惯性传感器

阅读:55发布:2023-01-10

专利汇可以提供惯性传感器专利检索,专利查询,专利分析的服务。并且本实用新型提供了一种惯性 传感器 ,包括: 硅 衬底、埋层、布线层、牺牲层、 单晶硅 层、金属层,所述埋层位于所述硅衬底上,所述布线层位于所述埋层上,所述牺牲层位于所述布线层上,所述单晶硅层的一部分位于所述牺牲层和布线层上,所述单晶硅层的另一部分构成可动结构层,所述可动结构层下方的牺牲层被全部去除,所述金属层位于所述单晶硅层上且暴露所述可动结构层。通过 外延 方式生长的单晶硅层具有应 力 小的优点,由此形成的可动结构层厚度不受限制,有利于减小惯性传感器的管芯面积,降低成本。,下面是惯性传感器专利的具体信息内容。

1.一种惯性传感器,其特征在于,包括:衬底、埋层、布线层、牺牲层、单晶硅层、金属层,所述埋层位于所述硅衬底上,所述布线层位于所述埋层上,所述牺牲层位于所述布线层上,所述单晶硅层的一部分位于所述牺牲层和布线层上,所述单晶硅层的另一部分构成可动结构层,所述可动结构层下方的牺牲层被全部去除,所述金属层位于所述单晶硅层上且暴露所述可动结构层。
2.如权利要求1所述的惯性传感器,其特征在于,所述单晶硅层的厚度为10μm~
40μm。
3.如权利要求1所述的惯性传感器,其特征在于,所述埋层的材质为化硅。
4.如权利要求1或3所述的惯性传感器,其特征在于,所述埋层的表面平整度小于
1nm。
5.如权利要求1所述的惯性传感器,其特征在于,所述布线层的材质为多晶硅
6.如权利要求1所述的惯性传感器,其特征在于,所述牺牲层的材质为二氧化硅
7.如权利要求1或6所述的惯性传感器,其特征在于,所述牺牲层的厚度为1μm~
3μm。
8.如权利要求1所述的惯性传感器,其特征在于,所述金属层的材质为
9.如权利要求1或8所述的惯性传感器,其特征在于,所述金属层的厚度为0.5μm~
2μm。

说明书全文

惯性传感器

技术领域

[0001] 本实用新型涉及MEMS传感器领域,特别涉及一种惯性传感器。

背景技术

[0002] 在很多运动物体的控制、检测和导航系统中,不仅需要位移、位移、速度、角速度信息,更需要加速度、角速度信息。惯性传感器(包括加速度传感器与角速度传感器)就是一种测试加速度、角速度的仪器。
[0003] 从二十世纪八十年代末开始,随着微机电系统(MEMS)技术的发展,各种传感器实现了微小型化,以MEMS技术为基础的MEMS惯性传感器由于采用MEMS加工工艺,实现了批量生产,克服了原有惯性传感器体积大、成本高等缺点,成为未来发展的主要方向。
[0004] 体微加工技术、表面微加工技术和特殊微加工技术是MEMS领域三种重要的微加工技术。体微加工技术是沿着衬底的厚度方向对硅衬底进行刻蚀(包括湿法腐蚀干法刻蚀),其是实现三维结构的重要方法。特殊微加工技术是指在MEMS制造环节中使用到的键合、LIGA(Lithographie、Galvanoformung和Abformung的缩写,即光刻电铸和注塑,LIGA工艺是一种基于X射线光刻技术的MEMS加工技术)、电软光刻、微模铸等技术。表面微加工技术是采用薄膜淀积、光刻以及刻蚀等工艺,通过在牺牲层薄膜上淀积多晶硅薄膜,然后利用牺牲层释放结构层实现可动结构。也就是说,表面微加工技术在硅衬底表面上“构建”微结构,并实现复杂的布线连接。
[0005] 发明人发现,尽管表面微加工可以实现复杂的多层悬空结构,但由于淀积工艺的限制,通常情况下表面微加工形成的结构层的厚度小于20μm,该结构层比较脆弱,性能没有体硅材料好,在制造过程中容易损坏,膜片的应、粘连是需要重点解决的问题。实用新型内容
[0006] 为解决上述问题,本实用新型提出一种惯性传感器,以解决现有的表面微加工技术形成的结构层比较脆弱,容易损坏的问题。
[0007] 为解决上述技术问题,本实用新型提供一种惯性传感器,所述惯性传感器包括:硅衬底、埋层、布线层、牺牲层、单晶硅层、金属层,所述埋层位于所述硅衬底上,所述布线层位于所述埋层上,所述牺牲层位于所述布线层上,所述单晶硅层的一部分位于所述牺牲层和布线层上,所述单晶硅层的另一部分构成可动结构层,所述可动结构层下方的牺牲层被全部去除,所述金属层位于所述单晶硅层上且暴露所述可动结构层。
[0008] 可选的,在所述的惯性传感器中,所述单晶硅层通过外延生长的方式形成,所述单晶硅层的厚度为10μm~40μm。
[0009] 可选的,在所述的惯性传感器中,所述埋层的材质为化硅,所述埋层的表面平整度小于1nm。
[0010] 可选的,在所述的惯性传感器中,所述布线层的材质为多晶硅。
[0011] 可选的,在所述的惯性传感器中,所述牺牲层的材质为二氧化硅,所述牺牲层的厚度为1μm~3μm。
[0012] 可选的,在所述的惯性传感器中,所述金属层的材质为,所述金属层的厚度为0.5μm~2μm。
[0013] 在本实用新型提供的惯性传感器中,所述可动结构层由单晶硅层形成,通过外延方式生长的单晶硅层具有应力小的优点,由此形成的可动结构层厚度不受限制,有利于减小惯性传感器的管芯面积,降低成本。附图说明
[0014] 图1是本实用新型实施例的惯性传感器制作方法的流程示意图;
[0015] 图2至图13是本实用新型实施例的惯性传感器制作方法过程中各步骤对应的剖面结构示意图。

具体实施方式

[0016] 以下结合附图和具体实施例对本实用新型提出的惯性传感器的制作方法作进一步详细说明。根据下面说明和权利要求书,本实用新型的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本实用新型实施例的目的。
[0017] 参考图13所示,并结合图2至图12,本实施例形成的惯性传感器包括:硅衬底107、埋层106、布线层105、牺牲层104、单晶硅层103、金属层108,其中,所述埋层106位于所述硅衬底107上,所述布线层105位于埋层106上,所述牺牲层104位于布线层105上,所述单晶硅层103的一部分位于所述牺牲层104和布线层105上,另一部分构成可动结构层109,所述可动结构层109下方的牺牲层被全部去除,所述金属层108位于所述单晶硅层
103上且具有暴露所述可动结构层109的通孔。该惯性传感器的可动结构层109由单晶硅层形成,通过外延方式生长的单晶硅层具有应力小的优点,由此形成的可动结构层厚度不受限制,有利于减小管芯面积,降低成本。
[0018] 其中,所述埋层106和牺牲层104的材质例如是二氧化硅,所述布线层105的材质例如是多晶硅,所述金属层108的材质例如是铝,当然,本实用新型并不限制上述各层的材质,还可根据设计需求选择其他材料。
[0019] 其中,所述多晶硅层103的厚度可以为10μm~40μm,所述牺牲层104的厚度可以为1μm~3μm。
[0020] 下面结合图1至图13详细说明本实施例的惯性传感器的制作方法。为方便与另一硅衬底区分,下文将上述硅衬底称为第二硅衬底,将另一硅衬底称为第一硅衬底。本实施例的惯性传感器的制作方法包括如下步骤:
[0021] 步骤S10,提供第一硅衬底,并对所述第一硅衬底进行电化学腐蚀以形成多孔硅层;
[0022] 步骤S11,通过外延的方式在所述多孔硅层上形成单晶硅层;
[0023] 步骤S12,在所述单晶硅层上形成牺牲层,并图形化所述牺牲层形成通孔;
[0024] 步骤S13,在所述牺牲层上形成布线材料,并图形化所述布线材料形成布线层,所述布线层通过所述通孔与所述单晶硅层连接;
[0025] 步骤S14,在所述布线层和牺牲层上形成埋层;
[0026] 步骤S15,提供第二硅衬底,并将所述第二硅衬底与所述第一硅衬底上的埋层键合;
[0027] 步骤S16,腐蚀所述多孔硅层以分离所述第一硅衬底与第二硅衬底,并平坦化所述单晶硅层;
[0028] 步骤S17,在所述单晶硅层上形成金属层,并图形化所述金属层;
[0029] 步骤S18,图形化所述单晶硅层,并通过腐蚀的方式去除所述单晶硅层暴露出来的牺牲层,形成可动结构层。
[0030] 参考图2,提供第一硅衬底101。该第一硅衬底101例如是晶向为<100>的硅衬底,利于形成质量较佳的单晶硅层。该第一硅衬底101优选是P型硅衬底,便于发生电化学反应形成多孔硅层。当然,亦可考虑采用N型硅衬底,后续欲发生电化学反应时进行光照以产生空穴即可。该第一硅衬底101例如是高掺杂的硅片,其电阻率可以为0.01-0.02Ω.cm,但并不限于此。
[0031] 参考图3,对该第一硅衬底101进行电化学腐蚀,以在其上部形成多孔硅层102。本实施例中所述多孔硅层102中形成有纳米孔。作为一个非限制性的例子,可以在氢氟酸(HF)以及乙醇(C2H5OH)的混合溶液中进行电化学腐蚀,以形成该多孔硅层102。当然,形成所述多孔硅层102的溶液还可以是氢氟酸和甲醇、氢氟酸和丙醇、氢氟酸和异丙醇等。该多孔硅层102的典型厚度为5~15μm,孔隙率为10~70%,但并不限于此。
[0032] 参考图4,通过外延的方式在多孔硅层102表面生长一层单晶硅层103。
[0033] 图5A至图5C所示为多孔硅层局部放大结构的剖面示意图。优选方案中,在多孔硅层102表面生长单晶硅层103之前,如图5A所示,先在所述多孔硅层102表面形成二氧化硅层102-1,例如,可在300~500℃的干氧条件热生长该二氧化硅层102-1;然后,如图5B所示,去除多孔硅层102上部的二氧化硅层102-1,暴露出硅表面;最后,如图5C所示,将所述第一硅衬底101送入外延炉中进行氢气(H2)退火及外延生长单晶硅层103。
[0034] 需要说明的是,本实施例首先在多孔硅层102表面形成二氧化硅层102-1,再去除多孔硅层102上部的二氧化硅层102-1,之后再经由氢气退火和外延工艺来形成单晶硅层103,这样多孔硅层102结构稳定、不易发生迁移。本领域技术人员应当理解,也可以直接通过外延的方式在多孔硅层102表面生长一层单晶硅层103。
[0035] 参考图6所示,在单晶硅层103上形成一牺牲层104,所述牺牲层104可通过热生长或者淀积的方式形成,所述牺牲层104例如是二氧化硅层,该牺牲层104的厚度一般情况下为1-3μm。然后,图形化所述牺牲层104形成暴露所述单晶硅层103的通孔104a,可通过光刻、刻蚀等常规半导体工艺图形化该牺牲层104。
[0036] 参考图7所示,在所述图形化的牺牲层104表面淀积一布线材料,所述布线材料例如是多晶硅,并通过光刻、刻蚀等常规半导体工艺图形化所述布线材料层,再通过注入、退火等方式掺杂该布线材料层,从而形成布线层105。
[0037] 参考图8所示,在布线层105表面淀积一埋层106,所述埋层106例如是二氧化硅层,并通过CMP等方式平坦化该埋层106,其表面平整度优选小于1nm。
[0038] 参考图9所示,提供一第二硅衬底107,并将第一硅衬底101与第二硅衬底107键合,具体而言,是将所述第一硅衬底101上的埋层106与第二硅衬底107表面键合在一起。
[0039] 优选方案中,先对第一硅衬底101与第二硅衬底107表面进行清洁以及激活,所述激活过程例如包括氧气等离子体处理(O2plasma)、氢氟酸浸泡(HF dip),使得所述第一硅衬底101与第二硅衬底107表面出现大量OH键,然后将第一硅衬底101与第二硅衬底107放入键合设备,使所述第一硅衬底101与第二硅衬底107相互接触形成弱的键合(例如通过OH键的方式实现弱键合),再将第一硅衬底101与第二硅衬底107置于800~1180℃的环境中进行退火,进行熔融(fusion)键合,提高键合强度。
[0040] 参考图9,腐蚀所述多孔硅层102以分离所述第一硅衬底101与第二硅衬底107。在此,将第一硅衬底101上保留的多孔硅层记为102a,将转移到第二硅衬底107上的多孔硅层记为102b。较佳的,采用与双氧水混合溶液(NH4OH/H2O2/H2O,SC1)或者氢氟酸与双氧水的混合溶液(HF/H2O2/H2O,SC2)腐蚀所述多孔硅层102。
[0041] 参考图10,平坦化所述单晶硅层103。可通过氢气退火方式使多孔硅层发生迁移,进而实现平坦化单晶硅层103的目的。或者,通过化学机械研磨(CMP)的方式平坦化单晶硅层103。平坦化所述单晶硅层103的过程中多孔硅层102b被随之去除。
[0042] 参考图11,在单晶硅层103上形成金属层108,并通过光刻和刻蚀工艺图形化所述金属层108,在金属层108中形成暴露可动结构层区域的通孔108a。例如,可以在金属层上形成光刻胶层,该光刻胶层的厚度可以是1~3μm;之后通过光刻和腐蚀工艺对金属层108进行图形化;之后可以采用氧气等离子体方式去除该光刻胶层。作为一个非限制性的例子,该金属层108的材料可以是铝,其厚度约为1μm,其形成方法可以是溅射。当然,本领域技术人员应当理解,该金属层108的材料还可以是其他适当的导电材料。
[0043] 参考图12,通过光刻工艺以及深槽刻蚀工艺图形化所述通孔108a暴露出来的单晶硅层103,从而暴露出牺牲层104的部分表面。
[0044] 参考图13,通过HF气相腐蚀腐蚀的方法腐蚀牺牲层104,形成可动结构层109。
[0045] 上述描述仅是对本实用新型较佳实施例的描述,并非对本实用新型范围的任何限定,本实用新型领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。
相关专利内容
标题 发布/更新时间 阅读量
传感器采集线束 2020-05-12 256
复合环境传感器 2020-05-12 39
传感器设备 2020-05-11 911
传感器焊接工装 2020-05-12 194
测量传感器 2020-05-11 509
倾角传感器 2020-05-11 281
多光谱传感器 2020-05-13 347
氧传感器 2020-05-11 612
双比率力传感器 2020-05-13 589
热气性质传感器 2020-05-13 567
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈