首页 / 专利库 / 金工 / 冶金 / 一种从冶金含镉烟尘中回收镉的方法及从镉-氨溶液中回收镉的装置

一种从冶金含镉烟尘中回收镉的方法及从镉-溶液中回收镉的装置

阅读:315发布:2023-01-12

专利汇可以提供一种从冶金含镉烟尘中回收镉的方法及从镉-溶液中回收镉的装置专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种从 冶金 含镉 烟尘 中回收镉的方法及从镉‑ 氨 溶液中回收镉的装置。首先将含镉冶金烟尘进行氨性循环 浸出 ,当溶液中的铅/镉摩尔比小于0.01后结束循环浸出过程。浸出结束后液固分离,得到镉‑氨溶液。加入适量硫化剂将镉‑氨溶液中杂质离子硫化沉淀分离。除杂后液置于超声强化电加强置换提镉关键装置中进行高效提镉,得到高品位海绵镉和锌‑氨溶液。海绵镉可直接用于压团精馏或熔铸‑ 电解 精炼 得到高纯镉,锌‑氨溶液则可直接返回电锌系统生产电锌。,下面是一种从冶金含镉烟尘中回收镉的方法及从镉-溶液中回收镉的装置专利的具体信息内容。

1.一种从镉-溶液中回收镉的装置,其特征在于,包括电解槽、电解极板装置、履带式传输装置和声波发生装置;
所述的电解极板装置设置于电解槽内并处于电解槽上部,所述的超声波发生装置设置于电解槽内并朝向电解极板装置发射超声波,所述的履带式传输装置设置于电解极板装置下方并延伸至电解槽外;
所述的电解极板装置包括导电排、阳极装置、阴极装置和脉冲电源;
所述的导电铜排数量为两根,且分别沿电解槽相对两侧的上边沿设置,两根导电铜排分别连接脉冲电源的阳极和阴极,所述的阳极装置和阴极装置均设有挂以悬挂在两根导电铜排之间,阳极装置的挂耳在连接阴极导电铜排的一端绝缘处理,阴极装置的挂耳在连接阳极导电铜排的一端绝缘处理,阳极装置和阴极装置交替悬挂于电解槽上;
所述的超声波发生装置包括超声波发生探头,所述的超声波发生探头间隔置于电解槽内设有导电铜排的两侧;
所述的阳极装置为浇铸锌板,所述的阴极装置为栅栏状,上部设有平的铜质夹板,下部设有竖直的固定在铜质夹板上的多根阴极栅栏杆,所述的阴极栅栏杆的材质为、铜、石墨、铅合金中的一种;
所述的阳极装置的厚度为1 cm 4 cm,阳极装置与阴极装置有效面积比为20 2:1,阳极~ ~
装置和阴极装置之间的距离为3 10 cm。
~
2.根据权利要求1所述的一种从镉-氨溶液中回收镉的装置,其特征在于,所述的电解槽底部设有凹槽,凹槽两端分别设有带的进液及放液口。
3.一种从冶金含镉烟尘中回收镉的方法,其特征在于,包括以下步骤:
步骤一:将含镉烟尘加入到氨性体系溶液中,进行氨性循环浸出
步骤二:循环浸出结束后,将浸出液过滤,加入硫化剂除杂;
步骤三:过滤分离沉淀渣后得到的镉-氨溶液采用权利要求1或2所述的装置进行选择性提镉;
步骤一中所述的循环浸出终点判断标准为:当溶液中的铅/镉摩尔比小于0.01,即可结束循环浸出过程;
步骤三中,采用权利要求1或2所述的装置进行提镉的过程为:
将镉-氨溶液注入至电解槽中,开启脉冲电源,开通超声波发生装置及履带式传输装置;在阳极装置上开始发生超声辅助电加强置换提镉反应,在脉冲电流及超声波的作用下,所置换出的镉从阳极装置表面不断掉落至电解槽底部的履带表面,并由履带不断地输出到电解槽外收集;
提镉条件为:脉冲电场的脉冲频率为500 21000 Hz,占空比为30% 90%,脉冲平均电流~ ~
2
密度为10 50 A/m,超声波频率10 KHz 150 KHz,超声功率20 200 W。
~ ~ ~
4.根据权利要求3所述的方法,其特征在于,步骤一中所述的氨性浸出体系为NH3-NH4Cl-H2O、NH3-(NH4)2SO4-H2O、NH3-(NH4)2CO3-H2O中的一种或任意两种的混合物。
5.根据权利要求3所述的方法,其特征在于,步骤一中所述的氨性浸出体系成分摩尔浓+
度为[NH4]总=3~10 mol/L,[NH3]=0.5~4 mol/L, 溶液体积与含镉烟尘质量之比=2~10 ml:1 g,浸出温度20~60℃,浸出时间0.5~4 h。
6.根据权利要求3所述的方法,其特征在于,步骤二所述的硫化剂为Na2S、(NH4)2S、硫脲中的一种或任意两种的混合物,加入的量为将溶液中Cu2+全部沉淀为CuS所需理论量的1.0~
1.3倍,沉淀时间为10 40 min,反应温度为20 50℃。
~ ~

说明书全文

一种从冶金含镉烟尘中回收镉的方法及从镉-溶液中回收

镉的装置

技术领域

背景技术

[0002] 镉资源在自然界中存在于锌矿、铅锌矿和铅锌矿中,在浮选时大部分进入铅锌精矿。目前各铅锌冶炼企业处理镉含量高的原料日益增加,导致随原料进入生产系统的镉量不断增加。镉污染源解析研究表明,铅锌冶炼镉污染因子排放占镉污染总量的70%,铅锌冶炼行业产生的含镉烟尘及冶炼渣是目前最重要的镉污染源。
[0003] 铅锌冶炼时精矿的焙烧浸出回转窑挥发、ISP系统烧结、铅精矿富强化熔炼过程均产出大量含镉烟尘,其镉含量从2%~25%不等,这些含镉烟尘通常还含有一定量的Pb,Zn,As,Cu,Fe,F,Cl等,若不对其进行高效处理回收利用,不仅造成资源浪费,而且还对周边环境安全带来潜在污染险,实现其清洁、高效处理对镉源头减排与污染控制意义重大。
[0004] 针对这种含镉烟尘,我国主要铅锌冶炼企业如河南豫光金铅、湖南株冶集团、湖南口山有色金属集团等主要是将其并入锌酸法冶炼系统,采用“酸浸-锌粉置换-海绵镉压团-镉精炼”的工艺路线对其进行脱镉处理,但遇到的瓶颈问题是锌粉置换镉时产生“镉包锌、铜包锌”等现象难以解决,得到的一次置换海绵镉品位仅30~50%,远低于镉绵压坯粗炼所需要80%以上的品位,只能将其返回重新氧化造液,再进行二次甚至三次以上锌粉置换处理,处理流程延长,锌粉耗量大大增加,镉在此过程中分散流失到不同的废液以及多种冶炼渣中,形成二次污染,镉回收率仅约75%。迄今为止,围绕含镉烟尘等含镉物料提镉过程的无害化、清洁化处理等问题,研究人员也开展了诸多研究。焦点主要集中在对含含镉烟尘硫酸浸出液中镉的高效分离与富集方面,提出的方法主要有锌粉置换法、电积法、吸附法和溶剂萃取法等。例如,L.R.Gouvea等研究了锌粉置换条件对海绵镉品位的影响;袁城利用镉渣浸出液中各金属析出电位的差异,提出采用旋流电积技术,将镉渣中的Cu、Cd、Zn逐一分离回收;X.Meng等以废印刷线路板非金属组分加热解产物为吸附剂,研究了其对镉离子的吸附分离效果;L.Dian-Kun等则研究了萃取剂D2EHPA对锌、镉的萃取分离性能,等等。综合来看,上述提镉工艺各具特点,但提镉过程“流程长、效率低、锌镉分离困难、锌粉耗量大、镉回收率低”等共性问题尚未解决,处理过程镉分散流失造成严重环污染的风险始终存在。尤其是含镉烟尘通常含有较高含量的F、Cl离子等,采用酸法浸出时F、Cl离子进入溶液,对除镉液酸法电锌质量造成很大的影响。

发明内容

[0005] 本发明的目的在于提供一种从冶金含镉烟尘中回收镉的方法及从镉-氨溶液中回收镉的装置,对含镉烟尘进行高效处理,实现含镉烟尘的短流程清洁利用,降低含镉烟尘处理过程中镉的分散流失,达到含镉烟尘处理过程减排增收的目的。
[0006] 一种从镉-氨溶液中回收镉的装置,包括电解槽、电解极板装置、履带式传输装置和声波发生装置;
[0007] 所述的电解极板装置设置于电解槽内并处于电解槽上部,所述的超声波发生装置设置于电解槽内并朝向电解极板装置发射超声波,所述的履带式传输装置设置于电解极板装置下方并延伸至电解槽外。
[0008] 所述的一种从镉-氨溶液中回收镉的装置,所述的电解极板装置包括导电铜排、阳极装置、阴极装置和脉冲电源;
[0009] 所述的导电铜排数量为两根,且分别沿电解槽相对两侧的上边沿设置,两根导电铜排分别连接脉冲电源的阳极和阴极,所述的阳极装置和阴极装置均设有挂以悬挂在两根导电铜排之间,阳极装置的挂耳在连接阴极导电铜排的一端绝缘处理,阴极装置的挂耳在连接阳极导电铜排的一端绝缘处理,阳极装置和阴极装置交替悬挂于电解槽上;
[0010] 所述的超声波发生装置包括超声波发生探头,所述的超声波发生探头间隔置于电解槽内设有导电铜排的两侧。
[0011] 所述的一种从镉-氨溶液中回收镉的装置,所述的电解槽底部设有凹槽,凹槽两端分别设有带的进液及放液口。
[0012] 所述的一种从镉-氨溶液中回收镉的装置,所述的阳极装置为浇铸锌板,所述的阴极装置为栅栏状,上部设有水平的铜质夹板,下部设有竖直的固定在铜质夹板上的多根阴极栅栏杆,所述的阴极栅栏杆的材质为、铜、石墨、铅合金中的一种。
[0013] 所述的一种从镉-氨溶液中回收镉的装置,所述的阳极装置的厚度为1cm~4cm,阳极装置与阴极装置有效面积比为20~2:1,阳极装置和阴极装置之间的距离为3~10cm。
[0014] 所述的履带固定在辊轴上,履带材质为丙纶、涤纶、锦纶、维纶滤布中的一种,滤布过滤精度18目~300目。
[0015] 一种从冶金含镉烟尘中回收镉的方法,包括以下步骤:
[0016] 步骤一:将含镉烟尘加入到氨性体系溶液中,进行氨性循环浸出;
[0017] 步骤二:循环浸出结束后,将浸出液过滤,加入硫化剂除杂;
[0018] 步骤三:过滤分离沉淀渣后得到的镉-氨溶液采用前述的装置进行选择性提镉。
[0019] 步骤一中所述的氨性浸出体系为NH3-NH4Cl-H2O、NH3-(NH4)2SO4-H2O、NH3-(NH4)2CO3-H2O中的一种或任意两种的混合物。
[0020] 步骤一中所述的氨性浸出体系成分摩尔浓度为[NH4+]总=3~10mol/L,[NH3]=0.5~4mol/L,溶液体积与含镉烟尘质量之比=2~10ml:1g,浸出温度20~60℃,浸出时间0.5~4h。
[0021] 步骤一中所述的循环浸出终点判断标准为:当溶液中的铅/镉摩尔比小于0.01,即可结束循环浸出过程。
[0022] 步骤二所述的硫化剂为Na2S、(NH4)2S、硫脲中的一种或任意两种的混合物,加入的量为将溶液中Cu2+全部沉淀为CuS所需理论量的1.0~1.3倍,沉淀时间为10~40min,反应温度为20~50℃。
[0023] 步骤三中,采用权利要求1-5中任一所述的装置进行提镉的过程为:
[0024] 将镉-氨溶液注入至电解槽中,开启脉冲电源,开通超声波发生装置及履带式传输装置;在阳极装置上开始发生超声辅助电加强置换提镉反应,在脉冲电流及超声波的作用下,所置换出的镉从阳极装置表面不断掉落至电解槽底部的履带表面,并由履带不断地输出到电解槽外收集;
[0025] 提镉条件为:脉冲电场的脉冲频率为500~21000Hz,占空比为30%~90%,脉冲平均电流密度为10~50A/m2,超声波频率10KHz~150KHz,超声功率20~200W。
[0026] 本发明的优点和积极效果是:
[0027] (1)采用氨性体系处理含镉烟尘,可以大大降低烟尘中Pb,Fe,As,F,Cl等有害杂质元素在浸出时进入溶液,减轻溶液除杂的负担,有利于获得高品质海绵镉。尤其是F,Cl离子,相比传统的含镉烟尘酸法浸出工艺而言,F,Cl离子将大部分进入溶液,将其从溶液中分离难度较大、成本高,而一旦分离不彻底,对后续的电锌过程会造成很大的危害。
[0028] (2)采用循环浸出工艺,当溶液中的铅/镉摩尔比小于0.01,即结束循环浸出过程。由于含镉烟尘中通常含有一定量的Pb,在氨性氧化浸出体系下,有少量的铅进入溶液。申请人通过大量实验发现,随着时间的延长与循环浸出,溶液中Zn2+、Cd2+浓度的增加,溶液中的铅离子入渣,溶液中铅离子浓度会自行逐渐下降。因此,本申请中不需另行设置溶液除铅的步骤,而只需通过循环浸出加大溶液中Zn2+、Cd2+浓度,随着浸出时间的累积,溶液中铅离子降低,直至溶液中的铅/镉摩尔比小于0.01后即可结束循环浸出,同时也达到了去除溶液中铅离子的目的。
[0029] (3)在本发明的装置中,采用锌板为阳极,在所述的提镉条件下,在阳极锌板表面发生了非常复杂的化学反应:一方面,锌与溶液中的镉离子发生自发的置换反应,同时,在脉冲电流强化作用下,锌的电溶速度加强,镉离子析出速度加快。新置换出来的镉由于内层锌的电溶而无法粘在锌板上而掉落下来,锌片上新露出的锌则继续在电加强作用下置换溶液中的镉,这就避免了传统锌粉置换时存在的“镉包锌”现象的发生,大大降低了海绵镉中锌的含量。
[0030] (4)本发明采用“牺牲阳极”脉冲电流进行电加强置换溶液中的镉,并耦合超声波强化该过程,得到的海绵镉纯度更高,海绵镉晶粒更为细密,有利于得到压坯密度更高、成品率更高的镉团。
[0031] (5)本发明装置还设置有超声波促进电加强置换提镉,并且在超声空化效应的作用下,阳极上析出的海绵镉进一步被冲刷掉落下来,有利于阳极露出新鲜的锌片参与电加强置换溶液中的镉,得到的海绵镉纯度更高,海绵镉晶粒更为细密。
[0032] (6)以锌板为阳极,采用本发明装置提镉不仅可以避免传统锌粉置换镉时形成“镉包锌、铜包锌”现象的出现,所得的海绵镉中锌含量由传统锌粉置换50%以上降低到5%以下,大大降低了锌的用量,而且还使得溶液中的锌镉一步分离,所得海绵镉品位由传统方法的30%~60%提高到95%以上,所得海绵镉可以直接蒸馏精炼镉或压团电解精炼镉。
[0033] (7)采用本发明装置提镉,可一步将溶液中的镉浓度降低到0.001g/L以下,与现行“两步锌粉置换”除镉相比,大大缩短了流程,避免了镉分散流失的风险。
[0034] (8)本发明装置中的电动履带,可以很容易地将落入电解槽底部的海绵镉输出,而不需人工清槽。
[0035] (9)本发明装置中的电解槽底部设计为下凹式,少量掉落的海绵镉可以在此集聚。可以通过底部凹槽两段的阀门用溶液冲刷而很容易地携带出少量落入槽底的海绵镉。
附图说明
[0036] 图1为本发明装置侧面示意图;
[0037] 图2为本发明装置剖面示意图;
[0038] 图3为栅栏状阴极示意图;
[0039] 1-电解槽;2-导电铜排;3-阳极装置;4-阴极装置;5-超声波发生探头;6-辊轴;7-履带;8-阀门;9-海绵镉收集桶;10-凹槽;11-铜质夹板。

具体实施方式

[0040] 参见图1~3,本发明装置包括电解槽、电解极板装置、履带式传输装置和超声波发生装置;电解极板装置设置于电解槽内并处于电解槽上部,超声波发生装置设置于电解槽内并朝向电解极板装置发射超声波,超声波用于将电解出的海绵镉从电解极板装置上剥落。履带式传输装置设置于电解极板装置下方并延伸至电解槽外。电解极板装置包括导电铜排、阳极装置、阴极装置和脉冲电源。导电铜排数量为两根,且分别沿电解槽相对两侧的上边沿设置,两根导电铜排分别连接脉冲电源的阳极和阴极,所述的阳极装置和阴极装置均设有挂耳以悬挂在两根导电铜排之间,阳极装置的挂耳在连接阴极导电铜排的一端绝缘处理,阴极装置的挂耳在连接阳极导电铜排的一端绝缘处理,阳极装置和阴极装置交替悬挂于电解槽上。超声波发生装置包括超声波发生探头,超声波发生探头间隔置于电解槽内设有导电铜排的两侧。电解槽底部设有凹槽,凹槽两端分别设有带阀门的进液及放液口。阳极装置为浇铸锌板,阴极装置为栅栏状,上部设有水平的铜质夹板,下部设有竖直的固定在铜质夹板上的多根阴极栅栏杆,所述的阴极栅栏杆的材质为钛、铜、铝、石墨、铅银合金中的一种。阳极的厚度为1cm~4cm,阳极与阴极有效面积比为20~2:1,阳极和阴极之间的距离为3~10cm。履带式传输装置用于输出海绵镉,履带固定在辊轴上,履带的材质为丙纶、涤纶、锦纶、维纶滤布中的一种,电解出的海绵镉被履带式传输装置输送出电解槽之后,落到摆放在电解槽外的海绵镉收集桶中。脉冲电场的脉冲频率为500~21000Hz,占空比为30%~90%,脉冲平均电流密度为10~50A/m2,超声波频率10KHz~150KHz,超声功率20~200W。
[0041] 以下实施例均采用上述装置。
[0042] 实施例一
[0043] 首先将含镉冶金烟尘进行氨性循环浸出,当溶液中的铅/镉摩尔比小于0.01后结束循环浸出过程。浸出结束后液固分离,得到镉-氨溶液。加入适量硫化剂将镉-氨溶液中杂质离子硫化沉淀分离。除杂后液置于超声强化电加强置换提镉关键装置中进行高效提镉,得到高品位海绵镉和锌-氨溶液。海绵镉可直接用于压团精馏或熔铸-电解精炼得到高纯镉,锌-氨溶液则可直接返回电锌系统生产电锌。
[0044] 具体包括:取含镉烟尘500g(其主要成份为(%):Cd 6.44,Zn 1.23,Pb 59.98,Cu 0.13,Fe 0.22,F,0.02,Cl 0.09)在NH3-(NH4)2SO4-H2O体系中进行循环浸出,[NH4+]=4mol/L,[NH3]=1.5mol/L,溶液体积(ml)与含镉烟尘质量(g)之比(液固比)=4:1,浸出温度30℃浸出时间2h。液固分离后,继续配入500g含镉烟尘与浸出液进行氨性浸出,重复同样的过程,直至第三批次浸出后,分析确定溶液中的铅/镉摩尔比为0.007,即结束循环浸出过程,液固分离得到循环浸出液。对循环浸出液进行除铜,加入Na2S的量为将溶液中Cu2+全部沉淀为CuS所需理论量的1.1倍,沉淀时间为30min,反应温度为40℃。反应结束后液固分离,分析沉铜后液中铜离子浓度痕量。沉铜后液放入到本发明装置中进行提镉。提镉条件为:阳极为浇铸锌板,阳极锌板厚度3cm,栅栏状石墨阴极,阳极板与阴极有效面积比为5:1,阴、阳极距为5cm,履带丙纶滤布,滤布过滤精度50目。脉冲电场的脉冲频率为2000Hz,占空比为70%,脉冲平均电流密度为20A/m2,超声波频率20KHz,超声功率100W。反应120min后。将获得的海绵镉及电解槽底部获得的残渣液固分离,固体经干燥后称重分析检测为海绵镉粉,其中镉含量为98.7%,溶液中镉离子浓度经ICP-AES分析为1ppm。
[0045] 实施例二
[0046] 将含镉冶金烟尘进行氨性循环浸出,当溶液中的铅/镉摩尔比小于0.01后结束循环浸出过程。浸出结束后液固分离,得到镉-氨溶液。加入适量硫化剂将镉-氨溶液中杂质离子硫化沉淀分离。除杂后液置于超声强化电加强置换提镉关键装置中进行高效提镉,得到高品位海绵镉和锌-氨溶液。海绵镉可直接用于压团精馏或熔铸-电解精炼得到高纯镉,锌-氨溶液则可直接返回电锌系统生产电锌。
[0047] 具体包括:取某锌焙烧含镉烟尘2000g(其主要成份为(%):Cd 18.5,Zn0.2,Pb 42.4,Cu 0.09,Fe 0.02,F,0.01,Cl 0.05)在NH3-(NH4)2CO3-H2O体系中进行循环浸出,[NH4+]=6mol/L,[NH3]=2mol/L,溶液体积(ml)与含镉烟尘质量(g)之比(液固比)=6:1,浸出温度35℃浸出时间1.5h。液固分离后,继续配入1800g该含镉烟尘与浸出液进行氨性浸出,重复同样的过程,直至第4批次浸出后,分析确定溶液中的铅/镉摩尔比为0.009,即结束循环浸出过程,液固分离得到循环浸出液。对循环浸出液进行除铜,加入Na2S的量为将溶液中Cu2+全部沉淀为CuS所需理论量的1.1倍,沉淀时间为20min,反应温度为30℃。反应结束后液固分离,分析沉铜后液中铜离子浓度痕量。沉铜后液放入到本发明装置中进行提镉。提镉条件为:阳极为浇铸锌板,阳极锌板厚度3.5cm,栅栏状铝阴极,阳极板与阴极有效面积比为7:1,阴、阳极距为6cm,履带涤纶滤布,滤布过滤精度100目。脉冲电场的脉冲频率为5000Hz,占空比为80%,脉冲平均电流密度为30A/m2,超声波频率40KHz,超声功率150W。反应150min后。
将获得的海绵镉及电解槽底部获得的残渣液固分离,固体经干燥后称重分析检测为海绵镉粉,其中镉含量为99.1%,溶液中镉离子浓度经ICP-AES分析为1ppm。
[0048] 以上所述,仅为本发明的具体实施例,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。
相关专利内容
标题 发布/更新时间 阅读量
粉末冶金方法 2020-05-12 794
一种冶金冷却机构 2020-05-13 909
一种粉末冶金 2020-05-12 846
粉末冶金方法 2020-05-11 594
粉末冶金方法 2020-05-12 115
粉末冶金钨接点 2020-05-12 252
粉末冶金方法 2020-05-11 336
冶金设备 2020-05-11 883
一种粉末冶金制粉装置 2020-05-13 234
一种冶金炉 2020-05-11 475
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈