首页 / 专利库 / 数学与统计 / 扩散张量 / 基于鱼类个体动态模拟技术的栖息地识别方法

基于鱼类个体动态模拟技术的栖息地识别方法

阅读:25发布:2020-09-05

专利汇可以提供基于鱼类个体动态模拟技术的栖息地识别方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了基于鱼类个体动态模拟技术的鱼类栖息地诊断方法,包括以下几个步骤:(1)鱼类个体行为观测与实验;(2)鱼类个体行为仿真模拟;(3)目标鱼种群栖息地诊断分析方法。根据目标鱼种群野外平行观测和实验数据得到鱼类行为与环境因子的相关性,并将其转化为数学函数,实现了基于目标鱼种群个体运动轨迹的鱼群行为仿真模拟,并依据目标鱼种群的个体轨迹追踪和模拟结果相互比对,对目标鱼种群栖息地生态与环境进行诊断。本发明借助小体积高 精度 水 下声学 跟踪 系统,并釆用水动 力 数学模型和物理实 体模 型进行辅助和验证,以鱼类行为作为判断依据进行鱼类栖息地诊断,使得栖息地诊断方法更加严谨、合理,同时更具生态学意义。,下面是基于鱼类个体动态模拟技术的栖息地识别方法专利的具体信息内容。

1.一种基于鱼类个体动态模拟技术的鱼类栖息地诊断方法,其特征在于,包括如下步骤:
(1)对鱼类个体行为观测与实验;
(2)对鱼类个体行为仿真模拟;
(3)进行目标鱼种群栖息地诊断分析。
2.如权利要求1所述的基于鱼类个体动态模拟技术的鱼类栖息地诊断方法,其特征在于:所述步骤(1)鱼类个体行为观测与实验具体包括如下步骤:
(1-1)、确定目标鱼种群:首先针对研究区鱼类资源现状进行调查,然后结合历史资料和走访调查,进而确定该研究区的目标鱼种群,最终获取目标鱼种群种群和数量的变化规律;
(1-2)、轨迹追踪:依托鱼类声学遥测示踪系统,布设监测网络,通过放流时的单体标定(传感器植入)及跟踪,研究目标鱼在不同的流场、压场(深)、温度场下的三维运动轨迹;建立目标鱼出现频率、游速以及驻留时间与水温、水流速、水压力、经纬度、昼夜节律环境要素之间的关系;
(1-3)、关系建立:利用广义相加模型在求解响应变量与预测因子间的高度非线性和非单调关系方面的突出能力,建立目标鱼种群与水环境因子响应模型,在此基础上分析数据响应变量和预测因素两者的联系。
3.如权利要求2所述的基于鱼类个体动态模拟技术的鱼类栖息地诊断方法,其特征在于:所述步骤(2)鱼类个体行为仿真模拟具体包括如下步骤:
(2-1)模型构建:利用浅水方程构建所研究河段二维水动力模型,模拟水深、垂向平均速度以及流场速度;其中,二维水环境模型在二维水动力模型基础上,增加对流扩散方程考虑热交换过程,模拟关键环境因子的变化,并将该模型的结果作为输入,根据步骤(1-3)中建立的鱼对水环境因子的响应关系,利用欧拉-拉格朗日方法建立目标鱼仿真模型,并用目标鱼的实时追踪轨迹为模型提供任意时刻的速度以确定模型参数,计算出目标鱼个体在下一时刻经过运动所到达的位置,模拟鱼的个体行为和生长状态,提出改进的鱼类个体行为仿真模型,在此基础上建立粒子群并赋予每个粒子不同的属性,使得所有个体通过上述规则运动,从而获得整个河段鱼的空间分布随水环境条件的动态变化,实现研究区鱼群的生长、存活、生殖等行为的精确模拟,准确重现真实的鱼类个体行为和种群分布的相互关系;
模型的控制方程主要包括:
水流连续方程:
水流动量方程(x方向):
水流动量方程(y方向):
温度对流扩散方程:
水质控制方程:
水质降解方程:
式中,t是时间;x,y,z是笛卡尔坐标系;η是水面高度;d是静水深;h=η+d是总水深;u,v,w分别为x,y,z方向上的速度分量;f=2Ωsinφ是科里奥利参数(Ω是旋转速度,φ是纬度);g是重力加速度;ρ是水的密度;Sxx,Sxy,Syx和Syy是辐射应力张量的分量;νt是垂向涡粘系数;pa是大气压强;ρ0是水的参考密度;S是点源的流量大小,(us,vs)是源汇项水流流速;(Fu,Fv)为水平应力项,用压力梯度相关来描述,T为水温;(Dh,Dv)分别为水平方向和垂直方向上的温度扩散系数; 为来自大气热交换的源项;S0为其他温度源项;C:浓度,单位为mg/l;Dx,Dy:x和y方向上的扩散系数,K:衰减系数,单位为s-1;
(2-2)模型适用性:步骤(2-1)构建的模型对当前研究的河流的大部分鱼类都是适用,且不限制于目标鱼种群,其原因在于鱼类个体动态模型的搭建模采用的是基础模型和鱼类个体模型相结合的方法,基础模型即地形、水文、水环境、水力场的模拟构建,鱼类个体模型是在欧拉-拉格朗日的框架基础上,赋予粒子群不同的鱼类属性从而得到对应的目标鱼种群的生长、觅食、繁殖行为,鱼类个体动态模型的适用性主要体现在将目标鱼种群的生活习性转化为数学函数,总结其中的规律,以数学统计归纳得到的鱼类生长函数,通过流体力学和河流动力学归纳得到的鱼类运动过程;
鱼类的生长包括体重生长和体长生长,而由于鱼类的生长在生命周期中存在在不等速线性,为了概括描述鱼类的生长过程,可以运用数理方程进行概括描述鱼类的生长特性,采用基于新陈代谢理论的von Bertalanffy生长方程;
其中,t为年龄,单位是天(d),lt和Wt是t时刻的平均体长(cm)和体重(kg),l1是平均渐进体长(cm),W1是平均渐进体重(kg),k是生长系数(1/d),t0为假设的理论生长起点年龄;
鱼类个体模型中的运动过程其实是拉格朗日算法在基础模型中的体现,有准确的位置(x,y,z),独立于整个模型网络结构,通过赋值得到运动方向、速度以及状态变量(体积、质量),同时还能定义规则比如出生和死亡等,在欧拉和朗格朗日之间的反馈信息。
4.如权利要求2所述的基于鱼类个体动态模拟技术的鱼类栖息地诊断方法,其特征在于:所述步骤(3)目标鱼种群栖息地诊断分析具体包括:依据鱼类个体行为仿真模型模拟,重现目标鱼种群群栖息地分布,在预判“栖息地”范围内用声学遥测轨迹从数据样本本身出发研究数据分布特征,结合核密度估计函数划分高密度与低密度区,再针对高密度区划分小区域,利用卡方检验理论测试检测数据是否随区域特征而变化,从而判断真实的栖息地具体所在位置;同时,基于心理学Q矩阵理论的基础上进行改进并提出诊断方案,评估目标鱼种群小尺度行为,根据预判“栖息地”的现场捕捞及目标鱼行为轨迹,量化分析个体出现的概率与目标鱼性别、体型大小,日期、季节和环境的关系,构建栖息地诊断分类模型,以确定土著鱼“栖息地”的物理属性,包括产卵场、越冬场、索饵场。

说明书全文

基于鱼类个体动态模拟技术的栖息地识别方法

技术领域

[0001] 本发明涉及鱼类栖息地的判别方法,尤其是涉及一种基于鱼类个体动态模拟的鱼类栖息地识别方法。

背景技术

[0002] 利工程的建设可能改变了河流的水文情势、水动、水环境的天然状态,使得河流水生生物栖息地的空间分布发生不同程度的变化。河流水生生物栖息地能够为流域鱼类提供完整的栖息地空间和完整生态学与生活史过程所需要的环境条件,对维持该区域河流生态过程的完整性、维持一定的水生生物种群资源量、维持水生生物的物种和基因多样性奠定较坚实的基础。在水生生物系统中,鱼类和人类的关系最为密切,同时鱼类也是河流生态系统的顶级生物,鱼类种群的变化与河流生态系统息息相关,众多研究表明鱼类的多样性变化程度能够体现出河流系统的健康状况。
[0003] 我国对水生生物及其栖息地主要采用自然保护区建设或鱼类种质资源保护区建设的保护形式以及相对应的保护与管理方案。近年来随着社会经济发展的需要,水利水电工程大量修建,影响鱼类栖息地,使很多野生鱼类处于受胁迫状态,针对这种情况人们也通过各种方法对鱼类栖息地进行保护,而建立鱼类自然保护区是对鱼类栖息地保护的最佳措施。因此合理科学的预测水利工程建设前后鱼类栖息地的变化是十分必要的。
[0004] 由于生态系统的高度复杂性和非线性,对其演变机制的研究往往是半经验的,而生态监测数据一般比较稀疏,因此,传统的生态模型以半经验的集总式为主,这类模型通常忽略个体的以及它们适应环境的行为,应当加强对鱼类行为重点监测和研究的投入,系统地开展长期监测工作,利用先进的声学标记定位技术从鱼类迁移轨迹追踪入手,对河流生态因子变化及鱼类生理生态行为进行实时监测。但借助小体积高精度水下声学跟踪系统,并釆用水动力数学模型和物理实体模型进行辅助和验证,以鱼类行为作为判断依据进行鱼类栖息地研究的成果未见报道。针对以上问题,本发明在传统的生态学模型诊断目标鱼种群栖息地质量的基础上,引入了鱼类个体行为模拟和鱼类个体标记相结合的方法模拟及验证鱼类栖息地分布范围,提供了一种更加有效科学的栖息地诊断方法。

发明内容

[0005] 本发明的目的就是为了弥补现有栖息地判别方法上缺乏鱼类生理学和行为学的缺陷,从而提供了一种基于鱼类个体动态模拟技术的栖息地识别方法,能够科学地结合鱼类生活史要素定量化地评价其栖息地的变化,为鱼类栖息地保护与恢复提供依据,提高栖息地识别方法的合理性。
[0006] 为实现上述目的本发明采用以下技术方案:
[0007] 一种基于鱼类个体动态模拟技术的鱼类栖息地诊断方法,包括如下步骤:
[0008] (1)对鱼类个体行为观测与实验;
[0009] (2)对鱼类个体行为仿真模拟;
[0010] (3)进行目标鱼种群栖息地诊断分析。
[0011] 作为本发明进一步的方案:所述步骤(1)鱼类个体行为观测与实验具体包括如下步骤:
[0012] (1-1)、确定目标鱼种群:首先针对研究区鱼类资源现状进行调查,然后结合历史资料和走访调查,确定该研究区的目标鱼种群,获取目标鱼种群种群和数量的变化规律;
[0013] (1-2)、轨迹追踪:依托鱼类声学遥测示踪系统,布设监测网络,通过放流时的单体标定(传感器植入)及跟踪,研究目标鱼在不同的流场、压力场(水深)、温度场下的三维运动轨迹;建立目标鱼出现频率、游速以及驻留时间与水温、水流速、水压力、经纬度、昼夜节律环境要素之间的关系;
[0014] (1-3)、关系建立:利用广义相加模型在求解响应变量与预测因子间的高度非线性和非单调关系方面的突出能力,建立目标鱼种群与水环境因子响应模型,在此基础上分析数据响应变量和预测因素两者的联系。
[0015] 作为本发明进一步的方案:所述步骤(2)鱼类个体行为仿真模拟具体包括如下步骤:
[0016] (2-1)模型构建:利用浅水方程构建所研究河段二维水动力模型,模拟水深、垂向平均速度以及流场速度,其中,二维水环境模型在二维水动力模型基础上,增加对流扩散方程考虑热交换过程,模拟关键环境因子的变化,并将该模型的结果作为输入,根据步骤(1-3)中建立的鱼对水环境因子的响应关系,利用欧拉-拉格朗日方法建立目标鱼仿真模型,并用目标鱼的实时追踪轨迹为模型提供任意时刻的速度以确定模型参数,计算出目标鱼个体在下一时刻经过运动所到达的位置,模拟鱼的个体行为和生长状态,提出改进的鱼类个体行为仿真模型,在此基础上建立粒子群并赋予每个粒子不同的属性,使得所有个体通过上述规则运动,从而获得整个河段鱼的空间分布随水环境条件的动态变化,实现研究区鱼群的生长、存活、生殖等行为的精确模拟,准确重现真实的鱼类个体行为和种群分布的相互关系,模型的控制方程主要包括:
[0017] 水流连续方程:
[0018]
[0019] 水流动量方程(x方向):
[0020]
[0021] 水流动量方程(y方向):
[0022]
[0023] 温度对流扩散方程:
[0024]
[0025]
[0026] 水质控制方程:
[0027]
[0028] 水质降解方程:
[0029]
[0030] 上式中,t是时间;x,y,z是笛卡尔坐标系;η是水面高度;d是静水深;h=η+d是总水深;u,v,w分别为x,y,z方向上的速度分量;f=2Ωsinφ是科里奥利参数(Ω是旋转速度,φ是纬度);g是重力加速度;ρ是水的密度;Sxx,Sxy,Syx和Syy是辐射应力张量的分量;νt是垂向涡粘系数;pa是大气压强;ρ0是水的参考密度;S是点源的流量大小,(us,vs)是源汇项水流流速;(Fu,Fv)为水平应力项,用压力梯度相关来描述,T为水温;(Dh,Dv)分别为水平方向和垂直方向上的温度扩散系数; 为来自大气热交换的源项;S0为其他温度源项;C:浓度,单位为mg/l;Dx,Dy:x和y方向上的扩散系数,K:衰减系数,单位为s-1;
[0031] (2-2)模型适用性:步骤(2-1)构建的模型对当前研究的河流的大部分鱼类都是适用,且不限制于目标鱼种群,其原因在于鱼类个体动态模型的搭建模采用的是基础模型和鱼类个体模型相结合的方法,基础模型即地形、水文、水环境、水力场的模拟构建,鱼类个体模型是在欧拉-拉格朗日的框架基础上,赋予粒子群不同的鱼类属性从而得到对应的目标鱼种群的生长、觅食、繁殖行为,鱼类个体动态模型的适用性主要体现在将目标鱼种群的生活习性转化为数学函数,总结其中的规律,以数学统计归纳得到的鱼类生长函数,通过流体力学和河流动力学归纳得到的鱼类运动过程;
[0032] 鱼类的生长包括体重生长和体长生长,而由于鱼类的生长在生命周期中存在在不等速线性,为了概括描述鱼类的生长过程,可以运用数理方程进行概括描述鱼类的生长特性,采用基于新陈代谢理论的vonBertalanffy生长方程;
[0033]
[0034]
[0035] 其中,t为年龄,单位是天(d),lt和Wt是t时刻的平均体长(cm)和体重(kg),ll是平均渐进体长(cm),Wl是平均渐进体重(kg),k是生长系数(1/d),t0为假设的理论生长起点年龄;
[0036] 鱼类个体模型中的运动过程其实是拉格朗日算法在基础模型中的体现,有准确的位置(x,y,z),独立于整个模型网络结构,通过赋值得到运动方向、速度以及状态变量(体积、质量),同时还能定义规则比如出生和死亡等,在欧拉和朗格朗日之间的反馈信息。
[0037] 作为本发明进一步的方案:所述步骤(3)目标鱼种群栖息地诊断分析具体包括:依据鱼类个体行为仿真模型模拟,重现目标鱼种群群栖息地分布,在预判“栖息地”范围内用声学遥测轨迹从数据样本本身出发研究数据分布特征,结合核密度估计函数划分高密度与低密度区,再针对高密度区划分小区域,利用卡方检验理论测试检测数据是否随区域特征而变化,从而判断真实的栖息地具体所在位置;同时,基于心理学Q矩阵理论的基础上进行改进并提出诊断方案,评估目标鱼种群小尺度行为,根据预判“栖息地”的现场捕捞及目标鱼行为轨迹,量化分析个体出现的概率与目标鱼性别、体型大小,日期、季节和环境的关系,构建栖息地诊断分类模型,以确定土著鱼“栖息地”的物理属性,包括产卵场、越冬场、索饵场。
[0038] 本发明具有以下优点:本发明着重考虑了河流生态系统中包括鱼类在内的各高级生物种群的行为特征,采用生理生态学、流体力学、河流动力学、模糊数学、计算流体力学等多种方法合理、科学确定目标鱼种群的适宜栖息地,填补了鱼类栖息地保护和识别的技术的空白,并完善了研究体系,对河流生态系统保护具有重要意义。
[0039] 本发明的鱼类个体动态模型对河道鱼类具有通用性,通过改变模型中粒子鱼类生长及运动函数将会获得不同的鱼类运动轨迹,对完善河道生态流量研究和栖息地研究具有重要的意义。
[0040] 本发明借助小体积高精度水下声学跟踪系统,并釆用水动力数学模型和物理实体模型进行辅助和验证,以鱼类行为作为判断依据进行鱼类栖息地诊断,使得栖息地诊断方法更加严谨、合理,同时更具生态学意义。附图说明
[0041] 图1为本发明的流程图
[0042] 图2为实施例案例研究区域模型计算网格划分示意图;
[0043] 图3为鱼类个体轨迹模拟图(其中a为鱼类集群聚集效应形态图;b为鱼类岸边集聚及边壁回游轨迹线图;c为鱼类集群游泳动向一致性图);
[0044] 图4为结合鱼类示踪图和模拟栖息地图相结合得到的适宜产卵场分布图。

具体实施方式

[0045] 下面结合附图和具体实施例对本发明作进一步详细阐述。
[0046] 如图所示,本实施例的一种基于鱼类个体动态模拟的栖息地诊断方法,包括以下步骤:
[0047] 1、鱼类个体行为观测与实验研究方法;
[0048] (1-1)确定目标鱼种群:首先针对研究区鱼类资源现状进行调查,然后结合历史资料和走访调查,确定该研究区的目标鱼种群,获取目标鱼种群种群和数量的变化规律;
[0049] 对研究区河段渔业实地调查、向当地居民走访以及文献资料相结合的方式,统计归纳该河段鱼类资源量、组成结构、分布位置以及生活习性,最后筛选出研究区域的目标鱼种群为花斑裸鲤(Gymnocypris eckloni eckloniHerzenstein),在每年的5月左右开始产卵,产卵场位于黄河干流砾石底质、一般选择在水清澈以及水流较急的河段地段;产的是沉性卵,多在坑内发育成熟;流水和静水都可以生活,但大部分时间栖息于流水之中,平时分散或集中小群在栖息地觅食,繁殖期集大群到通往干流、水库或湖泊的较大支流处。仔鱼孵出后,随流水进入干流湾叉或湖、库岸边浅水处育肥;以水生多脊椎动物为主要食物,兼食小型鳅类。
[0050] (1-2)轨迹追踪:依托鱼类声学遥测示踪系统,布设监测网络,通过放流时的单体标定(传感器植入)跟踪,研究目标鱼在不同的流场、压力场(水深)、温度场下的三维运动轨迹;建立目标鱼出现频率、游速以及驻留时间与水温、水流速、水压力、经纬度、昼夜节律之间的关系。
[0051] (1-3)关系建立:利用广义相加模型在求解响应变量与预测因子间的高度非线性和非单调关系方面的突出能力,建立目标鱼种群与水环境因子响应模型,在此基础上分析数据响应变量和预测因素两者的联系。
[0052] 通过广义相加模型(GAM)联结函数,建立响应变量的数学期望值与预测变量的函数关系。以标记样本的出现或缺失为观测变量,则响应变量遵循二项式分布,出现取值为1,没有出现取值为0。标记样本的自身速度、轨迹分布密度作为模型的因变量,而模型的自变量包括三组数据:三维空间变量、时间变量和环境变量。
[0053] 2、鱼类个体行为仿真模拟研究方法;
[0054] (2-1)模型构建:利用浅水方程搭建研究河段二维水动力模型,模拟水深、垂向平均速度以及流场速度,二维水环境模型在二维水动力模型基础上增加对流扩散方程考虑热交换过程,模拟关键环境因子的变化,并将该模型的结果作为输入,将该模型的结果作为输入,利用已经建立的鱼-水响应关系,计算出常规游动条件下目标鱼个体在下一时刻经过运动所到达的位置,也就是将目标鱼在t时刻的速度u利用时间与经纬度同步到欧拉-拉格朗日公式中计算并率定参数得到下一时刻的位置:
[0055] 根据步骤(1-3)中建立的鱼对水环境因子的响应关系,利用欧拉-拉格朗日-因子理论搭建目标鱼仿真模型,并用目标鱼的实时追踪轨迹为模型提供任意时刻的速度以确定模型参数,计算出目标鱼个体在下一时刻经过运动所到达的位置,模拟鱼的个体行为和生长状态,提出改进的鱼类个体行为仿真模型,在此基础上建立粒子群并赋予每个粒子不同的属性,使得所有个体通过上述规则运动,从而获得整个河段鱼的空间分布随水环境条件的动态变化,实现研究区鱼群的生长、存活、生殖等行为的精确模拟,准确重现真实的鱼类个体行为和种群分布的相互关系。模型的控制方程主要包括:
[0056] 水流连续方程:
[0057]
[0058] 水流动量方程(x方向):
[0059]
[0060] 水流动量方程(y方向):
[0061]
[0062] 温度对流扩散方程:
[0063]
[0064]
[0065] 水质控制方程:
[0066]
[0067] 水质降解方程:
[0068]
[0069] 上式中,t是时间;x,y,z是笛卡尔坐标系;η是水面高度;d是静水深;h=η+d是总水深;u,v,w分别为x,y,z方向上的速度分量;f=2Ωsinφ是科里奥利参数(Ω是旋转角速度,φ是纬度);g是重力加速度;ρ是水的密度;Sxx,Sxy,Syx和Syy是辐射应力张量的分量;νt是垂向涡粘系数;pa是大气压强;ρ0是水的参考密度;S是点源的流量大小,(us,vs)是源汇项水流流速;(Fu,Fv)为水平应力项,用压力梯度相关来描述。T为水温;(Dh,Dv)分别为水平方向和垂直方向上的温度扩散系数; 为来自大气热交换的源项;S0为其他温度源项。C:浓度,单位为mg/l;Dx,Dy:x和y方向上的扩散系数,K:衰减系数,单位为s-1。
[0070] (2-2)模型适用性:步骤(2-1)构建的模型对当前研究的河流的大部分鱼类都是适用,且不限制于目标鱼种群,其原因在于鱼类个体动态模型的搭建模块采用的是基础模型和鱼类个体模型相结合的方法,基础模型即地形、水文、水环境、水力场的模拟构建,鱼类个体模型是在欧拉-拉格朗日的框架基础上,赋予粒子群不同的鱼类属性从而得到对应的目标鱼种群的生长、觅食、繁殖等行为。鱼类个体动态模型的适用性主要体现在将目标鱼种群的生活习性转化为数学函数,总结其中的规律,以数学统计归纳得到的鱼类生长函数,通过流体力学和河流动力学归纳得到的鱼类运动过程。
[0071] 鱼类的生长包括体重生长和体长生长,而由于鱼类的生长在生命周期中存在在不等速线性,为了概括描述鱼类的生长过程,可以运用数理方程进行概括描述鱼类的生长特性,采用基于新陈代谢理论的vonBertalanffy生长方程;
[0072]
[0073]
[0074] 其中,t为年龄,单位是天(d),lt和Wt是t时刻的平均体长(cm)和体重(kg),ll是平均渐进体长(cm),Wl是平均渐进体重(kg),k是生长系数(1/d),t0为假设的理论生长起点年龄;
[0075] 鱼类个体模型中的运动过程其实是拉格朗日算法在基础模型中的体现,有准确的位置(x,y,z),独立于整个模型网络结构,通过赋值得到运动方向、速度以及状态变量(体积、质量等),同时还能定义规则比如出生和死亡等,在欧拉和朗格朗日之间的反馈信息。
[0076] 3、目标鱼种群栖息地诊断分析方法:
[0077] 依据鱼类个体行为仿真模型模拟目标鱼种群栖息地分布,在预判“栖息地”范围内用声学遥测轨迹从数据样本本身出发研究数据分布特征,结合核密度估计函数划分高密度与低密度区,再针对高密度区划分小区域,利用卡方检验理论测试检测数据是否随区域特征而变化,从而判断真实的栖息地具体所在位置。在Q矩阵理论的基础上进行改进并提出“栖息地属性”诊断方案。评估目标鱼种群小尺度行为方法:Q矩阵是K×m矩阵,K表示目标鱼的属性在这里定义为索饵、繁殖、越冬3个行为;m表示测试的项目,在这里定义为目标鱼16种轨迹的分布。根据预判“栖息地”的现场捕捞及目标鱼小尺度行为评估,量化分析个体出现的概率与目标鱼性别、体型大小,日期、季节和环境的关系。构建栖息地诊断分类模型,以确定土著鱼“栖息地”的物理属性(产卵场、越冬场、索饵场)。
[0078] 以上所述为本发明较佳实施例,对于本领域的普通技术人员而言,根据本发明的教导,在不脱离本发明的原理与精神的情况下,对实施方式所进行的改变、修改、替换和变型仍落入本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈