首页 / 专利库 / 电气元件和设备 / 电极 / 焊接电极 / 非自耗电极 / 一种高熵合金颗粒增强铝基复合材料及其制备方法

一种高熵合金颗粒增强复合材料及其制备方法

阅读:1009发布:2020-11-18

专利汇可以提供一种高熵合金颗粒增强复合材料及其制备方法专利检索,专利查询,专利分析的服务。并且一种高熵 合金 颗粒增强 铝 基 复合材料 及其制备方法,属于复合材料制备领域,解决现有金属基增强相所存在的自身脆性以及 烧结 温度 受限,影响材料致密化,难以实现复合材料强度和塑性同时提高的问题。本 发明 的铝基复合材料,由基体相与增强相通过球磨混合及烧结成型构成,基体相铝和增强相高熵合金颗粒AlCoCrFeNiTi0.5的体积比为1∶4~1∶9。所述高熵合金颗粒增强铝基复合材料的制备方法,包括制备高熵合金 铸锭 步骤、制备高熵合金粉末步骤、制备 复合粉末 步骤和烧结成型步骤。本发明工艺简单、能耗和成本均比较低、易于在生产中实现,所制备的高熵合金颗粒增强铝基复合材料的拉伸强度提高了32.4~90.1%,延伸率提高了29.6~52.0%,提高了铝基复合材料的综合性能。,下面是一种高熵合金颗粒增强复合材料及其制备方法专利的具体信息内容。

1.一种高熵合金颗粒增强复合材料,由基体相与增强相通过球磨混合及烧结成型构成,基体相为铝,增强相为合金颗粒,其特征在于:
所述增强相为AlCoCrFeNiTi0.5高熵合金颗粒;所述增强相和基体相的体积比为1:4~
1:9。
2.权利要求1所述高熵合金颗粒增强铝基复合材料的制备方法,包括制备高熵合金铸锭步骤、制备高熵合金粉末步骤、制备复合粉末步骤和烧结成型步骤,其特征在于:
(1)制备高熵合金铸锭步骤:
将铝、钴、铬、、镍、海绵按照原子比Al:Co:Cr:Fe:Ni:Ti=1:1:1:1:1:0.5称取相应质量,放置于固定在真空非自耗电极电弧炉中的坩埚内,在真空环境下进行熔炼,并通入Ar气保护,反复熔炼防止成分偏析,得到成分均匀的高熵合金铸锭;
(2)制备高熵合金粉末步骤:
首先将所述高熵合金铸锭铣削成切屑,然后将切屑放入球磨机球磨至其粒径≤48μm,制备成高熵合金粉末颗粒;球磨过程在真空下进行,并通入Ar气保护;
(3)制备复合粉末步骤:
将所述高熵合金粉末颗粒和铝粉按照体积比1:4~1:9混合,采用球磨机球磨,得到复合粉末,球磨过程在真空下进行,并通入Ar气保护;
(4)烧结成型步骤:
将所述复合粉末装入石墨模具中,采用放电等离子烧结工艺或者热压烧结工艺进行烧结,得到高熵合金颗粒增强铝基复合材料;
所述放电等离子烧结工艺的参数为:烧结温度500℃~550℃,保温时间6~10min,烧结时施加压50MPa~70MPa,升温速率50℃/min~100℃/min,真空度<20Pa;
所述热压烧结工艺的参数为:烧结温度500℃~550℃,保温时间1~2h,烧结时施加压力400MPa~500MPa,真空度<10-3Pa。
3.如权利要求2所述的制备方法,其特征在于:
所述制备高熵合金铸锭步骤中,各原料纯度不低于99.5wt.%,放置于水冷铜坩埚时,各原料按其熔点由低到高依次从下往上放置。
4.如权利要求2所述的制备方法,其特征在于:
所述制备高熵合金粉末步骤中,球磨工艺参数为:球料质量比10:1~15:1,转速200r/min~400r/min,球磨时间1~3h,用无水乙醇作为过程控制剂。
5.如权利要求2所述的制备方法,其特征在于:
所述制备复合粉末步骤中,所述铝粉纯度大于99.5%,粉末粒径≤100μm;
球磨工艺参数为:球料质量比5:1~10:1,转速100r/min~300r/min,球磨时间3~6h,用无水乙醇作为过程控制剂。

说明书全文

一种高熵合金颗粒增强复合材料及其制备方法

技术领域

[0001] 本发明属于复合材料制备领域,涉及颗粒增强铝基复合材料的制备方法,尤其涉及一种高熵合金颗粒增强铝基复合材料及其制备方法。

背景技术

[0002] 颗粒增强铝基复合材料是以金属铝及其合金为基体,以金属或非金属颗粒为增强相的非均质混合物。颗粒增强铝基复合材料由于具有优良的高温学性能、耐磨性和低的热膨胀系数、简单的制备工艺,低廉的增强体成本,容易实现工业化大批量生产,成为铝基复合材料的研究重点,其产品已经在航天航空、军事、汽车电子、体育等领域广范应用。
[0003] 复合材料取得优异性能的关键在于基体相与增强相界面产生良好的界面结合。目前,经常用于颗粒增强铝基复合材料增强体的主要有颗粒、碳化颗粒、碳化铝颗粒、化铝颗粒、二氧化硅颗粒、氮化硅颗粒等,其大多为非金属颗粒,难以与金属颗粒形成稳定有效的冶金界面。随着增强颗粒的加入及增强颗粒体积分数的增加,复合材料的屈服强度抗拉强度都有明显的提高,而复合材料的延伸率却降低明显。如Dural Duralcan公司生产的10%Al2O3-2014复合材料伸长率为3.3%、10%SiC-A356复合材料的伸长率只有0.6%。
[0004] 近年来研究人员开发出金属基增强体,如镁基、基、锆基非晶材料等,能够与金属基体之间形成稳定有效的结合界面,但是由于非晶材料晶化温度的限制,烧结过程难以在较高温度下进行(现有具有高晶化温度的铁基、铝基非晶合金增强相晶化温度最高为400℃左右),影响材料致密化,实现较好的烧结质量无疑会增加成本和工艺难度。并且非晶材料自身的脆性对复合材料的塑性也产生不好的影响,因此难以实现塑性和强度的同时提高,见M.Yuan,D.C.Zhang,C.G.Tan,Z.C.Luo,Y.F.Mao,J.G.Lin,Materials Science and Engineering:A 590(2014)301-306以及D.Markó,K.G.Prashanth,S.Scudino,Z.Wang,N.Ellendt,V.Uhlenwinkel,J.Eckert,J.Alloy.Compd.615,Supplement 1(2014)S382-S385.。

发明内容

[0005] 本发明提供一种高熵合金颗粒增强铝基复合材料,同时提供其制备方法,解决现有颗粒增强铝基复合材料的金属基增强相所存在的自身脆性以及烧结温度受到限制,影响材料致密化,难以实现复合材料的强度和塑性同时提高的问题。
[0006] 本发明所提供的一种高熵合金颗粒增强铝基复合材料,由基体相与增强相通过球磨混合及烧结成型构成,基体相为铝,增强相为合金颗粒,其特征在于:
[0007] 所述增强相为AlCoCrFeNiTi0.5高熵合金颗粒;所述增强相和基体相的体积比为1:4~1:9。
[0008] 所述高熵合金颗粒增强铝基复合材料的制备方法,包括制备高熵合金铸锭步骤、制备高熵合金粉末步骤、制备复合粉末步骤和烧结成型步骤,其特征在于:
[0009] (1)制备高熵合金铸锭步骤:
[0010] 将铝、钴、铬、铁、镍、海绵按照原子比Al:Co:Cr:Fe:Ni:Ti=1:1:1:1:1:0.5称取相应质量,放置于固定在真空非自耗电极电弧炉中的坩埚内,在真空环境下进行熔炼,并通入Ar气保护,反复熔炼防止成分偏析,得到成分均匀的高熵合金铸锭;
[0011] (2)制备高熵合金粉末步骤:
[0012] 首先将所述高熵合金铸锭铣削成切屑,然后将切屑放入球磨机球磨至其粒径≤48μm,制备成高熵合金粉末颗粒;球磨过程在真空下进行,并通入Ar气保护;
[0013] (3)制备复合粉末步骤:
[0014] 将所述高熵合金粉末颗粒和铝粉按照体积比1:4~1:9混合,采用球磨机低能球磨,得到复合粉末,球磨过程在真空下进行,并通入Ar气保护;
[0015] (4)烧结成型步骤:
[0016] 将所述复合粉末装入石墨模具中,采用放电等离子烧结工艺或者热压烧结工艺进行烧结,得到高熵合金颗粒增强铝基复合材料。
[0017] 所述的制备方法,其特征在于:
[0018] 所述制备高熵合金铸锭步骤中,各原料纯度不低于99.5wt.%,放置于水冷铜坩埚时,各原料按其熔点由低到高依次从下往上放置;
[0019] 所述的制备方法,其特征在于:
[0020] 所述制备高熵合金粉末步骤中,球磨工艺参数为:球料质量比10:1~15:1,转速200r/min~400r/min,球磨时间1~3h,用无水乙醇作为过程控制剂。
[0021] 所述的制备方法,其特征在于:
[0022] 所述制备复合粉末步骤中,所述铝粉纯度大于99.5%,粉末粒径≤100μm;
[0023] 球磨工艺参数为:球料质量比5:1~10:1,转速100r/min~300r/min,球磨时间3~6h,用无水乙醇作为过程控制剂。
[0024] 所述的制备方法,其特征在于,所述烧结成型步骤中:
[0025] 所述放电等离子烧结工艺的参数为:烧结温度500℃~550℃,保温时间6~10min,烧结时施加压力50~70MPa,升温速率50℃/min~100℃/min,真空度<20Pa;
[0026] 所述热压烧结工艺的参数为:烧结温度500℃~550℃,保温时间1~2h,烧结时施加压力400MPa~500MPa,真空度<10-3Pa。
[0027] 高熵合金是由至少五种以上主元素按等原子比或接近等原子比组成的一种合金,具有简单的体心立方或面心立方或两者兼有的晶体结构。由于晶格畸变,高熵合金具有高的强度、硬度、耐磨性、耐高温强度等优点;而AlCoCrFeNiTi0.5高熵合金具有强度高(抗压屈服2000-2260Mpa)、塑性好(压缩率为22%)、稳定性好等优点,本发明利用AlCoCrFeNiTi0.5高熵合金粉末颗粒作为增强体,利用金属基增强体与基体之间良好的界面润湿,使增强体颗粒与基体之间产生稳定有效的界面,解决现有铝基复合材料基体与增强体难以生成有效界面的问题;利用AlCoCrFeNiTi0.5高熵合金自身高的强度、硬度、很好的塑性,实现在提高复合材料强度的同时明显提高复合材料的塑性,因而有效提高了铝基复合材料的综合力学性能。同时AlCoCrFeNiTi0.5高熵合金由于其很高的晶格畸变因而具有非常好的热稳定性,能够在足够高的温度下进行烧结,获得很好的烧结质量,使铝基复合材料的性能达到或超过使用传统增强相所生产的制品。
[0028] 本发明工艺简单、能耗和成本均比较低、易于在生产中实现,有效地实现Al基复合材料的增强增塑,适用于常见的放电等离子烧结、热压烧结等粉末冶金方法。附图说明
[0029] 以下结合附图和实施例对本发明进一步说明。
[0030] 图1为本发明的工艺流程图
[0031] 图2为本发明实施例1所制得的AlCoCrFeNiTi0.5高熵合金增强铝基复合材料的XRD图谱。
[0032] 图3为本发明实施例2所制得的AlCoCrFeNiTi0.5高熵合金增强铝基复合材料的背散射(SSD)图谱。

具体实施方式

[0033] 以下结合实施例对本发明进一步说明。
[0034] 实施例1:包括制备高熵合金铸锭步骤、制备高熵合金粉末步骤、制备复合粉末步骤和烧结成型步骤:
[0035] (1)制备高熵合金铸锭步骤:
[0036] 将铝、钴、铬、铁、镍、海绵钛按照原子比Al:Co:Cr:Fe:Ni:Ti=1:1:1:1:1:0.5称取相应质量,放置于固定在真空非自耗电极电弧炉中的水冷铜坩埚内,在真空环境下进行熔炼,并通入Ar气保护,反复熔炼3次防止成分偏析,得到成分均匀的高熵合金铸锭;
[0037] 各原料纯度不低于99.5wt.%,放置于水冷铜坩埚时,各原料按其熔点由低到高依次从下往上放置;
[0038] (2)制备高熵合金粉末步骤:
[0039] 首先将所述高熵合金铸锭铣削成切屑,然后将切屑放入球磨机球磨至其粒径≤48μm,制备成高熵合金粉末颗粒;球磨过程在真空下进行,并通入Ar气保护;
[0040] 球磨工艺参数为:球料质量比10:1,转速为400r/min,球磨时间3h,用无水乙醇作为过程控制剂;
[0041] (3)制备复合粉末步骤:
[0042] 将所述高熵合金粉末颗粒和铝粉按照体积比1:9混合,采用球磨机球磨,得到复合粉末,球磨过程在真空下进行,并通入Ar气保护;
[0043] 所述铝粉纯度大于99.5%,粉末粒径为≤100μm;
[0044] 球磨工艺参数为:球料质量比5:1,转速300r/min,球磨时间6h,用无水乙醇作为过程控制剂;
[0045] (4)烧结成型步骤:
[0046] 将所述复合粉末装入石墨模具中,采用放电等离子烧结工艺进行烧结,得到高熵合金颗粒增强铝基复合材料;
[0047] 所述放电等离子烧结工艺的参数为:烧结温度500℃,保温时间10min,烧结时施加压力70Mpa,升温速率50℃/min,真空度<20Pa;
[0048] 实施例1所制得的AlCoCrFeNiTi0.5高熵合金增强铝基复合材料的XRD图谱如图2所示,图中,纵轴为衍射峰强度,横轴为衍射,黑三角表示Al,黑点表示高熵合金(BCC),显示复合材料中仅含有铝相和高熵合金增强相,并没有新相生成,说明烧结过程中没有发生过度的界面反应,产生界面相。
[0049] 实施例2:
[0050] 和实施例1的区别在于:步骤(1)中反复熔炼5次;步骤(2)中球磨工艺参数:球料比为15:1,转速调为200r/min,球磨时间调为1h;步骤(3)高熵合金粉末颗粒和铝粉体积比为1:4混合,球磨工艺参数:球料质量比为10:1,转速调为100r/min,球磨时间调为3h;步骤(4)中放电等离子工艺参数调整为:烧结温度为550℃,保温时间为6min,烧结时施加压力-3
50MPa,升温速率为100℃/min,真空度<10 Pa。
[0051] 实施例2所制得的AlCoCrFeNiTi0.5高熵合金增强铝基复合材料的背散射(SSD)图谱如图3所示。图中明亮区域为高熵合金增强体,黑色区域为铝基体。高熵合金颗粒在铝基体中分布均匀,说明本发明制备工艺实现了增强体的均匀分布;增强相形态轮廓明晰明显,说明增强体没有与基体产生过度的界面反应。
[0052] 实施例3:
[0053] 和实施例1的区别在于:步骤(4)中采用热压烧结工艺进行烧结,烧结温度为550℃,保温时间为1h,烧结时施加压力400MPa,真空度<10-3Pa。
[0054] 实施例4:
[0055] 和实施例2的区别在于:步骤(4)中采用热压烧结工艺进行烧结,烧结温度为500℃,保温时间为2h,烧结时施加压力500MPa,真空度<10-3Pa。
[0056] 表1为本发明所制得的AlCoCrFeNiTi0.5高熵合金增强铝基复合材料与纯铝以及非晶合金增强铝基复合材料的力学性能数据对比。
[0057] 在表1中,对照例1为纯铝粉末烧结材料,对照例2为无增强的2024铝合金材料,对照例3、对照例4为Fe49.9Co35.1Nb7.7B4.5Si2.8非晶合金增强Al基复合材料,见D.Markó,K.G.Prashanth,S.Scudino,Z.Wang,N.Ellendt,V.Uhlenwinkel,J.Eckert,J.Alloy.Compd.615,Supplement 1(2014)S382-S385,对照例3、对照例4的增强相为Fe49.9Co35.1Nb7.7B4.5Si2.8非晶合金,基体为2024铝合金。
[0058] 表1
[0059]
[0060] 对照例2~对照例4未测试抗压强度;对照例3中,非晶合金增强相加入量为10vol.%,复合材料抗拉强度与对照例2相比基本不变,而延伸率大幅下降为对照例2的
50%;对照例4中非晶合金增强相加入量为40%vol.%,复合材料抗拉强度与对照例2相比提高20%,而延伸率下降为对照例2的33.5%。
[0061] 在实施例1中,当AlCoCrFeNiTi0.5高熵合金加入量为10vol.%时,高熵合金颗粒增强铝基复合材料的最大抗拉强度为114.1Mpa,抗压强度为160.2Mpa,与对照例1相比分别提高了32.4%和30.2%;延伸率为12.7%,与对照例1相比提高了29.6%。
[0062] 在实施例2中,当AlCoCrFeNiTi0.5高熵合金加入量为20vol.%时,高熵合金颗粒增强铝基复合材料的最大抗拉强度为163.9Mpa,抗压强度为203.7Mpa,与对照例1相比分别提高了90.1%和65.6%;延伸率为14.9%,与对照例1相比提高了50%。
[0063] 与对照例1相比,AlCoCrFeNiTi0.5高熵合金增强铝基复合材料在强度和塑性上都有明显提高,而对照例3、对照例4中,与对照例2相比,复合材料的强度仅略有提高,而塑性却降低明显。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈