首页 / 专利库 / 矿物提取 / 堆浸 / 硫化矿的堆浸

硫化矿的堆浸

阅读:167发布:2020-05-11

专利汇可以提供硫化矿的堆浸专利检索,专利查询,专利分析的服务。并且一种硫化矿的 堆浸 方法(10),该方法(10)的特征在于以下工艺步骤:(i) 矿石 给料的团聚或润湿(16);(ii)将团聚或润湿的矿石暴露于接种物,所述接种物包含一种或多种能够 生物 氧 化该矿石中硫化物矿物的菌种(18);(iii)由步骤(ii)的矿石形成一个或多个矿堆(20);(iv)使进一步的细菌接种物(24、26)分散在所述一个或每个矿堆(20)的至少一部分上;以及(v)回收从矿堆排出的沥滤溶液并将其一部分转到金属回收装置(30)。,下面是硫化矿的堆浸专利的具体信息内容。

1.一种硫化矿的堆浸方法,其特征在于以下工艺步骤:
(i)矿石给料的团聚或润湿;
(ii)使团聚或润湿的矿石暴露于接种物,所述接种物包含一种或多种能 够生物化该矿石中硫化物矿物的菌种;
(iii)由步骤(ii)的矿石形成一个或多个矿堆;
(iv)使进一步的细菌接种物分散在所述一个或每个矿堆的至少一部分 上;以及
(v)回收从矿堆中排出的沥滤溶液并将其一部分传送至金属回收装置。
2.根据权利要求1的方法,其中提供细菌培养场以供应用于加入到步 骤(i)的团聚或润湿矿石的细菌接种物以及用于加入到步骤(iv)中所述一个或 每个矿堆的细菌接种物。
3.根据权利要求1或2的方法,其中提供一个或多个沥滤溶液池接收 所述一个或每个矿堆的沥滤溶液。
4.根据权利要求3的方法,其中将来自所述一个或每个沥滤溶液池的 沥滤溶液再循环到所述一个或每个矿堆。
5.根据权利要求3或4的方法,其中沥滤溶液池还接收来自细菌培养 场的细菌接种物。
6.根据权利要求3-5中任何一项的方法,其中在沥滤溶液转到沥滤溶 液池前从沥滤溶液中提取供给到金属回收装置中的来自所述一个或每个矿 堆的部分沥滤溶液。
7.根据权利要求2-6中任何一项的方法,其中该方法还包括在细菌培 养场使储用细菌培养物与步骤(i)中使用的矿石样品或矿石的一部分混合以 便使储用细菌培养物适应该矿石。
8.根据权利要求2-7中任何一项的方法,其中所述细菌培养场使储用 细菌培养物适应可用的矿区
9.根据权利要求2-8中任何一项的方法,其中所述细菌培养场连续运 行。
10.根据权利要求9的方法,其中将所述细菌培养场的产物引入到步 骤(ii)中的矿石、所述一个或每个堆和/或所述一个或每个沥滤溶液池的能 部分地促进了所述细菌培养场的连续运行。
11.根据权利要求10的方法,其中首先开采形成步骤(i)的矿石给料的 矿石并将其送至粉碎过程,其中将矿石粉碎为预定尺寸。
12.根据权利要求11的方法,其中来自步骤(ii)的团聚或润湿矿石从该 步骤中转到传送带上并用于堆积步骤(iii)的一个或多个矿堆。
13.根据前述权利要求中任何一项的方法,其中团聚或润湿步骤包括 在团聚机的第一端将粉碎的矿石送入团聚机。
14.根据权利要求13的方法,其中在第一端或靠近第一端处将水、粘 合剂和酸中的至少一种或多种引入团聚机。
15.根据权利要求14的方法,其中团聚机的第一端由位于称为团聚或 润湿区的区域中的团聚机的约前三分之二构成。
16.根据权利要求15的方法,其中随着粉碎的矿石沿团聚机的径向通 过,从而由团聚或润湿区进入到称为接种区的团聚机的其余部分。
17.根据权利要求13-16中任何一项的方法,其中在团聚机的第二端 处或接近第二端处设置接种物入口。
18.根据权利要求17的方法,其中将接种物入口设置为一个或多个喷 嘴的形式。
19.根据权利要求17或18的方法,其中团聚矿石从团聚机转筒的第 二端转到将团聚矿石送到所述一个或每个矿堆的一个或多个传送带上。
20.根据权利要求13-19中任何一项的方法,其中除了引入团聚机之 外或替代引入到团聚机,还在将细菌接种物输送到所述一个或每个矿堆时 通过喷嘴将其喷洒到团聚矿石上。
21.一种硫化矿的堆浸方法,其特征在于以下工艺步骤:
(i)提供用于产生能够生物氧化矿石中硫化物矿物的细菌培养物的细菌 培养场;以及
(ii)分配来自该培养场的细菌培养物,以对团聚或润湿步骤中的矿石给 料、一个或多个矿堆和被安排接收来自所述一个或每个矿堆的沥滤溶液的 一个或多个池中的每一个进行接种,其中该方法的具体要求决定平衡这种 分配的方式,。
22.根据权利要求21的方法,其中所述细菌培养场包括使将要氧化的 矿石给料的一部分暴露于非该矿石固有的储用细菌培养物,以便进行预处 理或使储用细菌培养物适应该矿石。
23.根据权利要求21或22的方法,其中对所述细菌培养场进行控温、 搅拌和通气。
24.根据权利要求21-23中任何一项的方法,其中按主要条件的需要 向所述细菌培养场加入一种或多种营养物。
25.根据权利要求21-24中任何一项的方法,其中所述细菌培养场位 于矿区,以便向团聚或润湿步骤供给细菌接种物、向所述一个或每个矿堆 供给细菌接种物或向一个或多个沥滤溶液池供给细菌接种物。
26.根据权利要求25的方法,其中细菌接种物的所述三种可能的给料 使细菌培养场基本连续运行,从而如果细菌接种物的一个目的地由于工艺 原因不可用,则其余选择方案中的一个或多个是合适的。
27.根据权利要求21-26中任何一项的方法,其中向所述细菌培养场 提供粉碎的矿石部分,以便使储用细菌培养物适应该粉碎矿石的硫化物矿 物学和任何其它具体的环境条件。
28.一种将要堆浸的硫化矿团聚的团聚方法,其特征在于以下工艺步 骤:
(i)用酸、粘合剂和水中的一种或多种将矿石至少部分地团聚;和
(ii)将能够氧化硫化物的细菌的细菌接种物加入到步骤(i)的至少部分团 聚的矿石中,
从而随后使所述矿石堆积成用于沥滤的一个或多个矿堆。
29.参考图1和2基本如上所述的硫化矿堆浸方法。
30.参考图2基本如上所述的团聚方法。

说明书全文

技术领域

发明涉及硫化矿的堆浸。更具体而言,本发明涉及成堆硫化矿的生 物化,这种矿堆中的至少一个由在矿堆堆积前施加了细菌接种物的矿石 形成。

背景技术

堆浸是通常从低级矿或废物中沥滤贵金属和贱金属的一种可用选择方 案。使用一系列生物的生物氧化是这类沥滤的一种可选方案。将这种生 物氧化不同地描述为利用酸性沥滤剂的初级沥滤或在例如氰化步骤前的预 处理步骤。
转让给Placer Dome,Inc.的美国专利6207443描述了硫化矿的生物氧化 方法,其中将预先生物氧化过的材料引入到矿堆中。在矿堆或大容器中对 包含金属硫化物的第一部分给料物质进行生物氧化,形成生物氧化部分。 随后将该生物氧化过的部分与第二部分给料物质混合,形成混合给料物质。 该混合给料物质随后可用于形成另一矿堆。在有或没有合适营养物的情况 下,通过施加包括硫酸和合适微生物的接种物,在另一矿堆中进行生物氧 化。使这种沥滤剂渗经过矿堆,并在该矿堆的底部除去沥滤母液。
混合来自第一矿堆的生物氧化残渣和第二部分矿石的方式如下:将两 种矿石引入到团聚物内或可将两者直接放到传送带上到达另一个矿堆。另 一替换方案是将生物氧化残渣放到第二给料部分所形成的矿堆的顶上。
在进入团聚机之前混合两种给料存在问题,因为团聚机内的条件对存 在的微生物尤其苛刻,尤其是微生物必须在整个团聚过程中存在的情况。 与上述两种矿流混合的替换形式有关的问题在于:不太可能使所有的第二 矿流或第二部分矿石都暴露于生物氧化残渣中存在的微生物。类似地,也 不存在确保大比例的第二给料矿流或第二部分给料矿石暴露于施与到另一 个矿堆上的接种物/沥滤剂的机理。这种矿堆面临着与堆浸有关的传统问题, 尤其是开槽(channeling)中。
转让给Geobiotics,Inc.的美国专利6083730描述了一种矿堆生物氧化 方法,其中矿堆包括底层如粗矿石颗粒,所述底层上覆盖有由将要被生物 氧化的矿石制成的精矿。这种覆盖在矿堆堆积前发生在团聚机中。然后以 典型的方式对矿堆接种细菌,所述细菌能够生物氧化覆盖在底层上的精矿 内的金属硫化物颗粒。这种接种在矿堆堆积过程中进行或在矿堆堆积之后 立即进行。这种方法旨在通过均匀覆盖形成矿堆的底层使尽可能多的金属 硫化物暴露于沥滤剂。但是,没有描述使生物氧化所用的微生物有效均匀 地分布在整个矿堆中的任何机理。
在Bruynesteyn的美国专利申请10/723392(公开号US 2004/0131520 A1) 中,描述了低硫含量的矿的沥滤方法。这种方法包括经细磨的单质硫暴露 于硫氧化细菌的培养物作为预处理步骤的机理,其中硫颗粒被润湿,细菌 自身附着到这些硫颗粒上。然后在典型的团聚过程中将得到的预处理硫、 和细菌的混合物加入到矿石颗粒中。这种方法集中在预处理过程中硫酸 的产生上,硫酸可用于部分满足最终形成的矿堆中矿石的酸需求。同样, 显然硫氧化细菌经受整个团聚过程和其苛刻环境。
在转让给Newmont Gold Co.和Newmont Mining Corporation的美国专利 5246486中,描述了矿堆中硫化物的生物氧化方法。这种方法的一个关键要 素是由硫化矿颗粒形成 “微粒”。在这些微粒的形成中使用接种物,在堆积传 送带上时将所述接种物喷洒到矿石上,该方法旨在反映公知的团聚。在该 说明书中还注意到,对于微粒的形成,还可使用其它方法,包括圆盘型团 聚设备。此外,参考在传送带上将矿石浸到液槽内,以及螺杆挤出机的使 用。
随后在矿堆的堆积中使用如上形成的微粒。由此表明,在有或没有附 加营养物的情况下,以已知方式,随后将沥滤溶液分散在整个堆中时,产 生有效的沥滤。尽管以形成微粒的方式使接种体分布在整个堆中是有利的, 但接种物的微生物同样在团聚过程中经受苛刻的物理条件,包括长期暴露 于磨蚀,这会降低它们在最终形成的矿堆中的有效性。
在Echo Bay Mines Limited的国际专利中请PCT/IB98/00969(公开号 WO98/51827)中,描述了用于硫化矿的组合槽/堆生物氧化方法。该方法包 括将难熔硫化矿源分成两个流。这些流中的第一个在槽式反应器中暴露于 硫化物分解微生物,以使微生物适应颗粒状硫化矿,然后使部分分解的矿 石与第二硫化矿矿流混合。随后在有或没有团聚步骤的情况下,使用固/液 分离(脱水)的固体部分构造矿堆。然后使用来自固/液分离步骤的液体对矿 堆进行接种并进行生物氧化过程。在生物氧化步骤后,对矿堆进行沥滤过 程如氰化。如所述,随后将来自生物氧化反应器的固体和液体传送到增稠 器中,所述增稠器中的内含物最后进行固/液分离。分离后,在堆浸中将整 个内含物有效地重新混合。从而形成非常逐步或间歇的过程,由此可能对 如何有效实施该方法引入限制。另外,固/液分离或脱水步骤连同在堆积矿 堆前对来自该步骤的固体进行的团聚步骤同样使微生物暴露于相对苛刻的 物理条件。此外,随后以与现有技术主体大部分相同的方式通过入渗矿堆 将接种物施加到矿堆上。
如上所述,许多专利说明书都描述了堆浸环境中的生物氧化过程,以 及矿石和/或矿堆的接种。但是,很少或没有描述关于产生、保持、处理和 运输商业堆浸操作所需足够体积的生物氧化用合适微生物的培养物的方 式。这本身是困难和复杂的操作。
各式各样的菌种已被描述为适合或存在于上述类型的生物氧化过程。 所述菌种包括氧化亚硫杆菌(Thiobacillus Ferrooxidans)、氧化硫硫杆菌 (Thiobacillus Thiooxidans)、器官硫杆菌(Thiobacillus Organoparus)、嗜酸硫 杆菌(Thiobacillus Acidphilus)、热氧化硫化杆菌(Sulfbacillus Thermosulfidooxidans)、嗜酸热硫化叶菌(Sulflobus Acidocaldarius)、 sulfolobus BC、硫磺矿硫化叶菌(Sulflobus Solftaricus)、布氏酸菌(Acidanus Brierley)和铁氧化钩端螺菌(Leptospirillum Ferrooxidans)。这些菌种通常被描 述为对于要被生物氧化的矿石是固有的,并且提供沥滤条件使固有菌种促 进和影响生物氧化过程。
堆浸操作的温度对在生物氧化过程中最活跃的这些菌种有影响。这还 经常影响沥滤的效率/效力。这又将影响下游金属回收步骤中从沥滤母液中 回收金属。当试图生物氧化传统上难沥滤矿如矿时,这种问题更突出。 国  际专利申请PCT/AU2004/001597(WO 2005/056842)以及 PCT/AU2004/000236(WO 2004/081241)描述了这种方法,其中在使引入堆中 的某些菌种能够工作的预定温度下进行堆浸。PCT/AU2004/000236的方法 利用中温菌种的存在将矿堆的温度升高到嗜热菌种能用于生物氧化存在的 黄铜矿的温度。美国专利6110253也描述了用于黄铜矿堆浸中的生物氧化, 但使用外部热源,如加热的沥滤溶液,或利用用于向矿堆引入氧气的管件 中的热空气或热流。
本发明的一个目的是基本克服与上述现有技术有关的问题或缺点,或 至少提供可运用这些方法的有用替代方案。
前面背景技术的讨论仅仅在于有利于本发明的理解。应当理解的是, 讨论不是认可或承认任何所提到的材料都是申请优先权日期时在澳大利亚 或任何其它国家中的公知普通知识的一部分。
在整个说明书中,除非上下文另外要求,术语“包括”或其变化形式将被 理解为指包含所述整数或整数组,而不是排除任何其它整数或整数组。

发明内容

根据本发明,提供一种硫化矿的堆浸方法,该方法的特征在于以下工 艺步骤:
(i)矿石给料的团聚或润湿;
(ii)将团聚或润湿的矿石暴露于接种物,所述接种物包含一种或多种能 够生物氧化该矿石中硫化物矿物的菌种;
(iii)由步骤(ii)的矿石形成一个或多个矿堆;
(iv)进一步使细菌接种物分布在所述一个或每个矿堆的至少一部分上; 以及
(v)回收从矿堆排出的沥滤溶液并将其一部分传送至金属回收装置。
优选地,提供细菌培养场,细菌培养场供应用于加入到步骤(i)中团聚或 润湿矿石的细菌接种物以及用于加入到步骤(iv)中所述一个或每个矿堆的 细菌接种物。
可提供一个或多个沥滤溶液池来接收所述一个或每个矿堆的沥滤溶 液。来自所述一个或每个沥滤溶液池的沥滤溶液优选再循环到所述一个或 每个矿堆。沥滤溶液液池还可接收来自细菌培养场的细菌接种物。
优选在沥滤溶液传送至沥滤溶液池前,从沥滤溶液中提取供给到金属 回收装置的来自所述一个或每个矿堆的部分沥滤溶液。
本发明的方法还包括在细菌培养场中使储用细菌培养物(stock bacterial culture)与步骤(i)中使用的矿石样品或矿石的一部分混合,以便使储用细菌 培养物适应该矿石。细菌培养场还使储用细菌培养物适应可用的矿区水, 所述矿区水尤其可能为盐水或含有其它污染物。
细菌培养场(bacterial farm)优选连续运行。将细菌培养场的产物引入步 骤(ii)中的矿石、所述一个或每个矿堆和/或所述一个或每个沥滤溶液池的能 力部分地促进了细菌培养场地连续运行。
根据本发明,还提供一种硫化矿的堆浸方法,该方法的特征在于以下 工艺步骤:
(i)提供用于产生能够生物氧化矿石中硫化物矿物的细菌培养物的细菌 培养场;以及
(ii)分配来自该培养场的细菌培养物,以对矿石给料、一个或多个矿堆 和被安排接收来自所述一个或每个矿堆的沥滤溶液的一个或多个池中的每 一个进行接种,其中该方法的具体要求决定平衡这种分配的方式。
细菌培养场优选包括使将被氧化的矿石给料的一部分暴露于非该矿石 固有的储用细菌培养物,以便进行预处理或使储用细菌培养物适应该矿石。
根据本发明,首先按已知的方式开采矿石,并运送到粉碎过程,在该 过程中将矿石粉碎至预定尺寸。
随后将粉碎的矿石传送至团聚或润湿步骤。在以下将详细说明的团聚 或润湿步骤中,首先对粉碎的矿石进行团聚或润湿,然后用细菌接种物接 种。
然后将来自团聚或润湿步骤的矿石从该步骤传送到传送机上并用于堆 积一个或多个矿堆。
提供细菌培养场用于基本连续产生适应的细菌培养物。对细菌培养场 进行控温、搅拌和通气。另外,考虑到主要条件的需要,还向细菌培养场 加入一种或多种营养物如、氮、磷和镁。
细菌培养场位于矿区,以便向团聚或润湿步骤供给细菌接种物、向所 述一个或每个矿堆供给细菌接种物或向一个或多个沥滤溶液池供给细菌接 种物。细菌接种物的所述三种可能给料使细菌培养场基本连续运行,从而 如果细菌接种物的一个目的地由于工艺原因不可用,则其余选择方案中的 一个或多个可以是合适的。
向细菌培养场提供粉碎的矿石部分,以便使储用细菌培养物适应该粉 碎矿石的硫化物矿物学和任何其它具体的环境条件,如矿区水的盐度。关 于这一点,参考了国际专利申请PCT/AU00/01022(WO 01/18264 A1)以及US 2004-0206208-A1的公开内容,在此引入各自的全部内容作为参考。
以公知的方式布置所述一个或每个矿堆,以将其中的沥滤溶液排至一 个或多个沥滤溶液池。
所述一个或每个矿堆都设有冲洗装置,以便如果认为合适可向每个矿 堆供应水、溶解的氧、酸、细菌接种物和/或营养物,或它们的任意组合。
来自沥滤溶液池的液体在合适时被再循环到所述一个或每个矿堆上。 在沥滤溶液池前提取来自所述一个或每个矿堆的液体或沥滤母液的渗出流 (bleed steam)并送到金属回收装置。例如,如果粉碎矿石的硫化物矿物为黄 铜矿,所述金属回收装置可包括溶剂交换和电解提取步骤来回收铜。
按照广泛已知的方式形成所述一个或每个矿堆。但是,这可概括地描 述为在预先制备的垫上提供不透水的膜。膜可包括粘土或HDPE,或可为上 述两者或其它合适材料的组合。这种材料的适宜性由它对预期从所述一个 或每个矿堆流出的沥滤溶液的低或零渗透率确定。
垫的制备包括提供有利于从堆积于其上的矿堆中排出沥滤溶液的装 置。这种有利于排出的装置可包括例如粗粉碎岩石或矿石的层或布置排出 管。
以能允许矿堆通气的方式堆积所述一个或每个矿堆,并可包括在矿堆 中提供带孔管,通过该管可吹入空气和其它气体或气体混合物。
团聚或润湿步骤包括从团聚机的第一端将粉碎的矿石传送到团聚机 中。还在第一端处或接近第一端处将水、粘合剂和酸中的至少一种或多种 引入团聚机。这大致发生在团聚机的前三分之二中称为团聚或润湿区域的 范围中。随着粉碎的矿石沿团聚机的径向通过,从而从团聚或润湿区域进 入到团聚机的其余部分(称为接种区域)内。在团聚机的第二端处或靠近第二 端提供入口,例如细菌接种物用的一个或多个喷嘴。按照这种方式,在团 聚的粉碎矿石离开团聚机前,立即将来自细菌培养场的细菌接种物喷洒到 所述粉碎矿石上。
团聚的矿石从团聚机转筒的第二端进到能将其送至一个或多个矿堆的 一个或多个传送带上。除了引入到团聚机中之外或代替引入到团聚机中, 可在团聚矿石在所述一个或每个传送带上输送时通过一个或多个喷射器将 细菌接种物喷到团聚的矿石上。
根据本发明,还提供一种将要堆浸的硫化矿团聚的团聚方法,该团聚 方法的特征在于以下工艺步骤:
(i)用酸、粘合剂和水中的一种或多种将矿石至少部分地团聚;和
(ii)将能够氧化硫化物的细菌的细菌接种物加入到步骤(i)的至少部分团 聚的矿石中;
从而随后将团聚矿石堆积成用于沥滤的一个或多个矿堆。
在堆积矿堆前,团聚矿石的有效接种有助于由细菌培养场供应的适应 性细菌培养物或接种物的均匀分布。细菌接种物在整个矿堆内的均匀分布 减少了与细菌移居到矿堆上的需要有关的任何延迟。另外,在硫化矿的矿 物学和条件合适的情况下,早期细菌接种物暴露于到团聚矿石使得能够立 即氧化硫化物矿物或进行沥滤。
应当理解的是,所述一个或每个矿堆的堆积是有效地连续过程,于是 要求细菌培养场基本连续运行。这是认为提供基本可连续运行细菌培养场 有利于硫化矿堆浸的一个原因。
附图说明
现在将参考本发明的一种实施方案和附图仅仅示例性地描述本发明, 其中:
图1为根据本发明的硫化矿堆浸过程的示意图;和
图2为图1过程的团聚或润湿步骤和细菌接种物引入步骤的示意图。

具体实施方式

图1中显示了根据本发明的硫化矿堆浸过程10。首先按已知的方式开 采12矿石,并送到粉碎过程14,在粉碎过程14中矿石被粉碎成预定尺寸。 所述尺寸在约2mm-200mm的范围内,并由存在的硫化物的释放特性决定。 预计在特定情况下可容许较大的尺寸,包括使用转筒实施本发明。
随后将粉碎的矿石传送至团聚或润湿步骤16。在以下将详细说明的团 聚或润湿步骤16中,首先对粉碎的矿石进行团聚或润湿,随后用细菌接种 物18接种。
然后使来自团聚或润湿步骤16的矿石从该步骤转到传送机并用于堆积 一个或多个矿堆20。
提供细菌培养场22用于基本连续地产生适应性细菌培养物。细菌培养 场包括一系列温度受控的、搅拌的和通气的槽。另外,考虑到主要条件的 需要,还向细菌培养场加入一种或多种营养物如钾、氮、磷和镁。
细菌培养场22位于矿区,以便向团聚或润湿步骤16供给细菌接种物 18、向所述一个或每个矿堆20供给细菌接种物24或向一个或多个沥滤溶 液池28供给细菌接种物26。细菌接种物的所述三种可能给料18、24和26 使细菌培养场22基本连续运行,从而如果细菌接种物的一个目的地由于工 艺原因不可用,则其余选择方案中的一个或多个可以是合适的。
向细菌培养场22提供粉碎的矿石部分14,以便使储用细菌培养物适应 该粉碎矿石的硫化物矿物学和任何其它具体的环境条件,如矿区水的盐度。 关于这一点,参考了国际专利申请PCT/AU00/01022(WO 01/18264 A1)以及 US 2004-0206208-A1的公开内容,在此引入各自的全部内容作为参考。
供给到细菌培养场的细磨碎矿石14的量足以提供固体含量小于或等于 1%的稀矿泥。细菌培养场22中的矿泥保留时间足以使细菌大量繁殖,使得 一直存在有效的细菌群体,优选大约为106-109个细菌/毫升的溶液。在本发 明的一种形式中,这是一个两阶段过程,第一个阶段是细菌氧化硫化物, 其中细菌大量繁殖。第二个阶段特征为将细菌从大部分氧化的固体中分离 出来,这些细菌可用于附着新的固体。各阶段中的矿泥保留时间预期各自 为大约2天。
以公知的方式布置所述一个或每个矿堆20,以将其中的沥滤溶液排到 一个或多个沥滤溶液池28中。
所述一个或每个矿堆20都设有冲洗装置(未示出),以便如果认为合适 的时候可向每个矿堆供应水、溶解的氧、酸、细菌接种物和/或营养物,或 它们的任意组合。
来自所述一个或多个沥滤溶液池的液体在合适时被再循环到所述一个 或每个矿堆20上,但这种再循环可以是有规律的。在沥滤溶液池28前提 取来自所述一个或每个矿堆20的液体或沥滤母液的渗出流并送到金属回收 装置30。
按照广泛已知的方式形成所述一个或每个矿堆20。但是,这可概括地 描述为在预先制备的垫上提供不透水的膜。所述膜可包括粘土或HDPE,或 可为上述两者或其它合适材料的组合。这种材料的适宜性由它对预期从所 述一个或每个矿堆20流出的沥滤溶液的低或零渗透率确定。
垫的制备包括提供有利于从堆积于其上的矿堆中排出沥滤溶液的装 置。这种有利于排出的装置可包括例如粗粉碎岩石或矿石的层或布置排出 管。
以使矿堆能够通气的方式堆积所述一个或每个矿堆20,并可包括在矿 堆中提供带孔管,通过该管可吹入空气和其它气体或气体混合物。
在图2中,显示了与如上所述细菌接种物18的引入结合的团聚或润湿 步骤16。团聚或润湿步骤16包括使粉碎的矿石从转筒式团聚机32的第一 端34传送至其中。还从第一端34或接近第一端34处将水36、粘合剂如聚 合物粘合剂38和酸40中的至少一种或多种引入转筒式团聚机32。这大致 发生在团聚机转筒32的前三分之二中称为团聚或润湿区域42的范围中。 随着粉碎的矿石沿团聚机转筒32的径向通过,从而从团聚或润湿区域42 进入到团聚机转筒32的其余部分(称为接种区域44)内。在团聚机转筒32 的第二端46处或接近第二端46处提供入口,例如细菌接种物18用的一个 或多个喷嘴48。按照这种方式,在团聚的碎矿石离开团聚机转筒32前,将 来自细菌培养场22的细菌接种物18立即喷洒到粉碎矿石上。
团聚的粉碎矿石在大部分情况下含有2-20%的水分,含水量取决于矿石 的粉碎尺寸和其具体矿物学特征如粘土含量。
团聚的矿石50从团聚机转筒32的第二端36进到能够将团聚的矿石50 送到矿堆20的一个或多个传送带52上。除了引入到团聚机转筒32中之外 或代替引入到团聚机转筒32内,可在团聚矿石50在所述一个或每个传送 带52上输送时通过喷射器54将细菌接种物18喷到团聚矿石50上。
在堆积矿堆20前,团聚矿石的有效接种有助于由细菌培养场22供应的 适应性细菌培养物或接种物的均匀分布。细菌接种物18在整个矿堆内的均 匀分布减少了与细菌移居到矿堆20上的需要有关的任何延迟。另外,在硫 化物矿的矿物学和条件合适的情况下,早期细菌接种物18暴露于团聚矿石 能允许使得能够立即氧化硫化物矿物或进行沥滤,。
本文描述的团聚过程中矿石接种的特定机理还尽可能合理地确保接种 物不完全暴露于团矿过程本身的苛刻物理条件。例如,在团聚机转筒32第 二端36处或接近第二端36处加入细菌接种物减少了接种物中的细菌暴露 于团聚的苛刻条件,所述苛刻条件包括可能受到的摩擦和剪切力。因而, 与现有技术的方法相比,本发明的团聚方法可产生更有效的接种。
应当理解的是,所述一个或每个矿堆20的堆积为有效地连续过程,因 而要求细菌培养场22基本连续地运行。这是认为提供基本可连续运行细菌 培养场有利于硫化矿堆浸的一个原因。另外,具有可用于分布来自细菌培 养场22的细菌培养物的大量选择方案能够允许细菌培养场基本连续地运 行。也就是说,可使细菌培养场22的适应性细菌培养物或接种物产物分布 到团聚或润湿步骤中的一个或多个中步骤、分布到为所述一个或每个矿堆 供料的池中,、和/或直接分布到所述一个或每个矿堆上。最终,可预料到, 与现有技术相比,本发明的方法能使得使用生物氧化的堆浸操作更有效和 更经济地运行。
对于本领域技术人员显而易见的改进和变化被认为落在本发明的范围 内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈