首页 / 专利库 / 涡轮机 / 新鲜蒸汽 / 使用高温变换和低蒸汽/碳比率生产氨合成气的方法

使用高温变换和低蒸汽/比率生产合成气的方法

阅读:1026发布:2020-09-21

专利汇可以提供使用高温变换和低蒸汽/比率生产合成气的方法专利检索,专利查询,专利分析的服务。并且一种在前端用含 烃 原料生产 氨 合成气 的方法,其包括步骤:将所述原料进行 蒸汽 重整,得到包含氢气,一 氧 化 碳 和二氧化碳的合成气;将所述合成气进行处理,包括 一氧化碳 变换和随后的二氧化碳去除,其中合成气的变换包括使用 铁 基催化剂在 温度 高于300℃下的高温变换,并且前端的总体蒸汽/碳比率为2.6或更小。本 发明 还公开了相应的工段和用于改造氨工段的前端的方法。,下面是使用高温变换和低蒸汽/比率生产合成气的方法专利的具体信息内容。

1.一种在前端用含原料生产合成气的方法,所述方法包括步骤:
将所述原料进行蒸汽重整,得到包含氢气,一和二氧化碳的合成气;
将所述合成气进行处理,包括一氧化碳变换和随后的二氧化碳去除,
其特征在于:
所述合成气的变换包括使用基催化剂的高温变换步骤;
前端的总体蒸汽/碳比率为2.6或更小。
2.根据权利要求1所述的方法,所述总体蒸汽/碳比率的范围为1.5-2.6。
3.根据权利要求1或2所述的方法,所述高温变换的温度为大于300℃,并且优选为
320-500℃的范围。
4.根据权利要求1-3任何一项所述的方法,其中,
所述蒸汽重整包括:
第一重整步骤,包括初级蒸汽重整和可选地在所述初级蒸汽重整之前包括预重整,从而获得第一重整气体;
使用氧化剂流的第二重整步骤,从而获得包含氢气,一氧化碳和二氧化碳的合成气;
所述第一和第二重整步骤依序进行,
使用氧气或至少含有50%氧气的富氧空气作为氧化剂流进行所述第二重整步骤。
5.根据权利要求4所述的方法,所述第一重整步骤包括预重整步骤,所述预重整步骤的进料为混合有蒸汽的烃原料,所述进料具有的蒸汽/碳比率等于所述总体比率,并且在过程中没有进一步的蒸汽被加入。
6.根据权利要求4所述的方法,其特征在于,在被供给到高温变换之前,在第二重整步骤后所得的合成气与蒸汽混合,从而将前端的总体蒸汽/碳比率增加到所需值。
7.根据权利要求6的方法,其中,所述第一重整步骤包括预重整步骤,并且其中所述预重整和初级蒸汽重整在低于所述总体比率的低的蒸汽/碳比率下进行。
8.根据权利要求7所述的方法,所述低的蒸汽/碳比率小于2,优选为约1.5。
9.根据权利要求6所述的方法,其中所述初级蒸汽重整在大于所述总体比率的蒸汽/碳比率下进行,并且将一定量的新鲜烃原料与初级蒸汽重整的流出物混合,然后进入所述第二重整步骤。
10.根据权利要求9所述的方法,所述初级蒸汽重整的蒸汽/碳比率在2.7-3的范围。
11.根据权利要求6所述的方法,其特征在于,所述第一重整步骤包括预重整和初级蒸汽重整,所述预重整在第一蒸汽/碳比率下进行且所述初级蒸汽重整在第二蒸汽/碳比率下进行,所述第二蒸汽/碳比率等于或大于所述第一比率,而且第一和第二比率均低于总体比率。
12.根据权利要求11所述的方法,选择所述第一比率在0.5-2的范围,且所述第二比率约为1.5-2。
13.根据权利要求11或12所述的方法,其特征在于,所述初级蒸汽重整步骤的流出物与一定量的新鲜的烃混合。
14.根据权利要求11或12所述的方法,其特征在于,离开所述预重整步骤的一定量的预重整气体,与初级蒸汽重整的流出物混合,从而绕过所述初级重整。
15.根据权利要求4至14任何一项所述的方法,所述总体蒸汽/碳比率范围为
2.2-2.4。
16.根据权利要求1至3任何一项所述的方法,其中,
所述蒸汽重整包括使用氧化剂对烃原料进行自热重整步骤,而没有在先的原料初级重整步骤,并且任选地有在先的预重整步骤。
17.根据权利要求16所述的方法,其中所述自热重整使用氧气或富氧空气进行。
18.根据权利要求16或17所述的方法,其中所述总体蒸汽/碳比率的范围为1.5-2.4,更优选为1.8-2.2。
19.根据权利要求17或18所述的方法,其中,在自热重整步骤之后加入蒸汽。
20.根据前述权利要求任何一项所述的方法,包括高温变换后的在约200℃下进行的低温变换,二氧化碳去除部和可选的甲烷化部。
21.根据前述权利要求任何一项所述的方法,所述烃原料为脱硫天然气
22.一种从含烃原料生产氨合成气的前端,包括:
蒸汽重整阶段;
进一步设备,用于处理离开所述重整阶段的合成气的并包括至少一个变换炉和二氧化碳去除部,
其特征在于:所述进一步设备包括使用铁基催化剂的高温变换炉(HTS);
进入前端的烃原料和蒸汽的量以这种方式确定:使得所述前端在2.6或更小的总体蒸汽/碳比率下运行。
23.根据权利要求22所述的生产氨合成气的前端,其中:
所述蒸汽重整阶段包括:
第一重整阶段,包括初级蒸汽重整器(REF1)和可选地包括预重整器(PREREF),第二重整阶段(REF2),其被供给氧化剂(O2)流,用于获得包含氢气,一氧化碳和二氧化碳的合成气;
到所述次级重整器(REF2)的氧化剂进料管线,供给氧气或包含至少50%的氧气的富氧空气作为氧化剂流。
24.根据权利要求23所述的前端,包括蒸汽加入管线(PS),其被设置为向高温变换炉(HTS)上游的第二阶段(REF2)的流出物加入蒸汽,其中在所述变换炉上游的至少一些设备在低于总体比率的蒸汽/碳比率下运行。
25.根据权利要求23所述的前端,其中烃原料的进料管线包括第一重整阶段(PREREF,REF1)的旁路管线,以使原料的一部分绕过所述第一阶段并被直接送到第二重整阶段(REF2)。
26.根据权利要求23所述的前端,其中所述第一重整阶段包括预重整器(PREREF),并且所述前端包括初级重整器的旁路管线用于将所述预重整器的一部分流出物直接输送到第二重整阶段(REF2)。
27.根据权利要求23所述的前端,包括蒸汽加入管线(PS),被设置为向所述第一重整阶段的进料加入蒸汽;且不包括其它蒸汽加入管线。
28.根据权利要求22所述的方法,其中所述重整阶段包括自热重整器(ATR),而不包括在先的初级重整器。
29.根据权利要求28所述的前端,包括蒸汽加入管线,其被设置为向所述自热重整器的流出物加入蒸汽。
30.一种改造合成氨工段的前端的方法,所述前端通过含烃原料的蒸汽重整生产氨合成气,
其中,所述前端包括初级重整阶段和空气燃烧次级重整阶段,并且还包括使用铁基催化剂的高温变换炉,且其中,
所述原始前端在2.6或更大的总体蒸汽/碳比率下运行,
所述方法的特征在于:
供给到前端的烃原料的量和蒸汽的量以使得改造后的前端的总体蒸汽/碳比率为2.6或更小的方式被调整。
31.根据权利要求30所述的方法,其中:所述次级重整阶段被改进,以使用氧气或至少含有50%的氧气的富氧空气来代替空气作为氧化剂流运行。
32.根据权利要求31所述的方法,包括安装蒸汽管线用于向离开次级重整阶段的合成气加入预定量的蒸汽,然后进入高温变换炉。
33.根据权利要求30或31所述的方法,包括提供烃原料旁路管线,其被设置为这样一种方式:使得原料的一部分绕过所述第一重整阶段并且被直接送到第二重整阶段。
34.根据权利要求30至33任何一项所述的方法,其中初级重整阶段包括预重整器,并且所述方法包括提供初级重整器的旁路管线,用于将所述预重整器的一部分流出物直接输送到第二重整阶段。
35.根据权利要求30所述的方法,包括与现有的初级和次级重整器并联安装自热重整器(ATR),所述自热重整器被供给一部分天然气进料和蒸汽,所述方法还包括制定将所述新安装的自热重整器的流出物运送到高温变换炉的路线,以及将所述自热重整器的流出物与现有初级重整器和次级重整器的流出物混合。

说明书全文

使用高温变换和低蒸汽/比率生产合成气的方法

技术领域

[0001] 本发明涉及用于制备生产氨用的合成气的的重整。

背景技术

[0002] 氨(NH3)的合成需要的合成气包括约3:1的适当比例的氢气(H2)和氮(N2)。术语氨合成气将相当于具有上述组合物的合成气。
[0003] 已知,借助初级蒸汽重整和随后的次级流出物重整,可从脱硫天然气的重整生产所述氨合成气,参见例如EP 2 022 754。
[0004] 离开次级重整器的气体需要净化,以除去碳化物和残留的甲烷。根据现有技术,所述纯化包括一氧化碳变换(一氧化碳转化成二氧化碳),其通常是在高温变换炉(HTS)中通过基催化剂,然后在一个低温变换炉(LTS)中通过基催化剂来实现的。所述HTS变换炉在约320-500℃下运转,LTS变换炉在约190-250℃下运转。变换后,合成气被处理以除去二氧化碳和可选择地进行甲烷化。
[0005] 工艺调整中一个重要参数是蒸汽/碳比率,也称为SC比。蒸汽/碳比率为进入工序的(蒸汽)和包含在天然气原料中的碳之间的摩尔比。所述蒸汽通常从初级重整器的上游进入。
[0006] 减少所述SC比的动机是为了降低流速并因此减小设备尺寸以及减少能耗。
[0007] 人们普遍认为,高温变换的铁基催化剂不能在还原环境中进行操作,这将使催化剂失活并导致不希望的副产物形成。人们认为,所述铁基催化剂能容许的SC比的下限,一般在2.6-2.8左右。
[0008] 因为这个原因,使用HTS变换炉通过蒸汽重整以生产氨合成气的现有技术的前端SC比通常约为3。
[0009] 已经观察到,影响使用铁基催化剂的可能性的其它参数为还原电势RP和进气的蒸汽/干气S/DG比。所述参数是气体的摩尔组成的函数,根据以下定义:
[0010] RP=(H2+CO)/(CO2+H2O)
[0011] S/DG=H2O/(1-H2O)
[0012] 对于使用铁基催化剂来说,S/DG应理想地为约0.4或更高,且RP应约为1.7或更低。
[0013] 所述大约为3的SC比远高于化学计量值,由于初级重整器将甲烷(CH4)和蒸汽(H2O)转化为CO和H2,因此理论上化学反应对每一摩尔甲烷需要一摩尔的蒸汽。
[0014] 现有技术使我们知道了蒸汽/碳比率低于2.6时必须需要用铜基中温变换(MTS)催化剂来代替高温变换催化剂。
[0015] 例如,EP 2 404 869,公开了由次级重整输送的合成气经过使用铜基催化剂在200-350℃之间的温度下的中温变换(MTS),且初级重整在蒸汽/碳比率低于2下操作。公开了改造氨工段的相应方法,其中将现有的HTS反应器改进以在中等温度下操作,或用新的MTS反应器取代,而在初级重整器中的蒸汽/碳比率被降低为在1.5-2范围内的一个值。
[0016] 然而,使用MTS变换炉代替HTS变换炉可能会产生一些弊端。的确,由于某些原因HTS变换炉是优选的:铁基HTS催化剂比铜基MTS催化剂更耐中毒(如来自硫);HTS变换炉可以在入口和出口之间有较大温度差下操作;HTS变换炉被广泛用于现有的氨工段的前端,而且如果保持现有的HTS,它们的改造会更容易和更便宜。

发明内容

[0017] 申请人已经发现,使用铁基催化剂的高温变换炉可以在总体蒸汽/碳比率低于2.6下使用。这可以与纯自热重整(即,没有任何蒸汽重整器),或用氧气或富氧空气代替空气燃烧的次级重整结合。所述蒸汽/碳比率的优选值在1.5-2.6的范围。在使用初级和次级重整的实施方式中,所述比率优选为2-2.6,更优选为2.2-2.4。在使用自热重整的实施方式中,所述比率优选范围为1.5-2.4,甚至更优选为1.8-2.2。然而,使用自热重整炉的实施方式可以具有总体蒸汽/碳比率甚至低于1.5,例如在0.5-1.5范围内。
[0018] 术语氧气表示基本上纯的氧气流,具有高纯度并可从空气分离装置(ASU)获得。富氧空气表示氧气含量至少为50%的空气,并且优选等于或大于90%的含量。
[0019] 根据上述内容,本发明的第一个方面,是根据权利要求1所述的方法,包括步骤:
[0020] 对所述进料进行蒸汽重整,得到包含氢气,一氧化碳和二氧化碳的合成气;
[0021] 对所述合成气进行处理,包括一氧化碳变换和随后的二氧化碳去除,[0022] 其特征在于:
[0023] 合成气的变换包括使用铁基催化剂的高温变换步骤;
[0024] 前端的总体蒸汽/碳比率为2.6或更小。
[0025] 用于本说明书中术语总体蒸汽/碳比率表示进入工序的蒸汽的摩尔数和碳的摩尔数之间的比例,包括到达高温变换入口的任何烃进料和任何蒸汽进料。因此所述总体比率是针对整个过程来计算的,并当提供时考虑了所有额外进料。在本发明的一些实施方式中,例如,包括一个以上的蒸汽进料,例如在初级重整器或预重整器之前的第一蒸汽流,和HTS变换炉之前的第二蒸汽流。在这样的情况下,所有的蒸汽进料都被考虑用于总体比率的计算。
[0026] 申请人已经发现,在上述情况下,通过氢气和甲烷与氧气反应,在用氧气或富氧空气燃烧的次级重整器或纯自热重整器内所产生的水,显著高于传统的空气燃烧过程。因此,可以降低送往重整的蒸汽量,而由在内部特别是在次级或自热重整器中由工艺生产的水来抵消。特别地,申请人已发现,在仍使用HTS变换炉的情况下,前端的总体蒸汽/碳比率可以显著低于2.6。这一发现与认为2.6是使用高温变换的下限的现有技术形成鲜明的对比。
[0027] 优选地,高温变换的温度为大于300℃,更优选为320-500℃的范围。
[0028] 本发明的一些实施方式包括预重整阶段,这意味着将预重整器安装在初级重整器或自热重整器上游。
[0029] 所述烃原料优选为脱硫天然气。
[0030] 原料通常与蒸汽混合然后进入初级重整或自热步骤,或,预重整步骤(当提供时)。在本发明的一些实施方式中,提供至少一个进一步蒸汽加入,例如次级或自热重整步骤的流出物与进一步蒸汽混合,然后进入高温变换步骤。所述进一步蒸汽加入是一个可选的特征,并且可以在适当的时候被提供以确保HTS变换炉的适当操作。
[0031] 在没有进一步蒸汽加入的实施方式中,优选地,所述第一重整步骤包括预重整步骤。因此,预重整器被安装在第一重整步骤(初级重整器或自热重整器)的上游。因此,所述预重整步骤的进料是混合有蒸汽的烃原料,所述进料的蒸汽/碳比率等于所述总体比率,并且在此过程中没有进一步的蒸汽加入。
[0032] 本发明的各种实施方式可提供任何以下特征,或者它们的组合:
[0033] —优选地在高温变换步骤之前加入蒸汽;
[0034] —在第二重整步骤之前,将一定量的新鲜烃原料与初级蒸汽重整的流出物混合;
[0035] —当进行预重整时,将一部分预重整气体与初级蒸汽重整流出物混合,所述部分预重整气体绕过初级重整步骤;
[0036] 相应地,尽管总体比率被期望低于2.6,预重整或初级重整步骤或自热重整的蒸汽/碳比率可以变化。一些优选实施方式在从属权利要求中被描述。
[0037] 例如,一个优选实施方式提供了所述第一重整步骤,包括预重整和初级蒸汽重整,所述预重整在第一蒸汽/碳比率下进行且所述初级蒸汽重整在第二蒸汽/碳比率下进行,所述第二蒸汽/碳比率等于或大于所述第一比率,且第一和第二比率均低于总体比率。优选地,所述第一比率在0.5-2的范围,而所述第二比率约为1.5-2。然后,在被供给到高温变换之前,从第二重整步骤获得的合成气与蒸汽混合,以增加前端的总体蒸汽/碳比率。
[0038] 在HTS变换器的上游加入蒸汽具有使得在预重整器,初级重整器和次级重整器内的蒸汽少的优点。该选项是优选的,特别是,将现有的前端按照本发明改造时,因为它减少了初级重整器(通常是工段的瓶颈)和通常安装在次级重整器下游的废热锅炉的占空。改造这些项目是昂贵的,因此,将它们的占空减少是一个优势。
[0039] 根据进一步的实施方式,所述方法包括:在自热重整器(ATR)中进行重整,没有之前的初级重整步骤。
[0040] 预重整器可以在自热重整器之前设置。对ATR进料进行预热,所述预重整器能够使得ATR在小于1.5的蒸汽/碳比率(S/C)下操作,而又不会有碳沉积的险,而且它能够将ATR进料安全地预热到高温例如600℃,节省了氧气。
[0041] 根据从属权利要求,本发明的进一步方面是生产氨合成气的前端,和用于改造生产氨合成气的前端的方法。
[0042] 本发明的一个方面,特别地,是改造氨工段的前端的方法,其中所述前端包括初级重整阶段和空气燃烧次级重整阶段,并且还包括使用铁基催化剂的在温度高于320℃下运行的高温变换变换炉,并且其中所述原始前端在2.6或更大的总体蒸汽/碳比率下运行。所述方法特征在于,所述次级重整阶段被改进,以使用氧气或至少含有50%的氧气的富氧空气来代替空气作为氧化剂流运行;并且特征在于,供给到前端的烃原料的量和蒸汽的量以使得改造后的前端的总体蒸汽/碳比率为2.6或更小的方式被调整。
[0043] 上述可通过用一个新的次级重整器替换现有的次级重整器,或通过改进现有的次级重整器来实现。该方法通常包括提供向次级重整器供给氧气或富氧空气的管线;并且如果需要,提供供给所述氧气(或富氧空气)的装置,如空气分离装置(ASU)。
[0044] 另一种改造方法可以通过向现有的初级和次级重整器中并联添加新的ATR,在所述新的ATR之前可选地设置预重整器;以及将ATR的流出物与现有的次级重整器的流出物在HTS上游混合来实现。总体S/C比率(计算为加入到现有的初级和次级重整器和新ATR和预重整器(如果安装)内的总蒸汽摩尔数除以总碳摩尔数)小于2.6。
[0045] 根据各种实施方式,如权利要求所述,所述方法可以包括安装蒸汽管线用于向离开次级重整阶段的合成气加入预定量的蒸汽,然后进入高温变换炉,从而调节总体SC比率。在一些实施方式中,所述方法包括安装重整阶段的旁路管线,所述旁通管线被布置成这样一种方式:使得原料的一部分绕过第一重整阶段并且被直接送到第二重整阶段。在进一步的实施方式中,初级重整阶段包括预重整器,所述方法可包括提供初级重整器旁路管线,以将所述预重整器的一部分流出物直接送到第二重整阶段。
[0046] 也可以说,与现有技术相比,通过在次级重整阶段引入更多的氧气,本发明降低了蒸汽的进入(并因此,降低了SC比),所述次级重整阶段现在被供给氧气或富氧空气而非空气。申请人已经发现,虽然提供氧气或富氧空气进料是昂贵的,但是所述解决方案被证明是实用的,因为流速被大大降低,并且令人惊讶地,HTS变换炉可以在比现有技术低得多的蒸汽/碳比率下使用。
[0047] 本发明的优点是,对于给定的生产,初级蒸汽重整器的占空被减少了约10-20%或3
甚至更多。对于给定的氨生产,经过前端的合成气流(m/h)可被减少约30%,这在设备尺寸/成本方面是一个很大的优势。
[0048] 当本发明被应用到改造中时,上述优点可以转化为使用现有设备获得更大的生产。如上所述,现有工段通常使用HTS变换炉,而且保持所述HTS(尽管低的SC比)是一个优点,这意味着不需要昂贵的变换炉和/或催化剂更换。
[0049] 本发明的特征是减少初级重整器的占空。初级重整器以及次级重整器的占空可参考在初级或次级重整器中消耗的燃料的热值[MW]来计算。具体的占空可定义为与所生产氨的吨数相关。在现有技术中,初级重整器的占空通常比次级重整器的占空大,例如,初级重整器占空约为次级重整器的140%。根据本发明的一些实施方式,初级重整器的占空等于或甚至小于次级重整器的占空。在优选的实施方式中,初级重整器的占空是次级重整器的占空的70%-100%。
[0050] 看来,如果在ATR上游没有初级重整器,它的占空是零,因此SMR与ATR的占空比值也为零。附图说明
[0051] 下面将参考图1-8所示一些优选的和非限制性的实施方式阐述本发明。其中:
[0052] 图1-5是具有初级重整和次级重整的本发明实施方式的图;
[0053] 图6-8是具有自热重整的本发明的实施方式的图。

具体实施方式

[0054] 参照图1至8:
[0055] PREREF表示预重整器;
[0056] REF1表示初级蒸汽重整器,其通常是一管式重整器;
[0057] REF2表示次级重整器;
[0058] ATR表示自热式重整器(ATR),如果没有安装上游初级重整器(REF1);
[0059] HTS表示高温变换炉;
[0060] PS表示蒸汽流;
[0061] NG表示天然气原料;
[0062] O2表示氧气流或富氧空气流,是供给到次级重整器REF2的氧化剂流。
[0063] 图1示出了本发明的第一实施方式,其中前端包括一预重整器PREREF,其在初级重整器REF1的上游。天然气原料NG与第一蒸汽流PS混合,并进入预重整器PREREF。离开所述预重整器的已预重整气体被供给到初级重整器REF1,并且离开所述初级重整器的气体被供给到氧气燃烧的自热式次级重整器REF2。离开所述次级重整器REF2的重整气体与第二量的蒸汽流PS混合,然后进入工作温度约为320-500℃并使用铁基催化剂的高温变换炉HTS,将CO转化为CO2。然后,气体离开所述变换炉HTS并根据已知技术进行进一步处理,通常是除去二氧化碳和(可选)甲烷化。
[0064] 除去二氧化碳可使用下列技术的任何一个来实现:
[0065] 在图1中,预重整器和初级重整器在低蒸汽/碳比率下操作,例如约1.5,而在变换炉HTS之前加入的第二量的蒸汽PS将总体蒸汽/碳比率增加到2.2-2.4。
[0066] 图2示出了第二实施方式,其中预重整器PREREF的进料,即混合有蒸汽PS的天然气NG,具有的蒸汽/碳比率等于所述总体比率,且在此过程中没有进一步的蒸汽加入。特别是,没有进一步的蒸汽在变换炉HTS之前加入。在本实施方式中,蒸汽/碳比率优选为约2.4。
[0067] 图3示出了第三实施方式,没有预重整器。可用原料的一部分绕过第一蒸汽重整器REF1。因此,可用的原料NG的第一部分与蒸汽PS混合,并且进入初级重整器REF1;在另一方面,所述原料的第二剩余部分,与所述初级重整器REF1的流出物混合。向所得混合物中加入氧气流O2,然后进入次级重整器REF2。与图1相同,第二量的蒸汽PS,与所述次级重整器REF2的流出物混合,然后进入变换炉HTS。
[0068] 在这种情况下,由于部分原料绕过重整器,蒸汽重整器REF1在高蒸汽/碳比率下运行,例如,约2.7-3。优选地,绕过初级重整器的所述原料NG的第二部分,是可用原料的约30%。
[0069] 图4示出了第四实施方式,其与图3类似,除了包括一个预重整器PREREF。如图所示,原料的旁路部分绕过预重整器和初级重整器REF1。
[0070] 图5示出了第五实施方式,其是图4的变体。与蒸汽PS混合的全部量的天然气NG,被供给到预重整器PREREF。然而,所述预重整器流出物的一部分绕过随后的初级重整器REF1,与离开所述初级重整器的气体混合。同样在这种情况下,第二量的蒸汽PS与自热重整器REF2的流出物混合。
[0071] 图6示出了第六个实施方式。与蒸汽PS混合的全部量的天然气NG,,被供给到预重整器PREREF。没有初级重整器。预重整产物被输送至燃氧的自热重整器ATR。第二量的蒸汽PS与自热重整器的流出物混合。
[0072] 图7示出了第七实施方式,其除了自热重整器ATR用空气燃烧外,与6相同。
[0073] 图8示出了的第八实施方式,其是用于改造包括一初级重整器REF1和一次级重整器REF2的现有线路的优选实施方式,。所述现有线路是通过增加一新的具有自热重整器的ATR的线路来改进的。在一包括初级重整器REF1和次级重整器REF2的线路,和一新添加的包括预重整器PREREF和自热重整器的ATR的线路之间,天然气原料NG被分成两路。在预重整器PREREF和初级重整器REF1的入口处将蒸汽PS加入到原料NG中。次级重整器REF2的产物和自热ATR的产物在变换炉HTS的上游合并,并与蒸汽PS混合。
[0074] 在所有上述实施方式中,初级重整器REF1优选在约30巴的压力,约500℃的入口温度和约750-800℃出口温度下工作。次级重整器REF2的出口温度为1000℃左右。自热重整器的ATR的出口温度为1000℃左右。
[0075] 在所有上述实施方式中,低温变换炉可以安装在变换炉HTS下游。变换后,通常提供一二氧化碳去除部。应当指出的是,合成气不含有氮气,因此本发明允许使用PSA(变压吸附)或LNW(液氮洗)。
[0076] 实施例
[0077] 下表1将前端具有初级蒸汽重整器和次级重整器且总体蒸汽/碳比率为2.6的现有技术,与分别和图1,图2,图3,图6和图7相关的5个实施例进行了比较。所述实施例涉及3275kmol/h氢气的生产。在表中,SMR表示蒸汽甲烷的重整;RP表示还原电势RP,以及S/DG表示蒸汽/干气比(参见上述定义)。
[0078] 表1
[0079]
[0080]
[0081] (1)(在空气流中)
[0082] (2)(99排除N2)
[0083] (3)(基于排除N2的流)
[0084] 可以注意到,尽管同样的氢气生产,蒸汽甲烷重整器(初级重整器)的占空降低了26%(实施例1),12%(实施例2)和26%(实施例3)。此外,还由于次级重整器用氧气代替空气燃烧,使得合成气的流量显著降低,为现有技术的66-67%左右。可以相应减小新工段的规模,或者在改造中,对于给定的规模可以获得更大的容量。
[0085] 如上所定义的,该表显示了还原电势RP和蒸汽/干气S/DG的值,如此,尽管在实施例中有低的蒸汽/碳比率(在2和2.37之间),仍可允许使用铁基催化剂。可以观察到,在只有ATR的情况下,S/DG的值是最高的,而RP的值是最低的,这表明即使较低的总体S/C值也可用于只有ATR的情况下。
[0086] 下表2示出了与现有技术相比,初级重整器的占空降低。
[0087] 实施例4和5的值未被示出(蒸汽重整占空为零)。
[0088] 表2
[0089]
[0090]
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈