首页 / 专利库 / 纳米技术 / 纳米材料 / 纳米带 / 一种低损耗中高频铁基纳米晶变压器铁芯的热处理方法

一种低损耗中高频纳米晶变压器铁芯的热处理方法

阅读:539发布:2023-01-17

专利汇可以提供一种低损耗中高频纳米晶变压器铁芯的热处理方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种低损耗中高频 铁 基 纳米晶 变压器 铁芯的 热处理 方法,其特征在于:取铁基纳米晶带材绕制成占空系数≥75%的铁芯,在氮气或氩气保护气氛或 真空 环境下对上述铁芯进行第一次热处理,第一次热处理采用三段保温法,将经第一次热处理后的铁芯在20kHz、0.5T的条件下进行铁芯损耗测试,损耗≤22W/kg的为一类铁芯,损耗>22W/kg的为二类铁芯,对上述两类铁芯分别进行第二次热处理。经过第二次热处理后的铁芯即为低损耗中高频铁基纳米晶变压器铁芯。这是一种使用批量生产相对较厚的普通铁基纳米晶带材也能够制备出满足用户要求的中高频变压器磁芯,而且合格率比现有方法有较大的提高的热处理方法。,下面是一种低损耗中高频纳米晶变压器铁芯的热处理方法专利的具体信息内容。

1.一种低损耗中高频纳米晶变压器铁芯的热处理方法,其特征在于:取铁基纳米晶带材绕制成占空系数≥75%的铁芯,在氮气或氩气保护气氛或真空环境下对上述铁芯进行第一次热处理,第一次热处理采用三段保温法,其中第一段温度为300-350℃,保温时间为20-40min,第二段温度为450-470℃,保温时间为40-60min,第三段温度为530-540℃,保温时间为40-60min,然后让铁芯在30-60min内随炉冷却到室温至300℃,将经第一次热处理后的铁芯在20kHz、0.5T的条件下进行铁芯损耗测试,损耗≤22W/kg的为一类铁芯,损耗>22W/kg的为二类铁芯,
在氮气或氩气保护气氛或真空环境下对一类铁芯进行第二次热处理,第二次热处理采用两段保温法,第一段温度为450-470℃,保温时间为30-40min,第二段温度为570-590℃,保温时间70-90min,然后让铁芯在30-60min内随炉冷却到室温至300℃,且从铁芯开始第二次热处理起施加电流为400-450A的横磁场,持续时间至少为40min,至多至第二次热处理结束,
在氮气或氩气保护气氛或真空环境下对二类铁芯进行第二次热处理,第二次热处理采用两段保温法,第一段温度为450-470℃,保温时间为30-40min,第二段温度为590-610℃,保温时间70-90min,然后让铁芯在30-60min内随炉冷却到室温至300℃,且从铁芯开始第二次热处理起施加电流为400-450A的横磁场,持续时间至少为40min,至多至第二次热处理结束,
经过第二次热处理后的铁芯即为低损耗中高频铁基纳米晶变压器铁芯。
2.根据权利要求1所述的一种低损耗中高频铁基纳米晶变压器铁芯的热处理方法,其特征在于:所述的铁基纳米晶带材的厚度为27±4μm。

说明书全文

一种低损耗中高频纳米晶变压器铁芯的热处理方法

技术领域

[0001] 本发明涉及一种热处理方法,特别是一种低损耗中高频铁基纳米晶变压器铁芯的热处理方法。

背景技术

[0002] 传统的中高频变压器铁芯一般是由片或铁体制作的,一般在1-8kHz的中频范围,多用硅钢片铁芯,可以发挥其饱和磁感应强度很高、磁导率比较高、居里温度高、良
好的温度稳定性和对应不敏感的特性。在8-50kHz的高频率范围,则多用铁氧体磁芯,可
以发挥其高频损耗低、高频下磁导率比硅钢片高、 对应力不敏感的特性。适合于大批量开
模生产。但是硅钢片在频率升高后损耗急剧增大。无法用于频率逐步升高的现代中高频变
压器铁芯制作。铁氧体磁芯的饱和磁感应强度很低,做大功率变压器磁芯成本高,居里温度
很低,温度稳定性差。进入二十世纪以来,新出现的铁基纳米晶低剩磁铁芯由于饱和磁感应
强度达到铁氧体磁芯的2倍以上,磁导率远高于铁氧体磁芯和硅钢片铁芯,高频损耗远低
于铁氧体磁芯和硅钢片铁芯,所以铁基纳米晶低剩磁铁芯成为中高频变压器磁芯的首选。
[0003] 铁基纳米晶铁芯是由铁、硅、、铌、合金元素在真空下制成母合金,然后通过速凝制带法制成厚度为20-40μm的薄带,通过卷绕使外形尺寸和重量满足铁芯的相应要
求,然后在真空或氮气和氩气等保护气氛下进行横磁场热处理,以实现其高饱和磁感应强
度,高磁导率,低损耗特性,从而满足中高频变压器铁芯的需求。
[0004] 理论上带材厚度越薄、尺寸偏差越小,就越适合于制作中高频变压器铁芯。但实际上由于制带技术的限制,大批量生产厚度<23μm且厚度偏差<±2μm的带材技术难度很
大,即使有少量产品,成本也非常高,无法满足用户的性价比要求。实际批量生产的带材一
般厚度为27±4μm。
[0005] 用厚度为27±4μm带材通过普通的在真空或氮气和氩气等保护气氛下进行横磁场热处理时,由于带材厚度波动范围比较大,在热处理时放热量和冲温值波动比较大,导致
热处理后的铁芯磁性能指标波动范围非常大,铁芯的合格率不稳定,平均值不高。同时由于
带材厚度波动的规律不明显,也无法在热处理之前对铁芯进行筛选分类。这样就导致了铁
芯产品热处理后磁性能指标不稳定,铁芯的产品合格率低,经济指标不好等问题。

发明内容

[0006] 本发明是为了解决现有技术所存在的上述不足,提出一种使用批量生产相对较厚的普通铁基纳米晶带材也能够制备出满足用户要求的中高频变压器磁芯,而且合格率比
现有方法有较大的提高的热处理方法。
[0007] 本发明的技术解决方案是:一种低损耗中高频铁基纳米晶变压器铁芯的热处理方法,其特征在于:取铁基纳米晶带材绕制成占空系数≥75%的铁芯,在氮气或氩气保护气氛
或真空环境下对上述铁芯进行第一次热处理,第一次热处理采用三段保温法,其中第一段
温度为300-350℃,保温时间为20-40min,第二段温度为450-470℃,保温时间为40-60min,
第三段温度为530-540℃,保温时间为40-60min,然后让铁芯在30-60min内随炉冷却到室
温至300℃,
将经第一次热处理后的铁芯在20kHz、0.5T的条件下进行铁芯损耗测试,损耗≤22W/
kg的为一类铁芯,损耗>22W/kg的为二类铁芯,
在氮气或氩气保护气氛或真空环境下对一类铁芯进行第二次热处理,第二次热处理采
用两段保温法,第一段温度为450-470℃,保温时间为30-40min,第二段温度为570-590℃,
保温时间70-90min,然后让铁芯在30-60min内随炉冷却到室温至300℃,且从铁芯开始第
二次热处理起施加电流为400-450A的横磁场,持续时间至少为40min,至多至第二次热处
理结束,
在氮气或氩气保护气氛或真空环境下对二类铁芯进行第二次热处理,第二次热处理采
用两段保温法,第一段温度为450-470℃,保温时间为30-40min,第二段温度为590-610℃,
保温时间70-90min,然后让铁芯在30-60min内随炉冷却到室温至300℃,且从铁芯开始第
二次热处理起施加电流为400-450A的横磁场,持续时间至少为40min,至多至第二次热处
理结束,
经过第二次热处理后的铁芯即为低损耗中高频铁基纳米晶变压器铁芯。
[0008] 所述的铁基纳米晶带材的厚度为27±4μm。
[0009] 本发明同现有技术相比,具有如下优点:采用本申请所公开的方法对变压器铁芯进行热处理,能够让相对较厚的铁基纳米晶带
材(27±4μm)获得磁性能指标稳定的特点,同时相比于传统的热处理方法,该方法处理后
的铁芯的产品合格率也较高。这种方法的出现,让能够进行工业化大批量生产的27±4μm
的带材的各项性能得到提高,可以作为中高频变压器的磁芯使用,降低了企业的生产成本,
提高产品的性价比。
附图说明
[0010] 图1为本发明的两步法中第一次的普通热处理工艺曲线。
[0011] 图2为本发明的两步法中第一类铁芯第二次的热处理工艺曲线。
[0012] 图3为本发明的两步法中第二类铁芯第二次的热处理工艺曲线。

具体实施方式

[0013] 下面将结合附图说明本发明的具体实施方式。如图1至图3所示:使用批量生产的厚度为27±4μm的铁基纳米晶带材,按照所需的外形尺寸和重量绕
制成铁芯,该铁芯的占空系数≥75%。将卷绕合格的铁芯在氮气或氩气保护气氛或真空
环境下对上述铁芯进行第一次热处理,第一次热处理采用三段保温法,其中第一段温度为
300-350℃,保温时间为20-40min,第二段温度为450-470℃,保温时间为40-60min,第三
段温度为530-540℃,保温时间为40-60min,然后让铁芯在30-60min内随炉冷却到室温至
300℃,第一次热处理完成。
[0014] 将经第一次热处理后的铁芯在20kHz、0.5T的条件下进行铁芯损耗测试,损耗≤22W/kg的为一类铁芯,损耗>22W/kg的为二类铁芯。
[0015] 在氮气或氩气保护气氛或真空环境下对一类铁芯进行第二次热处理,第二次热处理采用两段保温法,第一段温度为450-470℃,保温时间为30-40min,第二段温度为
570-590℃,保温时间70-90min,然后让铁芯在30-60min内随炉冷却到室温至300℃,且从
铁芯开始第二次热处理起施加电流为400-450A的横磁场,持续时间至少为40min,至多至
第二次热处理结束,
在氮气或氩气保护气氛或真空环境下对二类铁芯进行第二次热处理,第二次热处理采
用两段保温法,第一段温度为450-470℃,保温时间为30-40min,第二段温度为590-610℃,
保温时间70-90min,然后让铁芯在30-60min内随炉冷却到室温至300℃,且从铁芯开始第
二次热处理起施加电流为400-450A的横磁场,持续时间至少为40min,至多至第二次热处
理结束,
经过第二次热处理后的铁芯即为低损耗中高频铁基纳米晶变压器铁芯。
[0016] 经过上述热处理工艺后的铁芯,其中性能为20kHz,0.5T下损耗≤19W/kg,剩磁≤0.2T的磁芯可以满足在8-50kHz高频范围下,较高要求的变压器磁芯需求或在1-8kHz
中频范围下变压器磁芯需求;
性能为20kHz,0.5T下损耗>19W/kg且≤25W/kg,剩磁>0.2T且≤0.25T的磁芯可以
满足在8-50kHz高频范围下,普通要求的变压器磁芯需求或在1-8kHz中频范围下变压器磁
芯需求。
[0017] 一类铁芯按上述工艺进行第二次热处理后的磁性能及比例如下表1所示铁芯规格:mm 内铁芯重量: g 20kHz,0.5T下损耗≤19W/kg, 剩磁20kHz,0.5T下损耗>19W且≤25W/kg磁性能不合格报废铁径*外径*高度 ≤0.2T的铁芯比例:% 剩磁>0.2T且≤0.25T的铁芯比例:%芯比例:%
40-64-20 210 90 8 2
50-80-25 415 89 8 3
60-105-30 945 86 10 4
二类铁芯按上述工艺进行第二次热处理后的磁性能及比例如下表2所示
铁芯规格:mm 内铁芯重量: g 20kHz,0.5T下损耗≤19W/kg, 剩磁20kHz,0.5T下损耗>19W且≤25W/kg,磁性能不合格报废径*外径*高度 ≤0.2T的铁芯比例:% 剩磁>0.2T且≤0.25T的铁芯比例:% 铁芯比例:%
40-64-20 210 20 77 3
50-80-25 415 17 78 5
60-105-30 945 16 80 4
没有采取本申请的热处理方法进行热处理,而是采用传统的一步法加横磁场热处理工
艺下磁性能可以达的磁芯的百分比如下表3所示
铁芯规格:mm 内铁芯重量: g 20kHz,0.5T下损耗≤19W/kg, 剩磁≤0.2T20kHz,0.5T下损耗>19W且≤25W/kg,磁性能不合格报废铁径*外径*高度 的铁芯比例:% 剩磁>0.2T且≤0.25T的铁芯比例:% 芯比例:%
40-64-20 210 30 50 20
50-80-25 415 28 49 23
60-105-30 945 25 50 25
采取本申请的步骤进行热处理,最终磁性能可以达到满足较高和普通要求的磁芯的百
分比如下表4所示
铁芯规格:mm 内径*铁芯重量: g 20kHz,0.5T下损耗≤19W/kg, 剩磁20kHz,0.5T 下损耗>19W且≤25W/kg,磁性能不合格报废外径*高度 ≤0.2T的铁芯比例:% 剩磁>0.2T且≤0.25T的铁芯比例:% 铁芯比例:%
40-64-20 210 45 53 2
50-80-25 415 42 56 2
60-105-30 945 40 55 5
综合以上,同样的带材采用本申请的两步法热处理方法比传统的采用一步法处理可以
提高铁芯的合格率如下表5所示
铁芯规格:mm 内铁芯重量: g 20kHz,0.5T下损耗≤19W/kg, 剩磁≤0.2T的20kHz,0.5T下损耗>19W且≤25W/kg,剩磁性能不合格报废径*外径*高度 铁芯比例提高:% 磁>0.2T且≤0.25T的铁芯比例提高:% 铁芯比例改变:%
40-64-20 210 15 3 -18
50-80-25 415 16 7 -21
60-105-30 945 15 5 -20
相关专利内容
标题 发布/更新时间 阅读量
形成带帽纳米柱 2020-05-11 462
纳米抗菌绷带 2020-05-11 851
纳米砂带 2020-05-11 761
一种宽带纳米天线 2020-05-12 161
带有纳米涂层的散热器 2020-05-12 534
一种纳米透气织带 2020-05-12 540
一种纳米功能腰带装置 2020-05-13 225
渐变带隙纳米硅薄膜 2020-05-11 136
带泡茶功能的纳米茶几 2020-05-12 371
4260纳米带通红外滤光片 2020-05-12 331
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈