首页 / 专利库 / 物理 / 离子阱 / 离子阱阵列

离子阱阵列

阅读:535发布:2020-05-12

专利汇可以提供离子阱阵列专利检索,专利查询,专利分析的服务。并且本 发明 离子阱 阵列与离子存储与分析技术相关,具体地说与离子存储和按离子的质荷比等特性来分检或探测的分析仪器有关。一种离子存储与分析装置,包含至少两排相互平行放置的 电极 阵列,其电极阵列中有相互平行的两条以上的条状电极,各条电极上施加不同 相位 的交流 电压 ,使在两排平行电极阵列之间的空间里产生交变 电场 ,进而在此空间构成多个并列的直线形离子束缚区,其中,这些直线形离子束缚区之间相通,无物体隔障。一种离子存储与分析方法,使用上述装置,在两平行电极阵列之间的空间里产生交变电场,进而在此空间中产生多个相通的沿直 线轴 束缚离子的区域;离子在这些区域被捕获、冷却,并因其质荷比不同而受到 鉴别 。,下面是离子阱阵列专利的具体信息内容。

1.一种离子存储与分析装置,包含至少两排相互平行放置的电 极阵列,所述的电极阵列中有相互平行的两条以上的条状电极,各 条电极上施加不同相位的交流电压,使在两排平行电极阵列之间的 空间里产生交变电场,进而在此空间构成多个并列的直线形离子束 缚区,其中,这些直线形离子束缚区之间相通,无物体隔障。
2.根据权利要求1所述的离子存储与分析装置,其特征在于: 进一步包含低气压碰撞气体,以降低被捕集离子的动能,使其能围 绕与所述条状电极平行的多条轴线聚集。
3.根据权利要求1或2所述的离子存储与分析装置,其特征在 于:上排电极阵列与下排电极阵列所在平面相互平行,上下对齐, 在两排平行电极阵列之间的空间的四周设置边界电极。
4.根据权利要求3所述的离子存储与分析装置,其特征在于: 电极阵列中的各条状电极大小相同,在电极阵列侧面平行于条状电 极的边界电极的电位为所述电极阵列中相邻条状电极上所加电压的 中间值。
5.根据权利要求4所述的离子存储与分析装置,其特征在于: 所述平行电极阵列中条状电极的电压依次为+V,-V,+V,-V……, 其中V中包含一个高频电压;而所述平行于条状电极的边界电极的 电压为零。
6.根据权利要求5所述的离子存储与分析装置,其特征在于: 电压V是一个纯高频电压。
7.根据权利要求5所述的离子存储与分析装置,其特征在于: 电压V包含一个高频电压和一个1000赫以下的低频电压。
8.根据权利要求1至7之一所述的离子存储与分析装置,其特 征在于:进一步包括电子开关组,通过快速地开关产生其中所述的 高频电压或低频电压。
9.根据权利要求1至8之一所述的离子存储与分析装置,特征 在于:至少部分边界电极上设有利于离子引出的开孔、狭缝、或制 成网状中的一种。
10.根据权利要求1至9之一所述的离子存储与分析装置,特 征在于:在平行电极阵列中,至少部分条状电极上开有利于离子引 出的狭缝、或制成网状。
11.根据权利要求1至10之一所述的离子存储与分析装置,特 征在于:包括用于产生在上下电极阵列之间的偶极电场的信号源及 偶合装置,以导致离子引出。
12.根据权利要求1至10之一所述的离子存储与分析装置,特 征在于:所述电极阵列中的条状电极表面是平面状,各条状电极表 面相互平行。
13.根据权利要求1至12之一所述的离子存储与分析装置,特 征在于:一排或一排以上电极阵列是用印刷电路板制作平行电极阵 列。
14.根据权利要求13所述的离子存储与分析装置,其特征在于 制作平面电极阵列的印刷电路板包括多导电层的印刷电路板,至少 一面做成的图案包括条状电极的阵列。
15.根据权利要求13或14所述的离子存储与分析装置,其中 制作平面电极阵列的印刷电路板包括多导电层的印刷电路板,至少 在一部分导电层上做成的图案包括安装电子元件和引线的焊盘以及 电路走线。
16.根据权利要求13至15之一所述的离子存储与分析装置, 其特征在于:两排电极阵列是用两印刷电路板制作平面电极阵 列,并以边界电极将两块印刷电路板连接和固定起来。
17.根据权利要求1至16之一所述的离子存储与分析装置,其 特征在于:进一步包括一个离子探测器,以探测从离子存储区射出 的离子。而离子探测器安装在束缚离子轴向的末端的边界电极之 外。
18.根据权利要求1至16之一所述的离子存储与分析装置,其 特征在于:进一步包括一个离子探测器,以探测从离子存储区射出 的离子。而离子探测器安装在与束缚离子轴向平行的边界电极之外 的旁侧。
19.根据权利要求1至16之一所述的离子存储与分析装置,其 特征在于:进一步包括安装在其中一排电极阵列外侧的离子探测 器,离子探测器通过这一排电极阵列上的狭缝或网接收到从离子束 缚区射出的离子。
20.一种离子存储与分析方法,使用相互面对的平行放置的电 极阵列,其中有相互平行的条状电极,各条电极上施加不同相位的 交流电压,使在两平行电极阵列之间的空间里产生交变电场,进而 在此空间中产生多个相通的沿直线轴束缚离子的区域;离子在这些 区域中被捕获、冷却,并因它们的质荷比不同而受到鉴别
21.根据权利要求20的所述离子存储与分析方法,其特征在 于:所述的离子受到鉴别的手段包括加电操纵平行电极阵列,先使 某质荷比以外的各种离子被排斥掉,再对该留存的离子进行一次性 地检测。
22.根据权利要求21的所述离子存储与分析方法,其特征在 于:所述的排斥其他质荷比的离子的方法包括使在各相邻电极之间 施加的交流电压除高频成分外另加一个1000赫以下的低频电压,导 致被束缚的离子存在一个质荷比的下限和上限。
23.根据权利要求21或22所述的离子存储与分析方法,其特 征在于:所述的排斥其他质荷比的离子的方法包括在上下平行电极 阵列之间加一个偶极激发电场,让不想要的一定质荷比的离子与之 发生共震激发,进而打上电极阵列损失掉。
24.根据权利要求20至23之一所述的离子存储与分析方法, 其特征在于:所述的对留存的离子进行一次性地检测的方法包括, 降低条状电极末端的边界电极的直流电位以便从该边界电极上的开 孔或网格中引出正离子,或是升高末端的边界电极的直流电位以从 该边界电极上的开孔或网格中引出负离子,并用离子探测器测量离 子流。
25.根据权利要求20至23之一所述的离子存储与分析方法, 其特征在于:所述的对留存的离子进行一次性地检测的方法包括, 沿平行于平行电极阵列平面的方向、X方向加电场加速离子,使离 子从其平行电极阵列的一侧射出,并用离子探测器测量离子流。
26.根据权利要求20至23之一所述的离子存储与分析方法, 其特征在于:所述的对留存的离子进行一次性地检测的方法包括, 在两块平行电极阵列之间附加一个电压,产生垂直于电极阵列平面 的加速电场,使离子穿过平行电极阵列的条状电极中的狭缝射出, 并用离子探测器测量离子流。
27.根据权利要求20所述的离子存储与分析方法,其特征在 于:所述的离子受到鉴别的手段包括对产生束缚离子电场的高频电 压幅度或频率进行扫描,将束缚的离子按照其质荷比的顺序,射到 电极阵列以外的探测器,其信号形成一张按质荷比顺序排列的质谱 图。
28.根据权利要求27所述的离子存储与分析方法,其特征在 于:所述的探测器在平行电极阵列以外,轴状离子的轴延伸方向 上,而离子要通过末端边界电极上面的孔或网射到所说的探测器 里。
29.根据权利要求27的所述离子存储与分析方法,其特征在 于:进一步在两块平行电极阵列之间附加一个交流电压,产生垂直 于电极阵列平面的共振激发电场,离子按照其质荷比的顺序达到共 振激发而穿过平行电极阵列的条状电极中的狭缝射出,并被离子探 测器测出。
30.根据权利要求27所述的离子存储与分析方法,其特征在 于:进一步在电极阵列中每条电极左右相邻的两条电极之间附加一 个交流电压,产生平行于平行电极阵列,但垂直于条状电极的X方 向,共振激发电场,离子按照其质荷比的顺序达到共振激发而横穿 两平行电极阵列之间的空间射出,并被离子探测器测出。
31.根据权利要求20所述的离子存储与分析方法,其特征在 于:在各相邻条状电极之间施加的交流电压由电子开关组产生,其 波形为方波。
32.根据权利要求31所述的离子存储与分析方法,其特征在 于:产生方波电压的电子开关组数目为2,相邻两组开关产生的方 波电压相位差为180度。
33.根据权利要求31所述的离子存储与分析方法,其特征在 于:产生方波电压的电子开关组数目不小于2,相邻两组开关产生 的方波电压相位差等于180度与一固定的增量之和,从而在两平行 电极阵列之间的离子捕获区产生周期性束缚电场和行波场
34.根据权利要求31所述的离子存储与分析方法,其特征在 于:产生方波电压的电子开关组数目不小于2,相邻两组开关产生 的方波电压相位差等于180,但每隔N个周期波宽或相位出现一次 调制,该调制在X方向产生行波。
35.根据权利要求33或34所述的离子存储与分析方法,其特 征在于:产生的行波场推动离子排出。
36.根据权利要求20所述的离子存储与分析方法,其特征在 于:对电极阵列中电极条施加不同相位的交流电压造成每N条电极 对应于一个离子捕获单元,其中,N大于或等于1;通过调节加在每 个电极上的电压占+V或-V的比例关系来优化所产生的电场分布。
37.根据权利要求20所述的离子存储与分析方法,其特征在 于:对电极阵列中电极条施加不同相位的交流电压造成每N条电极 对应于一个离子捕获单元,其中,N大于或等于1;进一步通过改 变加在每个电极上的电压使每个离子捕获单元对应的电极条数N发 生变化,导致被束缚在不同离子束缚轴上的离子合并。
38.一种离子存储与分析方法,使用两排以上平行放置的电极 阵列,每排阵列中有相互平行的条状电极,各条电极上施加不同相 位的交流电压,使在每相邻两电极阵列之间的一层空间里产生交变 电场,进而在此层空间中产生多个相通的沿直线轴束缚离子的区 域。离子在任何一层的多条区域中被捕获、冷却,并因它们的质荷 比不同而有选择性地从一层空间输运到另一层空间。

说明书全文

技术领域

发明离子阱阵列与离子存储与分析技术相关,具体地说与离 子存储和按离子的质荷比等特性来分检或探测的分析仪器有关。

技术背景

用于离子存储和离子分析用的交变电场离子阱通常有三维旋转 场离子阱和直线形离子阱。在三维旋转场离子阱中,离子被聚集在 一个中心点处。但由于离子的空间电荷效应,使得它能够存储的离 子数量有限。即使离子能在三维旋转场离子阱中存储,在作离子分 析时,多个离子间的电荷相互作用将破坏它的质量分辨能。在直 线形离子阱中,离子被聚集在一个中心轴附近,因此,在同样空间 电荷密度下,它能够容纳的离子数量大大增加。研究发现,二维直 线形离子阱可以存储比三维离子阱多至少一个量级的离子,并可以 避免明显的空间电荷效应影响。近年来的文献报道指出,直线离子 阱一次可存储上百万个离子,用于进一步的质谱分析。但是,直线 形离子阱在有些情况下仍然不能满足要求,如,离子流信号仍然需 要用增益很高的电子倍增器放大后才能检测到。当在被分析物成分 含量很低,淹没于几百万倍的背景噪声中时,有效信号就无法检测 了。所以有必要发展更大存储量的离子阱。

将多个直线形离子阱并列起来当然可以增加离子的存储量。这 在美国专利US2004/0135080A1中作为实施方案之一已有公开。但 是并列多个直线形离子阱的办法造价较高。再者,多个直线形离子 阱中的离子要从各自的排出口排出,只有用大接受面积的离子探测 器才能将它们同时接收。

发明内容

本发明的目的在于:提供离子阱阵列,用一种简单的几何结 构,实现平行多轴式的离子存储。这些被存储的离子还能在外加电 场的作用下,畅通地,一次性地或是有选择地被排出阱外被分析检 测。
本发明提出一种离子存储与分析装置,包含两排或两排以上相 互平行放置的电极阵列,电极阵列中有相互平行的条状电极。相邻 电极条上施加不同相位的高频电压,使得在两电极阵列之间的空间 里产生高频电场,进而在此空间构成多个并列的直线型离子束缚区 域。这些直线型离子束缚区域之间相通,无物体隔障。
各条电极上施加不同相位的交流电压,使在两排平行电极阵列 之间的空间里产生交变电场(权利要求1中出现的内容)。
当离子被捕获在这些离子束缚区域中后,会聚集成为一系列平 行于条状平面电极的条状离子。本发明进一步提出使这些条状离 子云中的离子被有选择性地激发、排除和被检测的方法,以及将剩 存的离子从平行电极阵列板边缘侧或电极阵列板上的狭缝中迅速排 出的离子检测方法。
在上述方案基础上,所述的离子存储与分析装置进一步包含低 气压碰撞气体,以降低被捕集离子的动能,使其能围绕与所述条状 电极平行的多条轴线聚集。
其中,上排电极阵列与下排电极阵列所在平面相互平行,上下 对齐,在两排平行电极阵列之间的空间的四周设置边界电极。
电极阵列中的各条状电极大小相同,在电极阵列侧面平行于条 状电极的边界电极的电位为所述电极阵列中相邻条状电极上所加电 压的中间值。
所述平行电极阵列中条状电极的电压依次为+V,-V,+V,- V……,其中V中包含一个高频电压;而所述平行于条状电极的边界 电极的电压为零。
其中电压V是一个纯高频电压。
其中电压V包含一个高频电压和一个1000赫以下的低频电压。
进一步,本发明包括电子开关组,通过快速地开关产生其中所 述的高频电压或低频电压。
在部分边界电极上设有利于离子引出的开孔、狭缝、或制成网 状中的一种。
在平行电极阵列中,至少部分条状电极上开有利于离子引出的 狭缝、或制成网状。
本发明还包括用于产生在上下电极阵列之间的偶极电场的信号 源及偶合装置,以导致离子引出。
所述电极阵列中的条状电极表面是平面状,各条状电极表面相 互平行。
在上述方案基础上,一排或一排以上电极阵列是用印刷电路板 制作平行电极阵列。
其制作平面电极阵列的印刷电路板包括多导电层的印刷电路 板,至少一面做成的图案包括条状电极的阵列。
其中,制作平面电极阵列的印刷电路板包括多导电层的印刷电 路板,至少在一部分导电层上做成的图案包括安装电子元件和引线 的焊盘以及电路走线。
本发明中,两排电极阵列可用两印刷电路板制作平面电极阵 列,并以边界电极将两块印刷电路板连接和固定起来。
本发明进一步包括一个离子探测器,以探测从离子存储区射出 的离子。而离子探测器安装在束缚离子轴向的末端的边界电极之 外。
本发明还进一步包括一个离子探测器,以探测从离子存储区射 出的离子。而离子探测器安装在与束缚离子轴向平行的边界电极之 外的旁侧。
本发明还进一步包括安装在其中一排电极阵列外侧的离子探测 器,离子探测器通过这一排电极阵列上的狭缝或网接收到从离子束 缚区射出的离子。
一种离子存储与分析方法,使用相互面对的平行放置的电极阵 列,其中有相互平行的条状电极,各条电极上施加不同相位的交流 电压,使在两平行电极阵列之间的空间里产生交变电场,进而在此 空间中产生多个相通的沿直线轴束缚离子的区域;离子在这些区域 中被捕获、冷却,并因它们的质荷比不同而受到鉴别
在上述方案基础上,所述的离子受到鉴别的手段包括加电操纵 平行电极阵列,先使某质荷比以外的各种离子被排斥掉,再对该留 存的离子进行一次性地检测。
所述的排斥其他质荷比的离子的方法包括使在各相邻电极之间 施加的交流电压除高频成分外另加一个1000赫以下的低频电压,导 致被束缚的离子存在一个质荷比的下限和上限。
所述的排斥其他质荷比的离子的方法包括在上下平行电极阵列 之间加一个偶极激发电场,让不想要的一定质荷比的离子与之发生 共震激发,进而打上电极阵列损失掉。
所述的对留存的离子进行一次性地检测的方法包括,降低条状 电极末端的边界电极的直流电位以便从该边界电极上的开孔或网格 中引出正离子,或是升高末端的边界电极的直流电位以从该边界电 极上的开孔或网格中引出负离子,并用离子探测器测量离子流。
所述的对留存的离子进行一次性地检测的方法包括,沿平行于 平行电极阵列平面的方向、X方向加电场加速离子,使离子从其平 行电极阵列的一侧射出,并用离子探测器测量离子流。
所述的对留存的离子进行一次性地检测的方法包括,在两块平 行电极阵列之间附加一个电压,产生垂直于电极阵列平面的加速电 场,使离子穿过平行电极阵列的条状电极中的狭缝射出,并用离子 探测器测量离子流。
所述的离子受到鉴别的手段包括对产生束缚离子电场的高频电 压幅度或频率进行扫描,将束缚的离子按照其质荷比的顺序,射到 电极阵列以外的探测器,其信号形成一张按质荷比顺序排列的质谱 图。
所述的探测器在平行电极阵列以外,轴状离子云的轴延伸方向 上,而离子要通过末端边界电极上面的孔或网射到所说的探测器 里。
本发明方法中,可以进一步在两块平行电极阵列之间附加一个 交流电压,产生垂直于电极阵列平面的共振激发电场,离子按照其 质荷比的顺序达到共振激发而穿过平行电极阵列的条状电极中的狭 缝射出,并被离子探测器测出。
本发明方法中,还可进一步在电极阵列中每条电极左右相邻的 两条电极之间附加一个交流电压,产生平行于平行电极阵列,但垂 直于条状电极的X方向,共振激发电场,离子按照其质荷比的顺序 达到共振激发而横穿两平行电极阵列之间的空间射出,并被离子探 测器测出。
当在各相邻条状电极之间施加的交流电压由电子开关组产生 时,其波形为方波。
所述产生方波电压的电子开关组数目为2,相邻两组开关产生 的方波电压相位差为180度。
进一步的,产生方波电压的电子开关组数目大于2,相邻两组 开关产生的方波电压相位差等于180度与一固定的增量之和,从而 在两平行电极阵列之间的离子捕获区产生周期性束缚电场和行波 场。
进一步的,产生方波电压的电子开关组数目大于2,相邻两组 开关产生的方波电压相位差等于180,但每隔N个周期波宽或相位 出现一次调制,该调制在X方向产生行波。
所述产生的行波场推动离子排出。
对电极阵列中电极条施加不同相位的交流电压造成每N条电极 对应于一个离子捕获单元,其中,N大于或等于1;通过调节加在每 个电极上的电压占+V或-V的比例关系来优化所产生的电场分布。
对电极阵列中电极条施加不同相位的交流电压造成每N条电极 对应于一个离子捕获单元,其中,N大于或等于1;进一步通过改变 加在每个电极上的电压使每个离子捕获单元对应的电极条数N发生 变化,导致被束缚在不同离子束缚轴上的离子合并。
一种离子存储与分析方法,使用两排以上平行放置的电极阵 列,每排阵列中有相互平行的条状电极,各条电极上施加不同相位 的交流电压,使在每相邻两电极阵列之间的一层空间里产生交变电 场,进而在此层空间中产生多个相通的沿直线轴束缚离子的区域。 离子在任何一层的多条区域中被捕获、冷却,并因它们的质荷比不 同而有选择性地从一层空间输运到另一层空间。
图1为本发明的基本原理图。其中有上下两排电极阵列1,2, 每组电极阵列都排在一个平面上(X-Z平面),上下两阵列所在平 面相互平行。该示例中上下电极阵列均含有四条等宽的矩形电极 11,12,13,14,上下电极阵列中的对应电极宽度相等,上下对 齐。在各组电极阵列上,依次将各电极加上+,-,+,-相的高频 电压。在电极阵列左右两端有垂直的边界电极3,加有的电位为电 极阵列中“+”相(奇数)电极片与“-”相(偶数)电极片电位的中 间值,此例条件下为零电压。
通过研究发现,在上述条件下两平面电极阵列间的电场分布为 多个重复的、以四极场为主的高频电场。电场分布由图中等位线5 示出。如平行电极阵列在Z方向延伸很长,该电场即成为与Z无关 的二维场。在每对奇数电极片与偶数电极片的中间垂直平面上,电 位恰好为零,等效于在那里放置了一片零电位的电极一样。所以我 们免除使用这些包围每个离子束缚区域的竖直电极,也照样形成类 似二维四极离子阱的电场,而且能在X方向多个重复。在每对上下 电极的中心6都形成一个离子捕集中心,一定质荷比的离子,不论 是自外引入,或是自内电离产生,经过与中性气体碰撞冷却,将聚 集这些中心轴(Z向)附近。
也可以用多排相互平行放置的电极阵列组成更为复杂的直线离 子阱系统。图2给出了由三排相互平行放置的电极阵列3,4,和5 所组成的直线性离子阱系统。同样地,每排阵列都排在一个平面上 (这里被称为X-Z面)。上,中,下三个平面相互平行。该示例 中,上中下电极阵列均含有四条等宽的平面电极11.2,12.2, 13.2,14.2,上下电极阵列中的对应电极宽度相等,上下对齐。在 各组电极阵列上,依此将各电极加上+,-,+,-相的高频电压。 在电极阵列左右两端有垂直的边界电极3.1,加有的电位为电极阵 列中奇数电极片与偶数电极片电位的中间值,此例条件下为零电 压。
附图说明
图1为本发明的基本原理图。
图2给出了由三排相互平行放置的电极阵列3,4,和5所组成的直 线性离子阱系统。
图3是本发明的实施方案之一。
图4为另一种沿X方向(横向)引出被检测的实施方案。
图5为边界电极还可以采用的形式,即各电极条11,12等的末端通 过末端面11.1,12.1相连,而不用零电位的边界电极来封边,上下 电极条合二中,图5(A)为一呈长方框状,图5(B)呈长椭圆框 状。
图6为另一种沿Y方向引出、检测的方法示意图。
图7示出了一种迭加Y向二极激发电场的电路连接图。
图8另一电路连接图。
图9用开关阵列,产生方波形四极束缚电场。
图10显示一种用两块印刷电路板制作平面电极阵列离子阱的方 法。
图11电极条截面是呈阶梯形的结构。
图12电极条截面为双曲面型或柱形电极。
图13给出了由二排相互平行放置的电极阵列所组成的直线性离子阱 系统。

具体实施方式

实施例一:
图3是本发明的实施方案之一。上电极阵列1和下电极阵列2 各有7条矩形电极条,即11,12,13,14,15,16和17。它们由 金属板材料制成,其在Z方向上的长度都相同,是X方向的宽度的 3倍以上(约几十毫米)。上下电极间距与电极条的宽度与间隙之 和近似,差别不超过25%,一般为几毫米。在平面电极阵列的四周 放置边界电极3和3a,作为离子阱电场的边界,其中3a是在平行 于电极条方向Z的边界上,3是在电极条末端的边界上的。边界电 极上开有小孔、隙缝25或做成网状结构26,以便离子导入或排 出。高频电源+V和-V通过电容20偶合到电极阵列上,上下电极条 连在一起,单数电极条11,13,15,17连到电源+V上,偶数电极 条12,14,16连到电源-V上。上下两平面电极阵列间各个离子束 缚区内,形成的高频电场就能在X,Y方向束缚离子。离子被捕获 后,在每对上下矩形电极条中间形成轴状离子云7。如边界电极3 的电位偏正或与3a一样为零,都能在轴向挡住离子(离子接近边界 电极时受到Z方向的有效推挡势)。如边界电极3设为一定的负电 压使Z方向有效推挡势不敌吸引势,就能将离子沿Z向从小孔25引 出。探测器8在边界电极3之外,用于检测离子流,其输出信号放大器9放大后被电脑记录。
以上实施方案中离子是沿Z方向(轴向)引出被探测器检测的。
实施例二:
图4所示为另一种沿X方向(横向)引出被检测的实施方案。图 中探测器8在网状边界电极3a之外。离子被捕获、筛选后,通过电 阻网络31,32在X方向加一个脉冲引出电场,所有的离子36都沿 X方向被加速,穿过右边网状边界电极3a打上探测器8。虽然图中 电阻网络31,32只连到上平面电极阵列中的电极条,但实际表示上 下平面电极阵列中对应电极条为等电位。对于这种上下电极条等电 位的实施方案,边界电极还可以采用图5所示的形式,即各电极条 11,12等的末端通过末端面11.1,12.1相连,而不用零电位的边 界电极来封边,上下电极条合二为一呈长方框状,甚至是长椭圆框 状,见图5(B)。
当然,上下平面电极阵列中对应电极条也可以是不等电位的, 其间可加一个偶极电位差,用于排除或激发离子。
图6所示为另一种沿Y方向引出、检测的方法。图中一个平面 电极阵列的每条电极都开有与电极条平行的槽41。狭缝外有离子收 集面积足够大的探测器8。探测器8与电极条阵列之间可使用网状 屏蔽电极40,以减少高频干扰。离子被捕获、筛选后,在上下平面 电极阵列之间加一个偶极激发脉冲,方法可参照后文(图7),即 可把离子沿Y方向加速,穿过电极条上的狭缝41和网状屏蔽电极 40打上探测器8。
与其他直线形四极离子阱类似,能被捕获的离子在一个所谓的 参数a,q稳定区内。当用电容偶合,加在矩形电极条间的捕获电压 为纯交流高频电压V,-V,场中稳定离子存在一个质荷比下限。小 于质荷比下限的离子将打上电极阵列而消失,由此可提供一定的离 子质量选择功能。比如要探测大气中某种污染气体,该污染气份分 子量M大于一般空气分子的分子量(如18、氮气28、气 32)。只要在大气电离、引入以后把质荷比下限调在比该污染气份 分子量M略低的地方,就能把一般空气分子的离子排除,然后将边 界电极3的电位降低,以污染气份离子为主的离子流就能被探测器 检测到。
当然这种质量高通检测方法分辨率差,灵敏度较低。如果在捕 获电压中迭加一个直流电压,或是一个低频率的交流电压,频率为 几百至上千赫兹,离子的a,q稳定区就存在一个质荷比上限。大于 质荷比上限的离子将打上电极阵列而消失。离子在引入,经与中性 气体分子碰撞得以捕获后,先后将待分析离子置于质荷比下限和质 荷比上限,进行高通和低通过滤。最后在离子阱中只剩下待测的离 子,再用上述的一种排除离子的方法,实现离子检测。因为低频率 的交流电压仍可以通过电容偶合,迭加低频率的交流电压比迭加一 个直流电压在某些场合有一定的优势。
另一种带通过滤离子的方法是在上下平面电极阵列之间加一个 偶极激发电场,让不想要的离子与之发生共振激发,进而打上电极 阵列损失掉。图7示出了一种迭加Y向二极激发电场的电路连接 图。图中,对应的上电极11u和下电极11d之间不是直接相连,而 是通过一个线圈51连接。所有的次级线圈51都与初级线圈52通过 磁芯53偶合,构成一个多次级的变压器。多种频率复合信号,或脉 冲信号由源54产生,通过这个多次级的变压器偶合到每对电极条之 间。在每对电极条之间被束缚的离子与各自质量对应的频率信号发 生共震。只要对频率复合信号中的频率分量进行调控,就能有选择 地排除不想要的离子,留下有待探测的离子。
以上实施例采用的是在一次离子引入后,排除其余质荷比离子 而保留要探测的离子的方法。这种方法对监测某种离子很有效,但 不能很快地作出一张质谱。以下给出的质量选择性探测方法则有利 于获得一张宽程扫描质谱。当然其中一些方法也适用于选择性保留 某种离子。
用例
方法A
利用图1的装置结构。当多种质量的离子被四极场捕获冷却以 后,将靠近探测器一侧的边界电极3的电位降低,但已经冷却了的 离子又不至于逃脱。然后对产生捕获四极场的高频电压幅度或频率 进行由小到大或由大到小的扫描,将捕获的离子按照其质荷比的顺 序推向稳定区边界。离子一旦趋向稳定区边界,其运动能量增加, 当其能量增加到一临界值时,离子即能穿过边界电极3(通过上面 的孔或网)射向探测器,其信号形成一张按质荷比顺序排列的质 谱。
在这一方案中,也可以用图7的电信号偶合方法通过线圈52, 51迭加某个频率的Y向偶极激发电场,使离子按照其质荷比的顺序 受到共振激发。受到激发的离子动能增大,当其能量增加到一临界 值时,离子即能穿过边界电极3(通过上面的孔或网)射向探测 器,形成质谱。
方法B
利用图6的装置结构,图7的电信号偶合方法。这里上下电极 间距要大于电极条的宽度与间隙之和,使得每个二维离子阱的横截 面相对于正方形来说,呈Y方向拉伸,以产生Y方向的正多极场 (八极为主)。当多种质量的离子被四极场捕获并冷却以后,通过 线圈52,51迭加某个频率的Y向偶极激发电场,同时对捕获四极场 的电压幅度或频率进行扫描,即可将捕获的离子按照其质荷比的顺 序共振激发,离子Y方向动能与振幅增加,即可被有选择性地从狭 缝缝41中射出,被探测器检出,形成质谱。
方法C
利用与图4类似的装置结构,开关33闭合时在X方向产生一个 阶梯场,即可作为偶极激发电场。只要开关33的分合动作频率与离 子的X方向运动发生共振,该离子即被有选择性地共振激发。一部 分被激发的离子能穿越其他捕获区和边界电极3a,直到抵达探测器 8被检测。也可用图8所示的电路。其中上下阵列中对应电极条相 连。二极激发信号源54产生的信号通过偶合线圈61,62加到电极 条11,13和15之间,同样信号通过偶合线圈61,63加到电极条 12,14和16之间。这样一来,每条离子束缚区左右两区就有了一 个周期性的电位差,造成在每条离子束缚区中形成一个X方向的偶 极激发电场。离子按照其质荷比的被有选择性地共振激发,出射, 被检测。
方法D
同样要产生捕获电场以及在X方向迭加偶极激发电场。如图9 所示,采用开关阵列71-74,产生方波形四极束缚电场。阵列中每 个单元,比如说71,都有一对开关71.1,71.2,交替地分与合,产 生一定频率的矩型波电压,加到电极条11上。如果开关组72的上 下开关交替正好与开关组71倒相(差180度),开关组73的上下 开关交替正好与开关组71同相(差360度),依此类推,电极阵列 就能产生如前所述的束缚高频电场+V和-V。如果上述相邻的开关组 的相位差并非正好是180度,而是含有额外的增量Δ ,在X方向除 了高频束缚电场(含四极,八极,十二极等)分量外,还存在二 极,六极等奇函数多极场。这些场的频率与产生捕获电场的开关频 率相同,且能沿X方向运行,即称为行波。它可以向一侧输运离 子,在上述的一次性排出离子方法有用。如果上述开关相位差的增 量Δ 不在每个波上出现,而是每隔N个波出现一次,则产生的偶极 场的频率是捕获电场频率的N次分频。这种N次分频的偶极场可作 为X方向的偶极激发电场,用于激发离子振荡的特征频率,有选择 性地排除离子。
电极阵列有多种多样的制造方法。其中的电极条可以是截面为 矩形的平板或方柱形电极,如图1所示;电极条截面也可以是折线 多边或阶梯形的,如图11所示;图11给出了由二排相互平行放置 的电极阵列6和7所组成的直线性离子阱系统。同样地,每排阵列 都排在一个平面上(这里被称为X-Z面)。上,下二个平面相互平 行。该示例中,上中下电极阵列均含有四条等宽的平面电极 11.11,12.11,13.11,14.11,上下电极阵列中的对应电极宽度相 等,上下对齐。在各组电极阵列上,依此将各电极加上+,-,+,- 相的高频电压。在电极阵列左右两端有垂直的边界电极3.11a和 3.11b,加有的电位为电极阵列中奇数电极片与偶数电极片电位的中 间值,此例条件下为零电压。
也可以用圆柱形或部分圆柱形的电极,如图12所示;截面为双 曲面型或其部分的柱形电极也为可行方案。电极条可以用焊接或粘 合的办法固定,形成阵列,也可以象图10,12中那样,用螺钉113 固定在绝缘的支架112上构成阵列。甚至还可以直接用印刷电路板 作成。
图10显示一种用两块印刷电路板制作平面电极阵列离子阱的 方法。两块印刷电路板90均为双层板,一面做成电极阵列的图案 91和连接边界的导电条97,98,一面作成安装电子元件和引线的焊 盘以及电路走线100。两边的电路图案根据要求用过孔92相连。边 界电极94和96仍用金属板或金属片制成,其上的网格可用化学腐 蚀法制成。边界电极有爪94,穿过印刷电路板上的孔93,焊牢,使 两块印刷电路板固定在一起。印刷电路板上还应留有安装探测器等 器件的孔99。如果要实现图2所示的两排以上电极阵列构成的多排 直线形离子阱,中间的印刷电路板的两面都应做成电极阵列的图案 91,电路走线100则可布置在印刷电路板的中间夹芯导电层上。
对于平行电极阵列加电的方法,以上给出的都是一条离子捕获 单元加一个电压(+V或-V)的简单方法。其实每个电极单元还可以 是由若干个事先设计好的较细小的条形电极组成,如图13所示。图 13给出了由二排相互平行放置的电极阵列所组成的直线性离子阱系 统。同样地,每排阵列都排在一个平面上。上,下二个平面相互平 行。该示例中,上中下电极阵列均含有四条等宽的平面电极 11.13,12.13,13.13,14.13,上下电极阵列中的对应电极宽度相 等,上下对齐。各组电极阵列上,依此将各电极加上+,-,+,- 相的高频电压。而每一个平面电极又由按一定要求设计的较细小电 极,如11.131,11.132,11.133,11.134和11.135所组成;在每 一个较细小的电极上所加的电压可以各不相同,以达到调节可以产 生所要求的电场的目的。如,可以在细小电极11.133上加载- V1,11.132和11.134上加载相同的电压:-V2,11.131和 11.135上加载相同的电压:-V3;在应用中,可以通过改变V1,V2 和V3的比值来达到调节所产生的电场的目的,以进一步调节离子 阱的性能。同样地,在电极阵列左右两端有垂直的边界电极3.13a 和3.13b,加有的电位为电极阵列中奇数电极片与偶数电极片电位 的中间值,此例条件下为零电压。
当每个电极单元由若干个较细小的条形电极组成时,可以通过 调节加在每个较细小电极上的电压占+V或-V的比例关系来优化所 产生的电场分布。比如适当地迭加或消除某些多极场成份。
另一方面,前面所述的一条离子捕获单元加一个电压(+V或- V)的离子束缚方法,通过在各电极条改加比例电压,可将多个离子 束缚区合并。
平行电极阵列离子阱还有许多种构造方法,在此不能一一列 举。但是只要实现以上几个方面所需的电场要求,即为本发明所 指。平行电极阵列离子阱也有许多种工作模式,以上只是列举了几 个实例。本领域的行家可轻易地派生出更多的运用模式。比如,经 选择后被留存的离子,还可以用光谱法和光散射法来检测。另外这 些离子还可以输送到另一种谱分析仪器,诸如,飞行时间、离子电 迁移谱、轨道离子阱(OBITRAP)等。这些运用都应该视为本专利之 涵盖范围内。
相关专利内容
标题 发布/更新时间 阅读量
离子阱质谱仪 2020-05-14 182
离子阱 2020-05-11 180
虚拟离子阱 2020-05-12 471
在离子阱中分离离子 2020-05-15 345
二维四极离子阱 2020-05-13 693
高产出的四极离子阱 2020-05-16 760
离子阱和在离子阱中解离离子的方法 2020-05-15 678
二维四极离子阱 2020-05-14 621
直流离子阱 2020-05-12 36
线性离子阱结构 2020-05-14 371
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈