中空纤维膜组件1中固定层7A、7B的界面间距离L代入中空纤维膜2的平均有效长度L’时的体积填充率。纵向弯曲率是100%以上的数值范围。另外,优选为120%以下,更优选为110%以下,进一步优选为105%以下。
[0154] 在因纵向弯曲而使得体积填充率大大地脱离理论体积填充率而成为过剩的体积填充率的情况下,如上所述,在中空纤维膜束3中,会产生膜间压差的偏差,组件内全部的中空纤维膜2都应该在整个区域上均等地供给分离处理,但是在局部流动有过剩的处理液,所以在各中空纤维膜2中,开始出现吸附穿透的时刻产生差异。
[0155] 在吸附膜中,贮留于多孔质膜内且浓缩的吸附对象物的量随着吸附处理的进行而逐渐增加,如果在这种状态下继续吸附处理,则不久吸附对象物就会开始向膜的渗透侧泄漏,即,开始吸附穿透。因此,在吸附膜中,需要在发生吸附穿透以前结束吸附处理。
[0156] 因此,如果开始出现吸附穿透的时刻产生差异,则即使还残留有可吸附的状态的部分,作为中空纤维膜组件1整体的功能也就结束了,处理液的品质下降。
[0157] 与此相对,本实施方式的中空纤维膜组件1如下配置:具有沿中空纤维膜2的长度方向贯通的贯通部21、22、23、24、26的分隔构件6A、6B分隔中空纤维膜束3的小束3A、3B、3C、3D。由分隔构件6A、6B形成的贯通部21、22、23、24、26发挥填充固定剂BD时的缓冲空间和流路的功能,从而能够减小作用于中空纤维膜束3的端部的载荷,如图10(a)所示,能够抑制中空纤维膜束3的纵向弯曲。因此,能够抑制体积填充率过大至超预期,也能够消除中空纤维膜2产生的开始吸附穿透的时刻的差异,所以能够确保较高的可伸缩性。
[0158] 另外,这样制造的中空纤维膜组件1中,固定剂密部率Rb为3%以上且低于60%,所述固定剂密部率是指:固定剂密部的截面积(固定剂密部截面积)相对于中空纤维膜束3的占有截面积(纤维束占有截面积Sf)的比例。固定剂密部率Rb用公式(5)表示。
[0159] Rb=Sb/Sf  (5)
[0160] 固定剂密部率Rb的下限值更优选为4%以上,进一步优选为7%以上,固定剂密部率Rb的上限值更优选低于50%,进一步优选低于30%。即,最优选为7%以上且低于30%。
[0161] 所述纤维束占有截面积是中空纤维膜束3的占有截面积,是构成中空纤维膜束3的全部小束3A、3B、3C、3D的大致外接圆所占的截面积。
[0162] 所述固定剂密部截面积Sb是中空纤维膜束3的占有截面积中所含的部分中紧密地填充有固定剂的部分(固定剂密部)的截面积。以图2的情况为一个例子进行说明时,纤维束占有截面积Sf成为小束3A、3B、3C、3D;分隔构件6A、6B的壁部31、32、33、34;分隔构件6A、6B的贯通部21、22、23、24、26加在一起的截面积,固定剂密部截面积Sb是分隔构件6A、6B的贯通部21、22、23、24、26的截面积。在此,在不使用分隔构件而将中空纤维膜束3制成小束且在该小束间形成间隙并填充固定剂的情况下,固定剂密部截面积Sb成为纤维束占有截面积所含的截面积中向小束间的间隙填充固定剂的所有部分的截面积。
[0163] 这样一来,通过将固定剂密部率Rb设为3%以上且低于60%,能够进行纵向弯曲的抑制控制,能够容易地将体积填充率设为30%以上且低于70%。
[0164] 计算在固定剂密部率Rb时,在固定层中,通过鉴定分隔构件和固定剂的边界,能够实际测量尺寸,计算出固定剂密部率。分隔构件和固定剂的边界的鉴定按照图16所示的方案进行。
[0165] 如图16所示,分隔构件和固定剂的边界的鉴定方案首先判定中空纤维膜束是否被分隔(步骤S1)。然后,如果判定为中空纤维膜束未被分隔(步骤S1:NO),则判断为没有分隔构件(步骤S5)。另一方面,如果判定为中空纤维膜束被分隔(步骤S1:YES),则接着判定是否在组件端面能看到分隔构件(步骤S2)。然后,如果判定为在组件端面能看到分隔构件(步骤S2:YES),则判定为有分隔构件(步骤S6)。另一方面,如果判定为在组件端面不能看到分隔构件(步骤S2:NO),则接着判定是否在固定层埋设部能看到分隔构件(步骤S3)。步骤S3可通过例如将固定层薄薄地切开而成的切片的颜色差异来判定。然后,如果判定为在固定层埋设部能看到分隔构件(步骤S3:YES),则判定为有分隔构件(步骤S6)。另一方面,如果判定为在固定层埋设部不能看到分隔构件(步骤S3:NO),则接着判定固定层切片是否在固定剂和分隔构件的界面存在开裂(步骤S4)。然后,如果判定为固定层切片在固定剂和分隔构件的界面存在开裂(步骤S4:YES),则判定为有分隔构件(步骤S6)。另一方面,如果判定为固定层切片在固定剂和分隔构件的界面不存在开裂(步骤S4:NO),则判断为没有分隔构件(步骤S5)。这样即可鉴定分隔构件和固定剂的边界。
[0166] 作为要维持的上述小束化的状态,是小束内部的中空纤维膜配置在距任意外周部的距离优选为中空纤维膜外径的12倍以内、更优选为10倍以内的位置的状态。例如,在中空纤维膜的外径设为3mm的情况下,该状态是配置在距任意外周部的距离优选为36mm以内、更优选为30mm以内的位置的状态。如果是这种状态,则作为小束的截面形状,没有特别制约,可使用扇型、圆形、三形、四边形、六边形等几何形状及这些几何形状的组合。另外,最接近的中空纤维膜彼此间的距离优选为1mm以上30mm以下,更优选为3mm以上20mm以下。
[0167] 如上所述,根据本实施方式的中空纤维膜组件1,通过将中空纤维膜2相对于外壳主体部11的体积填充率设为30%以上且低于70%,既能够确保处理能力,又能够将组件形态的动态吸附容量保持为大致恒定,所以能够确保高而稳定的可伸缩性。
[0168] 特别是,在将该中空纤维膜组件1用于生物用途的分离纯化的情况下,也能够以期望的能力且以充分的精度来进行分离纯化。
[0169] 另外,在制造中空纤维膜组件1时,通过向具备中空纤维膜2和外壳主体部11的单元50的端部填充固定剂BD来形成固定层7A、7B,而通过用形成贯通部21、22、23、24、26的分隔构件6A、6B来分隔中空纤维膜束3的小束3A、3B、3C、3D,可以使贯通部21、22、23、24、26作为固定剂BD的流路发挥功能。由此,作用于中空纤维膜束3的端部的载荷变小,中空纤维膜束3的纵向弯曲得到抑制,所以能够抑制中空纤维膜相对于筒体的体积填充率较大地脱离设计值,能够维持较高的可伸缩性,并且能够抑制体积填充率不均引起的中空纤维膜组件的功能下降进而导致的处理液品质下降。
[0170] 另外,固定剂块通过分隔构件6A、6B而被划分为分割后的各小束3A、3B、3C、3D。形成固定层7A、7B的固定剂在固化时会发热,固定剂块越大,固化发热量越大,所以冷却收缩也越大。因此,通过这样划分固定剂块,固定剂块的每一块的固化发热量变小,冷却收缩得到抑制,所以能够防止固定层7A、7B的剥离及裂纹发生。
[0171] 本发明不局限于上述的实施方式。例如,在上述实施方式中,以具备分割为小束3A、3B、3C、3D的中空纤维膜束3、分隔构件6A、6B、及固定层7A、7B的中空纤维膜组件1为一个例子进行了说明,但中空纤维膜组件只要是中空纤维膜的占有体积相对于筒体容积的体积填充率为30%以上且低于70%,则可以是任意结构。
[0172] 例如,也可以如图11(a)所示的中空纤维膜组件那样,将由多根中空纤维膜2构成的中空纤维膜束3以不分割为小束的状态组装于外壳主体部,然后在中空纤维膜束3的周围形成固定层7。
[0173] 另外,固定层只要形成了沿中空纤维膜的长度方向并在固定层厚度整个区域上延伸的固定剂密部即可,也可以不必设置分隔构件。例如,也可以在中空纤维膜束的中心轴附近,配置沿中空纤维膜的长度方向并在固定层厚度整个区域上延伸的管部件,以该管部件的管内部为“缓冲空间”,填充固定剂形成固定层。另外,也可以如图11(b)所示的中空纤维膜组件那样,将包含多根中空纤维膜2的中空纤维膜束3分割为多个小束,隔开间隔配置各小束,或者使小束的一部分彼此接触而配置各小束,以小束间的间隔为“缓冲空间”,在小束之间形成固定层7。图11(b)所示的中空纤维膜组件可通过例如图12所示的方法来制造。
[0174] 首先,如图12(a)所示,准备多根将端部已填塞的多个中空纤维膜2整理成束而成的小束的中空纤维膜束3。然后,在外壳主体部内,在各中空纤维膜束3之间配置细长的吸管状的固定剂注入构件81并使得各中空纤维膜束3隔开间隔地配置,对单元进行组装。于是,通过固定剂注入构件81,使形成固定层7的中空纤维膜2的端部沿中空纤维膜束3的长度方向贯通。
[0175] 接着,如图12(b)所示,从单元的两端部填充固定剂。于是,固定剂注入构件81的贯通部发挥固定剂流路的功能,所以填充后的固定剂从固定剂注入构件81的贯通部流入外壳主体部内。然后,通过固定剂固化,形成将中空纤维膜束3固定于外壳主体部的固定层7。由此,隔开间隔地配置各小束,在形成于该小束之间的固定层7上,形成横跨中空纤维膜2的长度方向整个区域而延伸的固定剂密部。
[0176] 接着,如图12(c)所示,通过将单元的两端部切断,来去除中空纤维膜2的填塞,使中空纤维膜2的端部开口。在图12(c)中,在切断单元的两端部时,固定剂注入构件81与切断片一同被去除,所以不会在切断面残留固定剂注入构件81,但在使用较长的固定剂注入构件81的情况下,固定剂注入构件81有时也会留在切断面上。然后,通过在该单元上安装盖,图11(b)所示的中空纤维膜组件的制造结束。
[0177] 另外,作为分隔构件,不限于由板构件构成的构件,只要是具有沿中空纤维膜2的长度方向贯通的贯通部的分隔构件,则可以采用任意结构。例如,也可以如图13(a)所示的中空纤维膜组件的分隔构件71那样,将多个形成有沿中空纤维膜束3的长度方向贯通的贯通部的圆筒部件连结,整体上制成十字型。另外,也可以如图13(b)所示的中空纤维膜组件的分隔构件72那样,使多个网状部件隔开恒定间隔而相对配置,使该多个网状部件交叉成十字型。另外,也可以如图13(c)所示的中空纤维膜组件的分隔构件73那样,按照瓦楞纸板的截面结构那样在由网状部件(或板构件)包围的内部区域配置波纹状的平板,再使上述配置而成的部件交叉成十字型。
[0178] 另外,分隔构件不局限于十字型,可采用各种各样的形状。例如,也可以如图14(a)所示的中空纤维膜组件的分隔构件74那样,通过将一对相对配置的板构件在横向上配置三组、在纵向上配置一组,将中空纤维膜束3的小束分隔成八个。
[0179] 另外,分隔中空纤维膜束3的装置不局限于分隔构件,例如,如图14(b)所示,也可以由分割网状部件76将中空纤维膜束3分割。这样,通过由分割网状部件76将中空纤维膜束3分割,能够进一步使中空纤维膜束3小束化。
[0180] 另外,如图15(a)所示,也可以将分隔构件78设为使一块平板交叉构成十字型且不设置贯通部的分隔构件。另外,如图15(b)所示,通过在小束化后的中空纤维膜束3彼此之间配置块状隔离物77来代替分隔构件,即使不将中空纤维膜束3完全分隔,也能够使固定剂流入中空纤维膜束3彼此之间,形成固定层7。
[0181] 另外,分隔构件只要具有在填充固定剂时能够散逸固定剂的注入压力的缓冲空间,则可以采用任意结构。
[0182] 在这种情况下,分隔构件如果是还具有将固定剂引导到中空纤维膜束3的外周部和外壳主体部11的内壁侧之间的空间(第二缓冲空间)的流路结构,则更优选。
[0183] 例如,在具有沿长度方向贯通的贯通部的分隔构件中,如果在贯通部的分隔构件轴方向的一侧端部及贯通部的侧面部(在组装有单元时,是与外壳主体部对置的部分)具有至少一个至少能排气程度的大小的孔,则即使堵塞也可以。
[0184] 例如,可采取如下结构:分隔构件6A、6B的贯通部的一侧端部由开设有小孔的盖来堵塞,分隔构件6A、6B的贯通部的侧面部由无孔的盖完全堵塞。在这种情况下,被盖覆盖的一端部配置于固定层的界面侧。未被盖覆盖而敞开的另一端部作为固定剂流入的开口部,作为形成固定剂密部的空间即缓冲空间发挥功能。由此,能够抑制纵向弯曲。此时,由于能够从设置于盖上的小孔散逸空气,所以能够进行固定剂向贯通部的填充。
[0185] 另外,可采用分隔构件6A、6B的贯通部的一侧端部由无孔的盖完全堵塞,分隔构件6A、6B的贯通部的侧面部被开有小孔的盖堵塞的结构。在这种情况下,小孔形成于被盖覆盖的一端部附近,该被盖覆盖的一端部配置于固定层的界面侧。而且,与上述同样,由于能够进行固定剂的填充,所以能够抑制纵向弯曲。
[0186] 另外,在一对板构件相对配置而成的分隔构件中,成对的板构件彼此也可以不必相对于轴方向和/或与轴垂直的方向进行平行配置。在这种情况下,可增大纤维的填充根数,所以优选平行地配置一对板构件。
[0187] 另外,例如,可应用于如专利文献2所述的仅中空纤维膜束的一端敞开且相反的一端封闭的形态等公知的中空纤维膜组件技术。
[0188] 实施例
[0189] 接着,对本发明的实施例及比较例进行说明。本发明不局限于下面的实施例。
[0190] [评价方法1]通过拆解组件来确认中空纤维膜和外壳的尺寸的方法
[0191] 按下面的顺序将中空纤维膜组件1拆解,通过实际测量根数和尺寸,可得到“中空纤维膜的填充根数n”、“中空纤维膜的平均有效长度L’”、“中空纤维膜的平均内径Di”及“中空纤维膜的平均外径Do”、“外壳的平均内径Dh”、以及“固定层的界面间距离L”。
[0192] 第一,确认“中空纤维膜的填充根数n”。首先,小心地将中空纤维膜组件拆解,其次,从固定层的界面切取中空纤维膜束,然后,采集中空纤维膜束。最后,通过统计构成该中空纤维膜束的中空纤维膜的根数,可得到“中空纤维膜的填充根数n”。
[0193] 第二,从采集到的中空纤维膜,确认“中空纤维膜的平均有效长度L’”、“中空纤维膜的平均内径Di”及“中空纤维膜的平均外径Do”。首先,从采集到的中空纤维膜束的整体,无遗漏地保留相当于10%的根数的中空纤维膜作为代表样本。其次,对保留下来的代表样本中每一根中空纤维膜的长度、内径、外径进行测定。然后,通过从测得的长度、内径、外径,求出各自的平均值,可得到“中空纤维膜的平均有效长度L’”、“中空纤维膜的平均内径Di”及“中空纤维膜的平均外径Do”。另外,作为中空纤维膜的内径及外径的测定,使用Nikon公司研制的MEASURING MICROSCOPE MM-40。
[0194] 第三,从拆解后的外壳主体部,确认“外壳的平均内径Dh”和“固定层的界面间距离L”。从切取了中空纤维膜束以后的组件中,测定数个部位的尺寸,从其平均值,可得到“外壳的平均内径Dh”和“固定层的界面间距离L”。
[0195] [评价方法2]中空纤维膜束的体积填充率的算出
[0196] “中空纤维膜束的体积填充率Rv”从“中空纤维膜束的体积Vf”及“外壳内容积Vh”来求出。
[0197] “中空纤维膜束的体积Vf”通过将由评价方法1得到的n、Do、L’代入公式(6)来求出。“外壳内容积Vh”从将由评价方法1得到的Dh、L代入公式(7)来求出。
[0198] Vf=(Do/2)2×π×L’×n  (6)
[0199] Vh=(Dh/2)2×π×L  (7)
[0200] “中空纤维膜的体积填充率Rv”通过将由式(6)及式(7)求出的“中空纤维膜束的体积Vf”及“外壳内容积Vh”代入公式(8)来求出。
[0201] Rv=Vf/Vh  (8)
[0202] [评价方法3]中空纤维膜的纵向弯曲率的算出
[0203] 表示中空纤维膜的纵向弯曲的程度的“纵向弯曲率W”利用体积填充率Rv和理论体积填充率Rv0,从公式(9)求出。
[0204] W=Rv/Rv0  (9)
[0205] 理论体积填充率Rv0是完全没有纵向弯曲(即,填充于中空纤维膜组件的所有的中空纤维膜都在固定层间配置为直线状)的状态的填充率。如果设处于该理论体积填充率时的中空纤维膜束的体积为Vf0,则Vf0可利用由固定层的评价方法1得到的界面间距离L,并用公式(10)来表示。
[0206] Vf0=(Do/2)2×π×L×n  (10)
[0207] “纵向弯曲率W”通过将式(8)及式(10)代入式(9)来求出。另外,如果展开公式(9),则纵向弯曲率W可简化为公式(11)。
[0208] W=L’/L  (11)
[0209] [评价方法4]填充于吸附膜组件的中空纤维膜体积的计算
[0210] “填充于中空纤维膜组件的中空纤维膜体积Vmm”通过将评价方法1得到的n、Di、Do、L’代入式(12)来求出。另外,在中空纤维膜的情况下,作为有助于吸附的部分的膜体积,适合利用中空纤维膜的圆环体积。中空纤维膜体积Vmm成为圆环截面积×平均有效长度×填充根数,用公式(12)表示。
[0211] Vmm={(Do/2)2-(Di/2)2}×π×L’×n  (12)
[0212] [评价方法5]固定层的固定剂密部率的计算
[0213] 固定层的固定剂密部率Rb是指:固定剂密部的截面积(固定剂密部截面积Sb)相对于中空纤维膜束的占有截面积(纤维束占有截面积Smb)的比例,用公式(13)定义。
[0214] Rb=Sb/Smb  (13)
[0215] “纤维束占有截面积Smb”是指由全部中空纤维膜束所包围的区域的截面积。例如,在中空纤维膜分割为多个小束的情况下,是指包含全部小束在内的最小的大致外接圆所占的截面积。“固定剂密部截面积Sb”是在中空纤维膜束的占有截面积所含的部分中,填充固定剂的部分的截面积。
[0216] 例如,以图2的情况对“纤维束占有截面积Smb”和“固定剂密部截面积Sb”进行说明。“纤维束占有截面积Smb”是小束3A、3B、3C、3D、分隔构件6A、6B的壁部31、32、33、34和分隔构件6A、6B的贯通部21、22、23、24、26加在一起的截面积。“固定剂密部截面积Sb”是分隔构件6A、6B的贯通部21、22、23、24、26的截面积。
[0217] 另外,作为图2的另一个例子,在不具备分隔构件且将中空纤维膜束3制成小束而在该小束间形成间隙并填充固定剂的情况下,对“纤维束占有截面积Smb”和“固定剂密部截面积Sb”进行说明。固定剂密部截面积是在纤维束占有截面积所含的截面积内向小束间的间隙填充固定剂的全部部分的截面积。
[0218] 在计算固定剂密部时,在固定层中,通过鉴定分隔构件和固定剂的边界,能够实际测量尺寸,计算出固定剂密部。分隔构件和固定剂的边界的鉴定如上所述,按照图16所示的方案。
[0219] [评价方法6]吸附性能测定用的溶液的调节方法
[0220] 利用指标蛋白质作为被吸附物质。为了显示纯化装置的性能,优选利用最适蛋白质,作为通常使用的蛋白质,包括BSA(血清白蛋白)或溶菌酶。在阴离子交换膜的评价中,大多使用BSA,在阳离子交换膜的评价中,大多使用溶菌酶,但可根据评价条件(pH、缓冲液等)来选择适当的物质。在本实施例中,作为指标蛋白质,使用SIGMA公司研制的BSA。利用纯化的蛋白质的市售品作为被吸附物质来测定吸附性能,这通常在进行生物技术的纯化装置的性能显示时使用。
[0221] 下面,表示的是评价所使用的溶液的调节方法。
[0222] <三盐酸盐缓冲液(缓冲液)>
[0223] 将三(羟甲基)氨基甲烷(试剂)溶解于超纯水,添加盐酸,调节到pH8,然后将浓度调整为20mmol/L(pH8)。其后,使用了通过了孔径0.45μm的过滤器的液体。
[0224] <BSA溶液>
[0225] 使BSA溶解于20mmol/L(pH8)三盐酸缓冲液中,并使其为1[g(BSA)/L(缓冲液)]。使用了通过了孔径0.45μm的过滤器的液体。
[0226] <盐缓冲液>
[0227] 在上述三盐酸缓冲液中溶解NaCl(和光特级试剂),制备浓度1mol/L的含有氯化钠的缓冲液。其后,使用了通过了孔径0.45μm的过滤器的液体。
[0228] [评价方法7]吸附膜组件的指标蛋白质吸附性能的评价方法
[0229] 作为吸附膜组件的指标蛋白质吸附性能的评价,利用高效液相色谱(HPLC)系统。作为HPLC,使用由送液、流量计、压力计、紫外可见分光光度计构成的株式会社YMC(株式会社ワイエムシィ)的中压色谱层析装置“BP-5000S-L”。
[0230] 吸附性能的测定前的准备按如下顺序进行。首先,以直立的状态将中空纤维膜组件固定,然后将来自HPLC的供给配管与中空纤维膜组件的下方的盖连接。接着,边将液体供给到组件,边排出组件内的空气。接下来,将中空纤维膜组件的侧面下的喷嘴和HPLC的导入配管连接,对上方的盖及侧面上的喷嘴进行闭。即,将中空纤维膜组件设定为能够进行内压过滤方式的全过滤的状态。
[0231] 吸附性能的测定通过按下面的顺序进行各溶液的过滤操作来实施。即,第一,利用缓冲液,进行吸附膜组件的平衡化操作,第二,利用指标蛋白质溶液,进行蛋白质的吸附操作,第三,再次利用缓冲液,进行未吸附于吸附膜的游离蛋白质的清洗操作。第四,利用盐缓冲液,进行吸附于吸附膜的吸附蛋白质的溶解析出操作,第五,再次利用缓冲液,进行使吸附膜组件的盐分浓度下降的再生操作。另外,各溶液相对于中空纤维膜组件,以恒定流速,持续进行内压式的全过滤操作。另外,蛋白质的吸附举动及溶解析出举动的跟踪利用紫外可见分光光度计来进行,用波长280nm的吸光度变化来确认向过滤液侧的蛋白质的泄漏动向。
[0232] [评价方法8]吸附中空纤维膜的指标蛋白质吸附性能的评价方法
[0233] 在吸附中空纤维膜的指标蛋白质吸附性能的评价中,利用管式泵。将压力计和有效膜长7cm的吸附中空纤维膜与事先调节了送液量的管式泵连接,通过排除中空部的空气,设定为能够进行内压过滤方式的全过滤的状态。
[0234] 吸附性能的测定按与评价方法7的记载同样的顺序来进行。但是,蛋白质的吸附举动及析出举动通过用分部收集器以恒定时间间隔分别采集滤液,然后利用紫外可见分光光度计跟踪280nm的吸光度变化,来确认滤液的各级分。
[0235] [评价方法9]吸附膜组件的动态吸附容量的计算
[0236] 在评价方法7中,从指标蛋白质吸附操作时蛋白质向过滤液侧的泄漏动向,对过滤后的吸光度达到过滤前的指标蛋白质溶液(原液)的吸光度的10%的时刻的滤液量[mL]进行确认。然后,按照1g/L的关系将该滤液量换算为蛋白质的重量,从而计算出达到吸光度的10%的时刻的蛋白质吸附量[mg]。另外,通过该蛋白质吸附量[mg]除以由评价方法4求出的填充于吸附膜组件的中空纤维膜体积Vmm[mL],计算出组件形态下每单位膜体积的蛋白质吸附量[mg/mL]。
[0237] 将过滤液达到10%的吸光度的时刻的每单位膜体积的蛋白质吸附量称为“动态吸附容量”。将由该方法算出的动态吸附容量称为组件形态下的动态吸附容量,或者,简称为“组件的吸附容量”。另外,在生物技术的纯化领域等,“动态吸附容量”是通常使用的术语。
[0238] [评价方法10]吸附中空纤维膜的动态吸附容量的计算
[0239] 基于在评价方法8中得到的值,通过与评价方法9同样的顺序,计算出吸附中空纤维膜形态下的每单位膜体积的蛋白质吸附量[mg/mL]。但是,由于评价方法8的中空纤维膜的体积Vmm[mL]用圆环截面积×有效膜长来表示,所以通过将由评价方法1求出的Di、Do、及评价所使用的中空纤维膜的有效膜长Ls代入公式(14)来求出。
[0240] Vms=={(Do/2)2-(Di/2)2}×π×Ls  (14)
[0241] 以下,将由该方法计算出的吸附中空纤维膜形态的动态吸附容量称为单纤维形态的动态吸附容量,或者,简称为“单纤维的吸附容量”,用于与[评价方法9]所示的“组件的吸附容量”的比较。
[0242] [评价方法11]吸附性能的可伸缩性的计算
[0243] 利用评价方法10得到的“中空纤维膜单纤维形态的动态吸附容量”和评价方法9得到的“吸附膜组件的动态吸附容量”,并用公式(15)来定义“吸附膜组件的可伸缩性”。
[0244] 吸附膜组件的可伸缩性=(组件的动态吸附容量)/(单纤维的动态吸附容量)×100  (15)
[0245] [评价方法12]固定层的耐久性评价方法
[0246] 固定层的耐久性评价中,进行最多10次的中空纤维膜组件的重复使用,然后统计直到固定层发生不良的次数。即,固定层的耐久性评价中,将固定层不发生不良的情况下可重复使用的次数作为耐久性的次数进行评价。例如,以初次的吸附及溶解析出作为1开始统计,在第二次使用中固定层发生了不良的情况下,耐久性记为1次。吸附膜的中空纤维膜通过例如改变评价方法7记载的一系列的操作顺序等、要供给的液体的条件(pH、传导率等),能够使被吸附蛋白质溶出。
[0247] 接着,参照表1~表3对实施例1~11及比较例1、2进行具体说明。按照上述的实施方式说明的制造方法(参照图4),就各实施例而言,用相同的制造方法制作三根组件(A、B、C)。
[0248] 组件A首先按照评价方法6、7,评价组件的吸附量。其次,按照评价方法1、2、3、4,将组件拆解,计算出体积填充率Rv、纵向弯曲率W、膜体积Vmm。其后,从评价方法9,计算出组件形态的每单位膜体积的吸附容量。另外,按照评价方法5,求出固定剂密部率Rb。
[0249] 组件B首先按照评价方法1、2、3、4,将组件拆解,计算出体积填充率Rv、纵向弯曲率W。其次,从拆解而抽取到的吸附膜样本,按照评价方法10,计算出单纤维形态下每单位膜体积的吸附容量。进而,按照评价方法5,求出固定剂密部率Rb。
[0250] 在此,从组件A的组件的吸附容量、组件B的单纤维吸附容量,按照评价方法11,计算出吸附膜组件的可伸缩性。
[0251] 另外,通过由评价方法3求出的组件A和组件B的纵向弯曲率的比较,来以其差值的绝对值为纵向弯曲率差,对纵向弯曲率的偏差进行比较。
[0252] 组件C按照评价方法12,评价固定层的耐久性。
[0253] [表1]
[0254]
[0255] [表2]
[0256]
[0257] [表3]
[0258]
[0259] [实施例1]
[0260] 制作三根(1A、1B、1C)图11(a)所示的中空纤维膜组件。另外,在实施例1中,未使用分隔构件。
[0261] 当对组件1A实施组件的吸附容量评价时,平均每组件吸附27.4g的BSA。其后,进行拆解调查的结果是,填充于组件1A的中空纤维膜的根数n为460根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为206mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为61.9%,纵向弯曲率W为108.4%,膜体积(圆环部)Vmm为633mL。由此,组件的吸附容量被计算出为43.3mg/mL。另外,固定剂密部率Rb为0%。
[0262] 当对组件1B进行拆解调查时,填充于组件1B的中空纤维膜的根数n为460根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为212mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为63.8%,纵向弯曲率W为111.6%,膜体积(圆环部)Vmm为652mL。抽取到的中空纤维膜的单纤维的动态吸附容量为44.3mg/mL,可伸缩性为97.7%。
[0263] 另外,组件1A和1B的纵向弯曲率差为3.2%。另外,组件1C的耐久次数为2次。
[0264] 由这种评价结果显示,在实施例1中,能够制造出可伸缩性合格的中空纤维膜组件。
[0265] [实施例2]
[0266] 制作三根(2A、2B、2C)图11(a)所示的中空纤维膜组件。另外,在实施例2中,未使用分隔构件。
[0267] 当对组件2A实施组件的吸附容量评价时,平均每组件吸附29.8g的BSA。其后,进行拆解调查的结果是,填充于组件2A的中空纤维膜的根数n为510根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为206mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为68.7%,纵向弯曲率W为108.4%,膜体积(圆环部)Vmm为702mL。由此,组件的吸附容量被计算出为42.5mg/mL。另外,固定剂密部率Rb为0%。
[0268] 当对组件2B进行拆解调查时,填充于组件2B的中空纤维膜的根数n为510根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为213mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为71.0%,纵向弯曲率W为112.1%,膜体积(圆环部)Vmm为726mL。抽取到的中空纤维膜的动态吸附容量为44.7mg/mL,可伸缩性为95.1%。
[0269] 另外,组件2A和2B的纵向弯曲率差为3.7%。另外,组件2C的耐久次数为1次。
[0270] 由这种评价结果显示,在实施例2中,能够制造出可伸缩性合格的中空纤维膜组件。
[0271] [实施例3]
[0272] 在图4所示的整束工序中,在一束中空纤维膜束之间配置6根外径为10mm、内径为8mm的吸管状的固定剂注入构件,制作出三根(3A、3B、3C)中空纤维膜组件。另外,在实施例3中,未使用分隔构件。
[0273] 当对组件3A实施组件的吸附容量评价时,平均每组件吸附28.6g的BSA。其后,进行拆解调查的结果是,填充于组件3A的中空纤维膜的根数n为480根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为197mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为61.8%,纵向弯曲率W为103.7%,膜体积(圆环部)Vmm为632mL。由此,组件的吸附容量被计算出为45.3mg/mL。另外,固定剂密部率Rb为4.2%。
[0274] 当对组件3B进行拆解调查时,填充于组件3B的中空纤维膜的根数n为480根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为198mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为62.1%,纵向弯曲率W为104.2%,膜体积(圆环部)Vmm为635mL。抽取到的中空纤维膜的动态吸附容量为46.4mg/mL,可伸缩性为97.6%。
[0275] 另外,组件3A和3B的纵向弯曲率差为0.5%。另外,组件3C的耐久次数为3次。
[0276] 由这种评价结果显示,在实施例3中,能够制造出可伸缩性合格的中空纤维膜组件。另外显示,通过使用固定剂注入构件形成沿中空纤维膜的长度方向且再定层厚度整个区域上延伸的固定剂密部,进一步抑制纵向弯曲,纵向弯曲的偏差减小,具有防止从预定的体积填充率发生偏离的效果。
[0277] [实施例4]
[0278] 在图4所示的整束工序中,通过在分割为7根小束的中空纤维膜束之间配置外径为10mm、内径为8mm的吸管状的固定剂注入构件,制作出三根(4A、4B、4C)图11(b)所示的中空纤维膜组件。另外,在实施例4中,未使用分隔构件。
[0279] 对组件4A实施组件的吸附容量评价的结果是,平均每个组件吸附26.3g的BSA。其后,进行拆解调查的结果是,填充于组件4A的中空纤维膜的根数n为480根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为59.6%,纵向弯曲率W为100%,膜体积(圆环部)Vmm为609mL。由此,组件的吸附容量被计算出为43.1mg/mL。另外,固定剂密部率Rb为32.7%。
[0280] 对组件4B进行拆解调查的结果是,填充于组件4B的中空纤维膜的根数n为480根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为59.6%,纵向弯曲率W为100%,膜体积(圆环部)Vmm为609mL。抽取到的中空纤维膜的动态吸附容量为43.7mg/mL,可伸缩性为98.7%。
[0281] 另外,组件4A和4B的纵向弯曲率差为0.0%。另外,组件4C的耐久次数为1次。
[0282] 由这种评价结果显示,在实施例4中,能够制作出可伸缩性合格的中空纤维膜组件。另外显示,通过隔开小束间的间隔形成沿中空纤维膜的长度方向且在固定层厚度整个区域上延伸的固定剂密部,进一步抑制纵向弯曲,纵向弯曲的偏差减小,具有防止从预定的体积填充率发生偏离的效果。
[0283] [实施例5]
[0284] 在图4所示的整束工序中,通过在小束化后的中空纤维膜束3彼此之间配置截面为6mm×6mm的块状隔离物77来代替分隔构件,制作出三根(5A、5B、5C)图15(b)所示的中空纤维膜组件。另外,在实施例5中,未使用分隔构件。
[0285] 对组件5A实施组件的吸附容量评价的结果是,平均每个组件吸附29.1g的BSA。其后,进行拆解调查的结果是,填充于组件5A的中空纤维膜的根数n为540根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为67.1%,纵向弯曲率W为100%,膜体积(圆环部)Vmm为686mL。由此,组件的吸附容量被计算出为42.5mg/mL。另外,固定剂密部率Rb为12.6%。
[0286] 对组件5B进行拆解调查的结果是,填充于组件5B的中空纤维膜的根数n为540根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为67.1%,纵向弯曲率W为100%,膜体积(圆环部)Vmm为686mL。抽取到的中空纤维膜的动态吸附容量为45.0mg/mL,可伸缩性为94.4%。
[0287] 另外,组件5A和5B的纵向弯曲率差为0.0%。另外,组件5C的耐久次数为1次。
[0288] 由这种评价结果显示,在实施例5中,能够制造出可伸缩性合格的中空纤维膜组件。另外显示,通过形成沿中空纤维膜的长度方向且在固定层厚度整个区域上延伸的固定剂密部,进一步抑制纵向弯曲,纵向弯曲的偏差减小,具有防止从预定的体积填充率发生偏离的效果。
[0289] [实施例6]
[0290] 在图4所示的整束工序中,通过将中空纤维膜束分割为四根小束,且用分隔构件区划各小束,制作出三根(6A、6B、6C)图15(a)所示的中空纤维膜组件。分隔构件使用板厚为4mm、宽度为102mm的部件。
[0291] 对组件6A实施组件的吸附容量评价的结果是,平均每个组件吸附31.5g的BSA。其后,当进行拆解调查时,填充于组件6A的中空纤维膜的根数n为512根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为205mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为68.6%,纵向弯曲率W为107.9%,膜体积(圆环部)Vmm为701mL。由此,组件的吸附容量被计算出为44.8mg/mL。另外,固定剂密部率Rb为0.0%。
[0292] 对组件6B进行拆解调查的结果是,填充于组件6B的中空纤维膜的根数n为512根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为211mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为70.6%,纵向弯曲率W为111.1%,膜体积(圆环部)Vmm为722mL。抽取到的中空纤维膜的动态吸附容量为47.3mg/mL,可伸缩性为94.8%。
[0293] 另外,组件6A和6B的纵向弯曲率差为3.2%。另外,组件6C的耐久次数为10次以上。
[0294] 由这种评价结果显示,在实施例6中,能够制造出可伸缩性合格的中空纤维膜组件。另外,在固定层中未发生裂纹,重复耐久性提高。
[0295] [实施例7]
[0296] 在图4所示的整束工序中,通过将中空纤维膜束分割为四根小束,且用十字型地连结的多个圆筒部件分隔各小束,制作出三根(7A、7B、7C)图13(a)所示的中空纤维膜组件。构成十字型的各圆筒部件使用10根外径为14.5mm、内径为12mm的部件。
[0297] 对组件7A实施组件的吸附容量评价的结果是,平均每个组件吸附26.8g的BSA。其后,进行拆解调查的结果是,填充于组件7A的中空纤维膜的根数n为460根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为193mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为58.0%,纵向弯曲率W为101.6%,膜体积(圆环部)Vmm为593mL。由此,组件的吸附容量被计算出为45.1mg/mL。另外,固定剂密部率Rb为14.1%。
[0298] 对组件7B进行拆解调查的结果是,填充于组件7B的中空纤维膜的根数n为460根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为193.5mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为58.2%,纵向弯曲率W为101.8%,膜体积(圆环部)Vmm为595mL。抽取到的中空纤维膜的动态吸附容量为45.5mg/mL,可伸缩性为99.1%。
[0299] 另外,组件7A和7B的纵向弯曲率差为0.3%。另外,组件7C的耐久次数为10次以上。
[0300] 由这种评价结果显示,在实施例7中,能够制造出可伸缩性合格的中空纤维膜组件。另外显示,通过形成沿中空纤维膜的长度方向且在固定层厚度整个区域上延伸的固定剂密部,进一步抑制纵向弯曲,纵向弯曲的偏差也减小,具有防止从预定的体积填充率发生偏离的效果。
[0301] [实施例8]
[0302] 在图4所示的整束工序中,通过将中空纤维膜束分割为八根小束,且用将一对相对配置的板构件在横向上配置三组且在纵向上配置一组而成的分隔构件分隔各小束,制作出三根(8A、8B、8C)图14(a)所示的中空纤维膜组件。分隔构件使用各板构件的板厚为4mm、一对板构件的间距为4mm的部件。
[0303] 对组件8A实施组件的吸附容量评价的结果是,平均每个组件吸附18.8g的BSA。其后,进行拆解调查的结果是,填充于组件8A的中空纤维膜的根数n为340根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为42.2%,纵向弯曲率W为100.0%,膜体积(圆环部)Vmm为432mL。由此,组件的吸附容量被计算出为43.6mg/mL。另外,固定剂密部率Rb为14.3%。
[0304] 当对组件8B进行拆解调查时,填充于组件8B的中空纤维膜的根数n为340根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为42.2%,纵向弯曲率W为100.0%,膜体积(圆环部)Vmm为432mL。抽取到的中空纤维膜的动态吸附容量为43.9mg/mL,可伸缩性为99.4%。
[0305] 另外,组件8A为8B的纵向弯曲率差为0.0%。另外,组件8C的耐久次数为10次以上。
[0306] 由这种评价结果显示,在实施例8中,能够制造出可伸缩性合格的中空纤维膜组件。另外显示,在固定层中未发生裂纹,重复耐久性提高。另外显示,通过形成沿中空纤维膜的长度方向且在固定层厚度整个区域上延伸的固定剂密部,进一步抑制纵向弯曲,纵向弯曲的偏差也减小,具有防止从预定的体积填充率发生偏离的效果。
[0307] [实施例9]
[0308] 在图4所示的整束工序中,通过将中空纤维膜束分割为四根小束,且用一对相对配置的板构件配置为十字型而成的分隔构件来分隔各小束,制作出三根(9A、9B、9C)图2所示的中空纤维膜组件。分隔构件使用各板构件的板厚为4mm、一对板构件的间距为4mm的部件。
[0309] 对组件9A实施组件的吸附容量评价的结果是,平均每个组件吸附25.9g的BSA。其后,进行拆解调查的结果是,填充于组件9A的中空纤维膜的根数n为460根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为57.1%,纵向弯曲率W为100.0%,膜体积(圆环部)Vmm为584mL。由此,组件的吸附容量被计算出为44.3mg/mL。另外,固定剂密部率Rb为8.9%。
[0310] 对组件9B进行拆解调查的结果是,填充于组件9B的中空纤维膜的根数n为460根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为57.1%,纵向弯曲率W为100.0%,膜体积(圆环部)Vmm为584mL。抽取到的中空纤维膜的动态吸附容量为44.4mg/mL,可伸缩性为99.8%。
[0311] 另外,组件9A和9B的纵向弯曲率差为0.0%。另外,组件9C的耐久次数为10次以上。
[0312] 由这种评价结果显示,在实施例9中,能够制造出可伸缩性合格的中空纤维膜组件。另外显示,在固定层中未发生裂纹,重复耐久性提高。另外显示,通过形成沿中空纤维膜的长度方向且在固定层厚度整个区域上延伸的固定剂密部,进一步抑制纵向弯曲,纵向弯曲的偏差也减小,具有防止从预定的体积填充率发生偏离的效果。
[0313] [实施例10]
[0314] 在图4所示的整束工序中,将中空纤维膜束分割为八根小束,用一对相对配置的板构件配置为十字型而成的分隔构件来二束二束地分隔小束,然后用分割网状部件对由分隔构件分隔的二束的小束进行分隔,由此制作出三根(10A、10B、10C)图14(b)所示的中空纤维膜组件。分隔构件使用各板构件的板厚为4mm、一对板构件的间距为4mm的部件。分割网状部件使用具有网眼的较薄的网状部件。
[0315] 当对组件10A实施组件的吸附容量评价时,平均每组件吸附26.8g的BSA。其后,进行拆解调查的结果是,填充于组件10A的中空纤维膜的根数n为460根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为57.1%,纵向弯曲率W为100.0%,膜体积(圆环部)Vmm为587mL。由此,组件的吸附容量被计算出为45.9mg/mL。另外,固定剂密部率Rb为21.5%。
[0316] 对组件10B进行拆解调查的结果是,填充于组件10B的中空纤维膜的根数n为460根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为57.1%,纵向弯曲率W为100.0%,膜体积(圆环部)Vmm为584mL。抽取到的中空纤维膜的动态吸附容量为46.0mg/mL,可伸缩性为99.8%。
[0317] 另外,组件10A和10B的纵向弯曲率差为0.0%。另外,组件10C的耐久次数为10次以上。
[0318] 由这种评价结果显示,在实施例10中,能够制造出可伸缩性合格的中空纤维膜组件。另外显示,在固定层中未发生裂纹,重复耐久性提高。另外,通过形成沿中空纤维膜的长度方向且在固定层厚度整个区域上延伸的固定剂密部,进一步抑制纵向弯曲,纵向弯曲的偏差也减小,具有防止从预定的体积填充率发生偏离的效果。
[0319] [实施例11]
[0320] 在图4所示的整束工序中,将中空纤维膜束分割为四根小束,分别用保护构件覆盖分割后的小束的外周,然后用一对相对配置的板构件配置为十字型而成的分隔构件分隔由保护构件覆盖的各小束,由此制作出三根(11A、11B、11C)图2及图3所示的中空纤维膜组件。分隔构件使用各板构件的板厚为4mm、一对板构件的间距为4mm的部件。分割网状部件使用具有网眼的较薄的网状部件。
[0321] 对组件11A实施组件的吸附容量评价的结果是,平均每个组件吸附18.9g的BSA。其后,进行拆解调查的结果是,填充于组件11A的中空纤维膜的根数n为332根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为41.2%,纵向弯曲率W为100.0%,膜体积(圆环部)Vmm为422mL。由此,组件的吸附容量被计算出为44.9mg/mL。另外,固定剂密部率Rb为39.2%。
[0322] 对组件11B进行拆解调查的结果是,填充于组件11B的中空纤维膜的根数n为332根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为190mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为41.2%,纵向弯曲率W为100.0%,膜体积(圆环部)Vmm为422mL。抽取到的中空纤维膜的动态吸附容量为45.1mg/mL,可伸缩性为99.5%。
[0323] 另外,组件11A和11B的纵向弯曲率差为0.0%。另外,组件11C的耐久次数为10次以上。
[0324] 由这种评价结果显示,在实施例11中,能够制造出可伸缩性合格的中空纤维膜组件。另外显示,在固定层中未发生裂纹,重复耐久性提高。另外显示,通过形成沿中空纤维膜的长度方向且在固定层厚度整个区域上延伸的固定剂密部,进一步抑制纵向弯曲,纵向弯曲的偏差也减小,具有防止从预定的体积填充率发生偏离的效果。
[0325] [比较例1]
[0326] 在图4所示的整束工序中,通过仅将中空纤维膜整理成一束,制作出三根(1’A、1’B、1’C)图11(a)所示的中空纤维膜组件。另外,在比较例1中,未使用分隔构件。
[0327] 对组件1’A实施组件的吸附容量评价的结果是,平均每组件吸附28.9g的BSA。其后,进行拆解调查的结果是,填充于组件1’A的中空纤维膜的根数n为560根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为204mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为74.7%,纵向弯曲率W为107.4%,膜体积(圆环部)Vmm为763mL。由此,组件的吸附容量被计算出为37.8mg/mL。另外,固定剂密部率Rb为0.0%。
[0328] 对组件1’B进行拆解调查的结果是,填充于组件1’B的中空纤维膜的根数n为560根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为209mm。另外,固定层的界面间距离L为190.0mm,外壳内径Dh为104.7mm。由此,体积填充率Rv为76.5%,纵向弯曲率W为110.0%,膜体积(圆环部)Vmm为782mL。抽取到的中空纤维膜的动态吸附容量为43.2mg/mL,可伸缩性为87.6%。
[0329] 另外,组件1’A和1’B的纵向弯曲率差为2.6%。另外,组件1’C的耐久次数为2次。
[0330] 由这种结果可确认,在比较例1中,组件的吸附容量相对于单纤维的吸附容量的性能比低至87.6%,在中空纤维膜组件的形态下,难以保持单纤维的性能。
[0331] [比较例2]
[0332] 在图4所示的整束工序中,通过仅将中空纤维膜整理成一束,制作出三根(2’A、2’B、2’C)图11(a)所示的中空纤维膜组件。另外,在比较例2中,未使用分隔构件。
[0333] 对组件2’A实施组件的吸附容量评价的结果是,平均每个组件吸附239.4g的BSA。其后,进行拆解调查的结果是,填充于组件2’A的中空纤维膜的根数n为880根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为1016mm。另外,固定层的界面间距离L为936.0mm,外壳内径Dh为130.0mm。由此,体积填充率Rv为
77.0%,纵向弯曲率W为108.5%,膜体积(圆环部)Vmm为5975mL。由此,组件的吸附容量被计算出为40.1mg/mL。另外,固定剂密部率Rb为0.0%。
[0334] 对组件2’B进行拆解调查的结果是,填充于组件2’B的中空纤维膜的根数n为880根,中空纤维膜的平均内径Di/平均外径Do为2.26mm/3.69mm,中空纤维膜的平均有效长度L’为996mm。另外,固定层的界面间距离L为936.0mm,外壳内径Dh为130.0mm。由此,体积填充率Rv为75.4%,纵向弯曲率W为106.4%,膜体积(圆环部)Vmm为5857mL。抽取到的中空纤维膜的动态吸附容量为45.8mg/mL,可伸缩性为87.6%。
[0335] 另外,组件2’A和2’B的纵向弯曲率差为2.1%。另外,组件1’C的耐久次数为1次。
[0336] 由这种评价结果可确认,在比较例2中,组件的吸附容量相对于单纤维的吸附容量的性能比低至87.6%,在中空纤维膜组件的形态下,难以保持单纤维的性能。
[0337] 图17表示的是实施例1~11及比较例1、2的体积填充率和吸附容量性能比之间的关系。如图17所示,可知,在体积填充率达到70%以上的比较例1、2中,组件的吸附容量相对于单纤维的吸附容量显示出低于90%的较低值,难以确保可伸缩性,与此相对,在体积填充率为30%以上且低于70%的范围的实施例1~11中,组件的吸附容量相对于单纤维的吸附容量显示出90%以上的较高值,能够确保较高的可伸缩性。
[0338] 另外,比较例2是以日本特开2011-016116号公报及日本特开2011-016119号公报记载的中空纤维膜组件为模型的例子。而且,当对该比较例2实际进行实验时,由于填充固定剂,中空纤维膜发生严重的纵向弯曲,体积填充率上升到77.0%。其结果是,平均每单位膜体积的吸附容量降低,组件的吸附容量相对于单纤维的吸附容量的比例低至87.5%。
[0339] 另外,例如,在实施例2、1、9、11中,就组件2A、1A、9A、11A的体积填充率和可伸缩性之间的关系而言,在体积填充率为68.7%、61.9%、57.1%、41.2%的情况下,可以确认,各实施例的性能比为95.1%、97.7%、99.8%、99.5%,即,均为90%以上。
[0340] 另外,例如,在实施例6、3、9、5、4中,如果将固定剂密部率和纵向弯曲率差进行比较,则固定剂密部率为0.0%、4.2%、8.9%、12.6%、32.7%,与此相对,纵向弯曲率差为3.2%、0.5%、0.0%、0.0%、0.0%,由此可知,当固定剂密部率为3%以上时,纵向弯曲引起的体积填充率的偏差得到抑制。
[0341] 另外,实施例1~5是固定层不具备分隔构件的实施例,实施例6~11是固定层具备分隔构件的实施例。可确认,通过具备分隔构件,固定层的重复耐久性提高。
[0342] 需要说明的是,由于权利要求中已经限定了“相对于所述中空纤维膜束的占有截面积,所述固定剂密部的截面积为3%以上且低于60%”,因此,上述实施例1、2、6已经成为参考例。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈