首页 / 专利库 / 焊接,钎焊和锡焊 / 电弧焊 / 熔化极气体保护焊 / 一种增材制造过程中并行控制零件变形和精度的方法

一种增材制造过程中并行控制零件变形精度的方法

阅读:585发布:2021-03-13

专利汇可以提供一种增材制造过程中并行控制零件变形精度的方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种增材 制造过程 中并行控制零件 变形 和 精度 的方法,属于 增材制造 领域。在增材制造零件的过程中,同工位并行实施如下工序:增材成形工序、等材塑形或塑性成形工序,同时,还同工位并行实施如下工序的一种或者多种:等材矫形工序、减材加工工序和精整加工工序,从而实现一步到位式超短流程的高精度高性能增材制造。同工位并行实施是指待加工零件装夹 位置 不变,同时在不同加工层或者相同加工层的相同道次或者不同道次中,实施不同的工序。本发明方法实现一步到位式超短流程的高精度高性能增材制造,并且其加工精度高,零件可直接应用。本发明方法具有较强的实际应用价值。,下面是一种增材制造过程中并行控制零件变形精度的方法专利的具体信息内容。

1.一种增材制造过程中并行控制零件变形精度的方法,其特征在于,在增材制造零件的过程中,同工位并行实施如下工序:增材成形工序、等材塑形或塑性成形工序,同时,还同工位并行实施如下工序的一种或者多种:等材矫形工序、减材加工工序和精整加工工序,从而实现一步到位式超短流程的高精度高性能增材制造,所述同工位并行实施是指待加工零件装夹位置不变,同时在不同加工层或者相同加工层的相同道次或者不同道次中实施不同的工序。
2.如权利要求1所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,其还包括控制形变和改善性能的随动控轧控冷热处理工艺,在增材成形过程中,通过控制等材热塑形过程中的温度、变形程度、变形速率、冷却条件的工艺参数,或者辅助电磁或者超声振动的方式,改善成形体结晶形态、组织学性能,减少残余应力和变形,提高成形精度。
3.如权利要求2所述的一种增材制造过程中并行控制零件变形和精度的方法,其特征在于,所述减材加工工序或者精整加工工序具体为,采用激光、电加工或超声方式进行同步和随动铣削加工,若精度达不到要求可采用机械铣削或者磨削精加工,直至达到零件精度要求。
4.如权利要求3所述的一种增材制造过程中并行控制零件变形和精度的方法,其特征在于,在成形过程的各道次中或者在不同层或者同层的不同道次的增材成形工序间隔中,采用随动清理方式对增材成形过程中熔积成形区表面化物、杂质及缺陷进行随动清理,以得到表面质量好、有利于下道次高质量熔积成形的基体表面,或零件表面。
5.如权利要求4所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,其还包括设置在增材成形工序、等材塑形工序或等材矫形工序之后,分段并行的热处理或在全部成形加工结束后,在成形加工单元内,对成形件或零件进行热处理,以去除其残余应力,减少变形和开裂,提高力学性能。
6.如权利要求5所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,其还包括缺陷检测工序,具体的,在增材制造零件过程中,通过利用制造设备自身的数控系统和搭载的反求装置及缺陷检测装置,并行反求成形体的形状和尺寸,对形状复杂而难以在成形完后进行缺陷检查的盲区,进行内部和外部缺陷检测;若有缺陷则采用减材系统去除,之后继续成形,或者在成形完后,在该设备内的同工位上完成零件的缺陷检测。
7.如权利要求1所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,在不同成形加工层或者相同成形加工层的相同道次或者不同道次中的不同位置实施不同的工序。
8.如权利要求2所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,控制等材原位热塑性成形形过程中的温度、变形程度、变形速率、冷却条件的工艺参数,或者辅助电磁或者超声振动的方式;
采用非熔化极气体保护焊的等离子熔积枪作为增材成形用热源,微型轧辊随等离子熔积枪同步运动,等材塑性成形用微型轧辊原位作用于熔池后刚凝固区表面;气体保护等离子熔积枪的熔积电流为180A,并根据待熔积制造的锻造用模具型腔的使用性能要求,采用该模具焊丝,在基板上按照由模具三维CAD模型得到的数字化成形加工路径,逐层同步进行微铸熔积增材成形与微锻等材塑性成形加工;采用随动控轧控冷热处理工艺,在增材成形过程中,在等材热塑性成形过程中,将空冷改变成用气冷或液氮冷却;或者在成形过程中对熔池施加电磁辅助成形;若模具型腔形状复杂,则需对需加工的成形体表面,在上述同步成形过程中进行无接触式激光铣削加工,若在此区间内,因时间短,尺寸和表面精度仍达不到要求,可逐层或数层分段复合进行机械精整加工;精整加工过程与同步成形加工过程同步进行,直到模具型腔成形加工结束。
9.如权利要求3所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,若精度达不到要求可继续采取上述方式或者采用机械铣削或者磨削精加工,直至达到零件精度要求。
10.如权利要求4所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,采用气体保护的激光枪为增材熔积成形用热源,微型轧辊随气体保护激光熔积枪同步运动,用于等材塑性成形的冲击成形激光作用于熔池后凝固区表面;气体保护激光熔积成形枪的功率为2000瓦,并根据待增材制造的飞机发动机机匣的使用性能要求,采用高温合金焊丝,在基板上按照由零件三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与微型塑性成形加工;因机匣尺寸大导致熔积成形变形大,需在上述同步成形加工后进行等材矫形加工,该矫形加工过程紧随激光冲击成形加工后进行,直到零件成形加工结束,将变形矫正至最小;或者在成形过程中对已成形区施加超声振动辅助成形,以提高组织性能,减少残余应力;若零件形状复杂,则需对整体成形完后难以加工的部分,在上述同步成形加工过程中进行无接触式激光铣削加工,或间断接触式超声机械加工,或数层分段复合进行上述方式或机械精整加工;该精整加工过程与同步成形加工过程同步进行,直到零件成形加工结束。
11.如权利要求5所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,采用非熔化极气体保护枪的电弧或者等离子弧和激光复合的热源为增材成形用热源,微型轧辊随复合热源发生装置同步运动,等材塑形用微型轧辊作用于熔池后刚凝固区表面;气体保护电弧或等离子弧熔积枪的熔积电流为200A,激光功率为2000w,并根据待增材制造的飞机框梁的使用性能要求,采用合金焊丝,在基板上按照由零件三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与微型塑性成形加工;因飞机框梁尺寸大导致熔积成形变形大,需在上述同步成形加工后进行等材矫形加工,该矫形加工过程紧随微型塑性加工后进行,直到零件成形加工结束,将变形矫正至最小;然而,由于航空零件性能要求高,每层表面的氧化物和杂质不允许带入下成形体中,需采用高效率的随动清理方式对增材成形过程中熔积成形区表面氧化物、杂质及缺陷进行随动清理,以得到表面质量好、有利于下道次高质量熔积成形的基体表面,或零件表面;该表面清理与成形加工过程同步进行,直到零件成形加工结束;
采用功率为2000w的固体激光器,成形材料使用高温合金的金属丝材,固定在激光头上的微型轧辊随激光头同步运动,侧立辊跟随在熔融软化区侧面,带孔型的平辊柔性跟踪熔池后方附近的刚凝固软化区域,在基板上按照由石油管件的三维CAD模型得到的数字化成形加工路径,逐层同步进行激光熔积成形与微型受迫成形加工高温合金零件;采用设置在成形加工单元内的热处理装置,在全部成形加工结束后,对成形件或零件进行热处理,以去除其残余应力,减少变形和开裂,提高力学性能。
12.如权利要求6所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,在增材制造零件过程中,设备自身的数控系统或机器人系统,和搭载的反求装置及缺陷检测装置,并行反求成形体的形状和尺寸,对形状复杂而难以在成形完后进行缺陷检查的盲区,进行内部和外部缺陷检测。
13.如权利要求6所述的增材制造过程中并行控制零件变形和精度的方法,其特征在于,采用梯度功能材料送粉器、转移弧电流为170A的等离子熔积枪,微型轧辊固定在工业机器人手腕上,工业机器人手腕与熔积成形制造中使用的数控等离子熔积枪保持同步,侧立辊跟随在熔融软化区侧面,带孔型的水平辊柔性跟踪熔池后方附近的半凝固软化区域;将镍金属间化合物粉末与镍基高温合金粉末或者丝材,按照由带有梯度功能材料成分分布信息的三维CAD模型得到的数字化熔积成形路径,逐层同步进行等离子熔积成形与微型挤压成形加工该梯度功能材料零件;由于该材料易产生裂纹,需在增材制造零件过程中,通过利用搭载的反求装置及缺陷检测装置,并行反求成形体的形状和尺寸,然后进行检测,若有缺陷采用减材系统去除后继续成形;或者对形状复杂而难以在成形完后进行缺陷检查的盲区,进行缺陷检测;若有缺陷则采用减材系统去除,之后继续成形,或者在成形完后,在该设备内的同工位上采用同样的反求—检测的方法,完成零件的缺陷检测。

说明书全文

一种增材制造过程中并行控制零件变形精度的方法

技术领域

[0001] 本发明属于增材制造技术领域,更具体地,涉及一种增材制造过程中并行控制零件变形和精度的方法。

背景技术

[0002] 高致密金属零件或模具的无模熔积成形方法主要有大功率激光熔积成形、电子束自由成形、等离子弧与电弧熔积成形等方法。
[0003] 大功率激光熔积成形采用大功率激光,逐层将送到基板上的金属粉末熔化,并快速凝固熔积成形,最终得到近终成形件。该方法成形精度较高,工件密度远高于选择性激光烧结件,但成形效率、能量和材料的利用率不高、不易达到满密度、设备投资和运行成本高。
[0004] 电子束自由成形方法采用大功率的电子束熔化粉末材料,根据计算机模型施加电磁场,控制电子束的运动,逐层扫描直至整个零件成形完成。该方法成形精度较高、成形质量较好,然而其工艺条件要求严格,整个成形过程需在真空中进行,致使成形尺寸受到限制,设备投资和运行成本很高,且因采用与选择性烧结相同的层层铺粉方式,难以用于梯度功能材料零件的成形。
[0005] 等离子熔积成形方法是采用高度压缩、集束性好的等离子束熔化同步供给的金属粉末或丝材,在基板上逐层熔积形成金属零件或模具,该方法比前两种方法成形效率和材料利用率高,易于获得高密度,设备和运行成本低。但是,因弧柱直径较前两者大,成形的尺寸和表面精度不及前两者,故与大功率激光熔积成形方法相似,大都要在成形完后进行精整加工。
[0006] 为此,出现了等离子熔积成形与铣削加工复合无模快速制造方法,即以等离子束为成形热源,在分层或分段熔积成形过程中,依次交叉进行熔积成形与数控铣削精加工,以实现短流程、低成本的直接精确制造。
[0007] 上述三种方法中,大功率激光熔积成形法和等离子电弧成形法皆为无支撑、无模熔积成形匀质或复合梯度功能材料零件的方法。与铺粉式的电子束成形、选择性激光烧结/熔化成形,以及采用熔点低的纸、树脂、塑料等的LOM(Laminated Object Manufacturing,纸叠层成形)、SLA(Stereolithography Apparatus,光固化成形),FDM(Fused DepositionModeling,熔丝沉积制造)、SLS(Selective Laser Sintering,选择性激光烧结)等有支撑的无模堆积成形的方法相比,避免了成形时因需要支撑而须添加和去除支撑材料导致的材料、工艺、设备上的诸多不利,减少了制造时间,降低了成本,并可成形梯度功能材料的零件。但是,同时也因无支撑而在有悬臂的复杂形状零件的成形过程中,熔融材料在重作用下,可能产生下落、流淌等现象,导致难以熔积成形。
[0008] 等离子熔积和铣削复合制造方法虽通过分层的成形和铣削精整,降低了加工复杂程度,但对于侧面带大倾尤其是横向悬角部分的复杂形状零件,堆积成形时因重力产生的流淌甚至塌落仍不能避免,以至难以横向生长成形。
[0009] 采用气体或真空保护的、使用丝、带状材料的等离子弧/电弧、真空保护的电子束、熔渣保护的电渣焊埋弧焊等热源熔积成形方法,相比采用粉末状材料的激光送粉成形方法,具有可成形更加复杂形状、熔积效率更高、成本更低等优势,但是,对于复杂精细、薄壁形状的零件,由于其弧柱较粗,成形精度较差,在此类复杂精细和薄壁零件制造时的应用受到限制。
[0010] 然而,因多层熔积造成的热量累积而产生的变形难以避免,对于一些复杂形状、大型零件,上述方法都会产生较大变形,变形严重的会导致熔积成形难以继续,或即便得到成形件也可能因变形过大导致尺寸超差而报废。因此,目前只能通过预测,估计所需的加工余量,在成形完后加工去除这些余量,得到所需尺寸和精度的零件;但在成形过程中还要不断试错、修正,使变形处于尺寸精度要求的范围之内,而对于复杂形状零件,变形难以预测时,为保险起见往往增加加工余量,但这势必导致后续去除加工量增大、效率降低、成本增加。
[0011] 另一方面,现有增材制造方法,一般都是在成形工位上将成形件卸去装夹,移出到加工单元中加工完毕后,再将加工件移到热处理单元上进行热处理,以消除零件的残余应力和变形,防止开裂,提高性能,导致流程长,效率低,成本高。
[0012] 对于尖端科技、航空航天、舰船海工、高、兵器等行业,不仅对零部件的组织性能及稳定性,而且对其尺寸及精度要求也很高的行业,以上诸问题尤为突出,已成为制约熔积直接增材成形技术在这些行业进一步发展和实现工业化应用所急需解决的关键技术难点和瓶颈问题。

发明内容

[0013] 针对现有技术的以上缺陷或改进需求,本发明提供了一种增材制造过程中并行控制零件变形和精度的方法,其目的在于,待加工零件装夹位置不变,同时在不同加工层或者相同加工层的相同道次或者不同道次中实施不同的工序,从而实现一步到位式超短流程的高精度高性能增材制造。
[0014] 为实现以上目的,本发明提供一种增材制造过程中并行控制零件变形和精度的方法,在增材制造零件的过程中,同工位并行实施如下工序:增材成形工序、等材塑形或塑性成形工序,同时,还同工位并行实施如下工序的一种或者多种:等材矫形工序、减材加工工序和精整加工工序,从而实现一步到位式超短流程的高精度高性能增材制造。
[0015] 所述同工位并行实施是指待加工零件装夹位置不变,同时在不同加工层或者相同加工层的同道次或者不同道次中实施不同的工序。在增材成形工序、等材塑形或塑性成形工序执行之后,不能满足预期的要求时,就需要执行等材矫形工序。
[0016] 进一步的,其还包括控制形变和改善性能的随动控轧控冷热处理工艺,在增材成形过程中,通过控制等材热塑形过程中的温度、变形程度、变形速率、冷却条件的工艺参数,改善成形体的力学性能,减少残余应力和变形,提高成形精度。
[0017] 进一步的,所述减材加工工序或者精整加工工序具体为,采用激光或电加工或超声方法同步和随动进行铣削加工。
[0018] 进一步的,在不同层的增材成形工序间隔中,采用随动清理方式对增材成型过程中熔积成型区表面缺陷进行随动清理,以得到表面质量好、有利于下道次高质量熔积成形的基体表面,或零件表面。
[0019] 进一步的,其还包括设置在增材成形工序、等材塑性成形工序或者等材矫形工序之后、分段并行或在全部成形加工结束后,在成形加工单元内,对成形件或零件进行热处理,以去除其残余应力,减少变形和开裂,提高力学性能。
[0020] 进一步的,其还包括在增材制造零件过程中,通过利用制造设备自身的数控系统和搭载的反求装置及缺陷检测装置,并行反求成形体的形状和尺寸,对形状复杂而难以在成形完后进行缺陷检查的盲区,进行内部和外部的缺陷检测;若有缺陷则采用减材系统去除,之后继续成形;成形完后,也可根据需要,采用同样的方法,在该设备内的同工位上完成零件的缺陷检测。
[0021] 进一步的,在不同成形加工层或者相同成形加工层的相同道次或者不同道次中的不同位置实施不同的工序。
[0022] 进一步的,控制等材原位热塑性成形形过程中的温度、变形程度、变形速率、冷却条件的工艺参数,或者辅助电磁或者超声振动的方式;
[0023] 采用非熔化极气体保护焊的等离子熔积枪作为增材成形用热源,微型轧辊随等离子熔积枪同步运动,等材塑性成形用微型轧辊原位作用于熔池后刚凝固区表面;气体保护等离子熔积枪的熔积电流为180A,并根据待熔积制造的锻造用模具型腔的使用性能要求,采用该模具焊丝,在基板上按照由模具三维CAD模型得到的数字化成形加工路径,逐层同步进行微铸熔积增材成形与微锻等材塑性成形加工;采用随动控轧控冷热处理工艺,在增材成形过程中,在等材热塑性成形过程中,将空冷改变成用气冷或液氮冷却;或者在成形过程中对熔池施加电磁辅助成形;若模具型腔形状复杂,则需对需加工的成形体表面,在上述同步成形过程中进行无接触式激光铣削加工,若在此区间内,因时间短,尺寸和表面精度仍达不到要求,可逐层或数层分段复合进行机械精整加工;精整加工过程与同步成形加工过程同步进行,直到模具型腔成形加工结束。
[0024] 进一步的,若精度达不到要求可继续采取上述方式或者采用机械铣削或者磨削精加工,直至达到零件精度要求。
[0025] 进一步的,采用气体保护的激光枪为增材熔积成形用热源,微型轧辊随气体保护激光熔积枪同步运动,用于等材塑性成形的冲击成形激光作用于熔池后凝固区表面;气体保护激光熔积成形枪的功率为2000瓦,并根据待增材制造的飞机发动机机匣的使用性能要求,采用高温合金焊丝,在基板上按照由零件三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与微型塑性成形加工;因机匣尺寸大导致熔积成形变形大,需在上述同步成形加工后进行等材矫形加工,该矫形加工过程紧随激光冲击成形加工后进行,直到零件成形加工结束,将变形矫正至最小;或者在成形过程中对已成形区施加超声振动辅助成形,以提高组织性能,减少残余应力;若零件形状复杂,则需对整体成形完后难以加工的部分,在上述同步成形加工过程中进行无接触式激光铣削加工,或间断接触式超声机械加工,或数层分段复合进行上述方式或机械精整加工;该精整加工过程与同步成形加工过程同步进行,直到零件成形加工结束。
[0026] 进一步的,采用非熔化极气体保护枪的电弧或者等离子弧和激光复合的热源为增材成形用热源,微型轧辊随复合热源发生装置同步运动,等材塑形用微型轧辊作用于熔池后刚凝固区表面;气体保护电弧或等离子弧熔积枪的熔积电流为200A,激光功率为2000w,并根据待增材制造的飞机框梁的使用性能要求,采用合金焊丝,在基板上按照由零件三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与微型塑性成形加工;因飞机框梁尺寸大导致熔积成形变形大,需在上述同步成形加工后进行等材矫形加工,该矫形加工过程紧随微型塑性加工后进行,直到零件成形加工结束,将变形矫正至最小;然而,由于航空零件性能要求高,每层表面的化物和杂质不允许带入下成形体中,需采用高效率的随动清理方式对增材成形过程中熔积成形区表面氧化物、杂质及缺陷进行随动清理,以得到表面质量好、有利于下道次高质量熔积成形的基体表面,或零件表面;该表面清理与成形加工过程同步进行,直到零件成形加工结束;
[0027] 采用功率为2000w的固体激光器,成形材料使用高温合金的金属丝材,固定在激光头上的微型轧辊随激光头同步运动,侧立辊跟随在熔融软化区侧面,带孔型的平辊柔性跟踪熔池后方附近的半凝固软化区域,在基板上按照由石油管件的三维CAD模型得到的数字化成形加工路径,逐层同步进行激光熔积成形与微型受迫成形加工高温合金零件;采用设置在成形加工单元内的热处理装置,在全部成形加工结束后,对成形件或零件进行热处理,以去除其残余应力,减少变形和开裂,提高力学性能。
[0028] 进一步的,在增材制造零件过程中,设备自身的数控系统或机器人系统,和搭载的反求装置及缺陷检测装置,并行反求成形体的形状和尺寸,对形状复杂而难以在成形完后进行缺陷检查的盲区,进行内部和外部缺陷检测。
[0029] 进一步的,采用梯度功能材料送粉器、转移弧电流为170A的等离子熔积枪,微型轧辊固定在工业机器人手腕上,工业机器人手腕与熔积成形制造中使用的数控等离子熔积枪保持同步,侧立辊跟随在熔融软化区侧面,带孔型的水平辊柔性跟踪熔池后方附近的半凝固软化区域;将镍金属间化合物粉末与镍基高温合金粉末,按照由带有梯度功能材料成分分布信息的三维CAD模型得到的数字化熔积成形路径,逐层同步进行等离子熔积成形与微型挤压成形加工该梯度功能材料零件;由于该材料易产生裂纹,需在增材制造零件过程中,通过利用搭载的反求装置及缺陷检测装置,并行反求成形体的形状和尺寸,然后进行检测,若有缺陷采用减材系统去除后继续成形;或者对形状复杂而难以在成形完后进行缺陷检查的盲区,进行缺陷检测;若有缺陷则采用减材系统去除,之后继续成形,或者在成形完后,在该设备内的同工位上采用同样的反求—检测的方法,完成零件的缺陷检测。
[0030] 总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:加工过程中,待加工零件位置不变,同时在不同加工层或者相同加工层实施不同的工序,从而实现一步到位式超短流程的高精度高性能增材制造,并且其加工精度高,零件可直接应用。本发明方法具有较强的实际应用价值。
[0031] 本发明为了提高效率、降低成本,根据对零件的性能和尺寸及表面精度的要求不同,若同步实施上述成形加工工序中的两种就能达到要求也可。如制造体铸件,采用功率为2500w的固体激光器,成形材料使用耐磨合金丝材,在激光熔丝增材成形过程中,采用激光或者电加工或者超声方式进行同步和随动铣削加工,若铣削量较大或者采用上述方式达不到精度要求或者成本高、效率低,可采用机械铣削或者磨削精加工,直至达到零件精度要求。

具体实施方式

[0032] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
[0033] 本发明提供一种增材制造过程中并行控制零件变形和精度的方法,在增材制造零件的过程中,同工位并行实施如下工序:增材成形工序、等材塑形或塑性成形工序,同时,还同工位并行实施如下工序的一种或者多种:等材矫形工序、减材加工工序和精整加工工序,从而实现一步到位式超短流程的高精度高性能增材制造。所述同工位并行实施是指待加工零件装夹位置不变,同时在不同加工层或者相同加工层实施不同的工序。
[0034] 其中,增材制造过程中,由于增材成形工序、等材塑形工序在同一道次内并行紧随发生,在熔池刚凝固区,仅用小压力就可产生动态再结晶,形成热锻造状态下的等轴细晶;等材矫形工序则一般是在成形过程中,在同一道次内或者在同一层内或者在不同层内并行进行。
[0035] 进一步的,其还包括控制形变和改善性能的随动控轧控冷热处理工艺,在增材成形过程中,通过控制等材热塑形过程中的温度、变形程度、变形速率、冷却条件的工艺参数,改善成形体的力学性能,减少残余应力和变形,提高成形精度。
[0036] 由于同工位并行实施工艺,同一零件部位的塑形工序紧跟在增材成形工序之后,发生在同一层的同一道次内,温度很高,有金属飞溅等,通常认为,塑形机构需耐热、能冷却、防金属溅射污染等,导致装置制造和控制塑性变形难度大,在零件的同一部分处,可以采用增材成形完成后再进行等材塑形工序的方式,但是,实际上,在时间上的同一时刻,增材成形工序、等材塑形或塑性成形工序、必要时候的执行的等材矫形工序是同时都在进行的,只是发生在零件的不同位置。
[0037] 进一步的,所述减材加工工序或者精整加工工序具体为,采用激光或电加工或超声方式同步和随动进行铣削加工。
[0038] 一般认为,机械铣削是有效的精整加工方法,但因其是接触式且需加力,需机床式软硬件系统,而增材制造设备在执行增材成形工序、等材塑形工序、等材矫形工序时,数控系统不能并行进行铣削机加工,只能在这些工序完成后再进行数控铣削,或在增加一套数控系统,这样就会降低成形效率;而再增加一套数控及传动系统将增加成本和设备复杂度;此外铣削加工是热式、干式铣削,十分困难且很耗费刀具,而采用激光等非接触式方法,振镜机构及控制简单,可与上述成形工序在同道次或同层或非同层并行进行。
[0039] 进一步的,在不同层的增材成形工序间隔中,采用随动清理方式对增材成型过程中熔积成型区表面缺陷进行随动清理,以得到表面质量好、有利于下道次高质量熔积成形的基体表面,或零件表面。
[0040] 通常认为,大气中堆焊时,焊接层表面的氧化物会在下一道焊接时上浮到表面,一般不予清理。但是,增材成形是多层成形,表面层多次受到氧化和污染,可能对成形体性能产生影响。对于航空航天等对强韧性和疲劳性能要求很高的零件制造,需采用能和上述成形工序并行进行,不降低效率的随动清理方法。
[0041] 进一步的,其还包括设置在增材成形工序、等材塑形工序、等材矫形工序之后、分段并行或在全部成形加工结束后,在成形加工单元内,对成形件或零件进行热处理,以去除其残余应力,减少变形和开裂,提高力学性能。这样的热处理使一种不会导致零件熔化的的热处理,其温度较低,主要用于去除其残余应力,减少变形和开裂。
[0042] 一般认为,对于增材成形件,由于是堆焊成形,应该在成形完后,将成形件移出制造单元,去进行去应力退火等热处理,以消除残余应力和变形,防止难成形零件的开裂,但这将影响成形加工精度,影响制造效率。因此,鉴于去应力退火热处理等温度不高,可考虑将热处理装置安装在制造单元内,从而不降低制造效率、并可在热处理完后进行最终的精整加工,得到超短流程的高精度高性能增材制造。
[0043] 进一步的,其还包括在增材制造零件过程中,通过利用制造设备自身的数控系统和搭载的反求装置及缺陷检测装置,并行反求成形体的形状和尺寸,对形状复杂而难以在成形完后进行缺陷检查的盲区,进行缺陷检测;若有缺陷则采用减材系统去除,之后继续成形。
[0044] 一般认为,传统制造是对成形加工好的零件进行缺陷检测,但这种零件经过缺陷检测,若发现缺陷超过标准,一般只能报废。而且,在检测过程中,有些零件形状复杂,有些部分可能无法检测,形成检测死区,因此在成形过程中检测,将不受检测死区的限制。
[0045] 为了更为详细的说明本发明方法,下面结合具体的实施例进一步详细说明。
[0046] 实施例1:
[0047] 采用非熔化极气体保护焊的等离子熔积枪(激光、熔化极气体保护电弧、非熔化极气体保护电弧、电子束)作为增材成形用热源,微型轧辊随等离子熔积枪同步运动,等材塑形用微型轧辊作用于熔池后刚凝固区表面。气体保护等离子熔积枪的熔积电流为180A,并根据待熔积制造的锻造用模具型腔的使用性能要求,采用该模具钢焊丝,在基板上按照由模具三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与等材塑性成形加工。若模具型腔形状复杂,则需对需加工的成形体表面,在上述同步成形加工过程中进行无接触式激光铣削加工,若在此区间内,因时间短,尺寸和表面精度仍达不到要求,可数层分段复合进行机械精整加工。上述精整加工过程与同步成形加工过程同步进行(也即同工位并行实施),直到模具型腔成形加工结束。
[0048] 实施例2:
[0049] 采用非熔化极气体保护焊的等离子熔积枪作为增材成形用热源,微型轧辊随等离子熔积枪同步运动,等材塑形用微型轧辊作用于熔池后刚凝固区表面。气体保护等离子熔积枪的熔积电流为180A,并根据待熔积制造的薄板成形用模具型腔的使用性能要求,采用该模具钢丝,在基板上按照由模具的三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与等材塑性成形加工。为了控制形变和改善性能,采用随动控轧控冷热处理工艺,在增材成形过程中,在等材热塑形(热塑性成形)过程中,将空冷改变成用液氮冷却,提高冷却速度,从而提高模具的强度和硬度。或者在成形过程中对熔池施加电磁辅助成形,提高组织性能,减少残余应力。上述过程与成形加工过程同步进行(也即同工位并行实施),直到模具型腔成形加工结束。
[0050] 实施例3:
[0051] 采用气体保护的激光枪为增材成形用热源,微型轧辊随气体保护激光熔积枪同步运动,用于等材塑性成形的冲击成形激光作用于熔池后凝固区表面。气体保护激光熔积成形枪的功率为2000瓦,并根据待增材制造的飞机发动机机匣的使用性能要求,采用高温合金焊丝,在基板上按照由零件三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与微型塑性成形加工;因辙叉尺寸大导致熔积成形变形大,需在上述同步成形加工后进行等材矫形加工,该矫形加工过程紧随激光冲击成形加工后进行,直到零件成形加工结束,将变形矫正至最小。或者在成形过程中对已成形区施加超声振动辅助成形,以提高组织性能,减少残余应力。若零件形状复杂,则需对成形完后难以加工的部分,在上述同步成形加工过程中进行无接触式激光铣削加工,或数层分段复合进行机械精整加工。该精整加工过程与同步成形加工过程同步进行(也即同工位并行实施),直到零件成形加工结束。
[0052] 实施例4:
[0053] 采用非熔化极气体保护枪的电弧或者等离子弧和激光复合的热源为增材成形用热源,微型轧辊随复合热源发生装置同步运动,等材塑形用微型轧辊作用于熔池后刚凝固区表面。气体保护电弧或等离子弧熔积枪的熔积电流为200A,激光功率为2000w,并根据待增材制造的飞机框梁的使用性能要求,采用钛合金焊丝,在基板上按照由零件三维CAD模型得到的数字化成形加工路径,逐层同步进行熔积成形与微型塑性成形加工;因飞机框梁尺寸大导致熔积成形变形大,需在上述同步成形加工后进行等材矫形加工,该矫形加工过程紧随微型塑性加工后进行,直到零件成形加工结束,将变形矫正至最小。然而,由于航空零件性能要求高,每层表面的氧化物和杂质不允许带入下成形体中,需采用高效率的随动清理方式对增材成形过程中熔积成形区表面氧化物、杂质及缺陷进行随动清理,以得到表面质量好、有利于下道次高质量熔积成形的基体表面,或零件表面。该表面清理与成形加工过程同步进行(也即同工位并行实施),直到零件成形加工结束。
[0054] 实施例5:
[0055] 采用功率为2000w的固体激光器,成形材料使用高温合金的金属丝材,固定在激光头上的微型轧辊随激光头同步运动,侧立辊跟随在熔融软化区侧面,带孔型的水平辊柔性跟踪熔池后方附近的半凝固软化区域,在基板上按照由石油管件的三维CAD模型得到的数字化成形加工路径,逐层同步进行激光熔积成形与微型受迫成形加工高温合金零件(也即同工位并行实施)。采用设置在成形加工单元内的热处理装置,在全部成形加工结束后,对成形件或零件进行热处理,以去除其残余应力,减少变形和开裂,提高力学性能。
[0056] 实施例6:
[0057] 采用梯度功能材料送粉器、转移弧电流为170A的等离子熔积枪,微型轧辊固定在工业机器人手腕上,工业机器人手腕与熔积成形制造中使用的数控等离子熔积枪保持同步,侧立辊跟随在熔融软化区侧面,带孔型的水平辊柔性跟踪熔池后方附近的半凝固软化区域。将镍铝金属间化合物粉末与镍基高温合金粉末,按照由带有梯度功能材料成分分布信息的三维CAD模型得到的数字化熔积成形路径,逐层同步进行等离子熔积成形与微型挤压成形加工该梯度功能材料零件。由于该材料易产生裂纹,需在增材制造零件过程中,通过利用搭载的反求装置及缺陷检测装置,并行反求成形体的形状和尺寸,然后进行检测,若有缺陷采用减材系统去除后继续成形;或者对形状复杂而难以在成形完后进行缺陷检查的盲区,进行缺陷检测;若有缺陷则采用减材系统去除,之后继续成形(也即同工位并行实施),或者在成形完后,在该设备内的同工位上采用同样的反求—检测的方法,完成零件的缺陷检测。
[0058] 为了更为详细的说明本发明的技术效果,下面结合具体的实验进一步详细说明。
[0059] 实验1:微铸锻铣(增·等·减材)复合制造中钢发动机过渡段;
[0060] 中碳钢可焊性极差,国际上尚无3D打印先例;变形微区宽度和深度方向由拉应力变成压应力;减少破裂等缺陷,残余应力减少70%,变形减少;柱状晶变成超细等轴晶,性能显著超过传统锻件;通过航空发动机标准X光内部缺陷检测。单一电弧成形中碳钢铸态柱/枝状晶、传统锻造7~8级等轴粗晶、微铸锻复合成形12级超细等轴晶进行了对比。中碳钢发动机过渡段进行X射线检测无缺陷。
[0061] 表1中碳钢发动机过渡段力学性能检测结果(30%压下变形量)
[0062]
[0063] 实验2:通过实验,微铸锻(增·等材)复合成形TC4钛合金组织性能铸态柱/枝状晶变成锻态等轴晶,性能超过锻件。
[0064] 实验3:通过实验,微铸锻复合成形(变形量30%)高温合金In718晶粒组织。
[0065] 实验4:通过实验,传统制造和微铸锻复合制造飞机起落架的能耗及材耗对比,如表2所示,
[0066] 表2传统制造和微铸锻复合制造飞机起落架的能耗及材耗对比
[0067] 对比项目 毛坯质量 材料利用率 制造周期传统制造 800kg 10% 3-6月
微铸锻铣 120kg 68% 3-6周
[0068] 表3微铸锻铣工艺与传统工艺能耗对比
[0069]
[0070] 表3中微铸锻铣工艺4.5×105,使用不到1吨的微锻压力代替传统的万吨锻压力,能耗不足传统锻造的10%。
[0071] 经过上述实验,本发明的方法超高强钢材料利用率比传统制造提高6.8倍;能耗降低90%,将显著改善能源消耗结构。本发明突破性能瓶颈,高强度,高韧性,高性能可靠性,锻态均匀超细等轴晶组织,完全满足大飞机等高端领域减重需要。本发明超短流程;铸-锻-焊-铣多单元集成为一个制造单元,建立了用1台设备直接制造高端零件的新模式,实现零件形状和性能的并行控制,制造周期与流程缩短60%以上。本发明高效低成本,变革高能耗材耗、重污染的传统制造模式,节能减耗90%以上,实现变革性绿色制造。本发明“设计-监测-控制-修复”集成制造。开发了大型复杂锻件熔锻铣复合超短流程制造系列大型装备。
[0072] 本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈