首页 / 专利库 / 表面处理和涂层 / 表面处理 / 真空镀膜 / 物理气相沉积 / 脉冲激光沉积 / 包含功能梯度部件的电化学电池

包含功能梯度部件的电化学电池

阅读:180发布:2021-08-15

专利汇可以提供包含功能梯度部件的电化学电池专利检索,专利查询,专利分析的服务。并且以功能梯度为特征并具有预期的周期性配置的 电化学 电池 或 电池组 及其制造方法。设计一种或多种制备电池/电池组部件的方法,这些方法单独使用或联合使用,以实现某种热的、机械的、动 力 学的和空间的特性,并由此提高电池的性能。所述热特性涉及充电和放电过程中的 温度 分布。所述动力学特性涉及所述电池或电池组的 倍率性能 ,诸如离子扩散过程和 电子 传导。所述机械特性涉及所述电池或电池组的使用寿命和效率,诸如所述部件材料的强度和模量。最后,所述空间特性涉及 能量 和功率 密度 、 应力 和温度减小机制、以及扩散和传导增强。所述创新的 电化学电池 或电池组对于需要高倍率性能、高能量/功率密度、良好的耐用性、高安全性和长使用寿命的所有应用都是有用的。,下面是包含功能梯度部件的电化学电池专利的具体信息内容。

1.一种微结构化电化学电池和/或电池组器件,包括:
阳极
与所述阳极反对称布置的阴极
在所述阴极和所述阳极之间的预定距离;
电绝缘体,设置来使所述阳极与阴极隔离,所述电绝缘体的特征在于,在用于将所述阳极和阴极隔开的所述预定距离的一部分内或一层或多层绝缘材料内变化的梯度材料特性;
纳米复合阳极材料是所述阳极的特征,所述纳米复合阳极材料具有一个或多个第一强度特性,所述第一强度特性是一个或多个第二广延特性的函数;
纳米复合阴极材料是所述阴极的特征,所述纳米复合阴极材料具有一个或多个第一强度特性,所述第一强度特性是一个或多个第二广延特性的函数;
设置在所述阳极和所述阴极之间的电解质材料;
与所述阴极相连的阴极集电极;以及
与所述阳极相连的阳极集电极。
2.根据权利要求1所述的器件,如果沉积的集电极材料的机械特性不适合进一步沉积,则还包括基底以支撑所述集电极。
3.一种电化学电池,包括:
阳极部件,具有一个或多个第一空间特征,并主要由第一纳米复合材料形成,所述第一纳米复合材料具有范围从约50埃到约500纳米的平均特征尺寸,所述第一纳米复合材料具有大于8微欧姆厘米的第一电阻率值;
阴极部件,具有一个或多个第二空间特征,所述阴极部件与所述阳极部件是工作耦联的,并主要由第二纳米复合材料形成,所述第二纳米复合材料具有从约50埃到约500纳米范围的平均特征尺寸,所述第二纳米复合材料具有大于14.3欧姆厘米的第二电阻率值;
在所述阳极和所述阴极之间的预定间隙,所述预定间隙大于500纳米;
设置在所述阳极和所述阴极之间的电解质
设置在所述阳极和所述阴极之间的隔离部件;
至少通过第一接触与所述阳极连接的第一集电极;以及
至少通过第二接触与所述阴极连接的第二集电极。
4.根据权利要求3所述的电化学电池,还包括总电阻,所述总电阻从一个或多个引线的电阻值、所述第一接触的电阻值、所述第二触的电阻值、所述第一电阻值、所述第二电阻值以及所述电化学电池的一个或多个不同元件之间的一个或多个电阻值的和来获得。
5.根据权利要求3所述的电化学电池,其中,所述第一纳米复合材料基本上没有等于或大于1eV的局域化电荷。
6.根据权利要求3所述的电化学电池,其中,所述第二纳米复合材料基本上没有等于或大于1eV的局域化电荷。
7.根据权利要求3所述的电化学电池,其中,所述第一纳米复合材料至少从过渡金属、金属化物、IA、IVA、VIA、和IIB族中选择。
8.根据权利要求3所述的电化学电池,其中,所述第二纳米复合材料至少从过渡金属、金属氧化物、IA、VIII、IVA、VIA、IB、IVB和VIIB族中选择。
9.根据权利要求3所述的电化学电池,其中,所述电解质从液体、固体或凝胶中选择。
10.根据权利要求3所述的电化学电池,其中,所述电解质从陶瓷、半导体聚合物材料或溶液中的任何材料中选择。
11.根据权利要求3所述的电化学电池,其中,所述电解质为均匀的或不均匀的。
12.根据权利要求3所述的电化学电池,其中,所述电解质为纳米复合、微米复合、或其它多相结构。
13.根据权利要求3所述的电化学电池,其中,所述电解质包括一个或多个第一强度特性,所述第一强度特性是一个或多个第二广延特性的函数。
14.根据权利要求3所述的电化学电池,其中,所述阳极部件和/或阴极部件包含掺杂物以保持所述阳极部件和/或所述阴极部件中的一个或两者的表面基本上没有枝晶。
15.根据权利要求14所述的电化学电池,其中,所述掺杂物选自IA族到VIIA族、IIB族到VIIB族和VIII族中的任何一个或多个组合,包含并且任意排列所述任何一个或多个组合。
16.根据权利要求14所述的电化学电池,其中,所述掺杂物呈均匀配置或梯度配置。
17.一种制备用于电化学电池的电极的方法,所述方法包括:
设置具有预定空间图案的基底部件;
以保形方式在所述预定空间图案上使用一种或多种物类沉积一定厚度的材料,所述厚度的材料的特征为具有约500纳米或小于500纳米平均特征尺寸的纳米复合结构;
从所述厚度材料的第一空间区域到所述厚度材料的第二空间区域,在与所述厚度材料的沉积相关的时间段中调节与所述沉积相关的一个或多个参数;以及
产生电极元件,所述电极元件的一个或多个特性从所述第一空间区域到所述第二空间区域具有梯度特征。
18.根据权利要求17所述的方法,其中,所述电极使用由蒸发物理气相沉积(PVD)、化学气相沉积、低压化学气相沉积(LPCVD)、原子层沉积(ALD)、激光直写(DLW)、溅射、射频磁控溅射微波等离子体增强化学气相沉积(MPECVD)、脉冲激光沉积(PLD)、纳米压印、离子注入激光烧蚀、喷射沉积、喷雾热分解喷涂或等离子体喷涂组成的组中的至少一种技术来形成。
19.根据权利要求17所述的方法,还包括:在使用所述电极元件的电化学电池中添加非液体电解质,所述非液体电解质使用选自物理气相沉积、激光沉积、离心机、旋涂、微波、热梯度、烧结、喷射沉积和化学气相沉积中的方法来制备。
20.根据权利要求19所述的方法,其中,阳极元件、所述电解质、和阴极元件顺序地或按相反的顺序来沉积。
21.根据权利要求17所述的方法,其中,所述一个或多个特性选自包括质量密度能量密度、功率密度、成分、浓度、热/电/离子的传导率、热/离子的扩散率、最大应、最大强度、模量、延展性和可塑性的强度特性。
22.根据权利要求17所述的方法,其中,所述电极元件的特征在于优化的形态,产生所述优化形态用来在阳极、电解质、阴极和集电极中消除内应力、中止裂缝生长、最大化材料强度以及稳定活性材料结构。
23.根据权利要求17所述的方法,还包括更新过程,如果一个或多个特性的梯度特征从所述第一空间区域到第二空间区域消失,则重新从所述第一空间区域到所述第二空间区域引入所述梯度特征。
24.根据权利要求17所述的方法,其中,所述预定空间图案为电极图样,所述电极图样通过数学方法提供。
25.根据权利要求24所述的方法,其中,所述数学方法使用对所允许的一组材料特性中的强度特性的最小化或最大化。
26.根据权利要求25所述的方法,其中,所述数学方法至少从基于代理模型的分析、遗传算法、自适应拓扑优化、实验设计、方差分析/多元方差分析、基于池的分析、固体各向同性中间质量惩罚微结构模型(SIMP)、幂惩罚刚度模型、连续体结构拓扑优化、法线边界交叉(NBI)优化方法、多元优化方法或多学科设计优化中选择。
27.根据权利要求17所述的方法,其中,所述沉积和调节在沉积腔中进行。
28.根据权利要求27所述的方法,其中,所述沉积腔用来产生完整的电池。
29.一种制备电化学电池的方法,所述方法包括:
设置具有预定空间图案的基底元件;
以保形方式在所述预定空间图案上使用一种或多种物类沉积第一厚度的材料,所述第一厚度的材料的特征为具有约500纳米或小于500纳米平均特征尺寸的纳米复合结构;
从所述第一厚度材料的第一空间区域到所述第一厚度材料的第二空间区域在与所述第一厚度材料的沉积相关的时间段中调节与所述沉积相关的一个或多个参数,以形成第一电极元件,所述第一电极元件的一个或多个特性从所述第一空间区域到所述第二空间区域具有梯度特征;
在所述第一电极元件上形成电解质;以及
在所述电解质上形成第二电极元件。
30.根据权利要求29所述的方法,其中,所述第一电极元件、所述第二电极元件和所述电解质在一个或多个沉积腔中形成。
31.根据权利要求29所述的方法,其中,所述第一电极元件为阴极,所述第二电极元件为阳极。
32.根据权利要求29所述的方法,其中,所述第一电极元件为阳极,所述第二电极元件为阴极。
33.根据权利要求29所述的方法,还包括:沉积阳极集电极和阴极集电极。
34.根据权利要求29所述的方法,其中,所述第一电极元件、所述电解质和所述第二电极元件顺序沉积。
35.根据权利要求29所述的方法,其中,所述第一电极元件、所述电解质和所述第二电极元件在不破坏真空的情况下顺序并连续地沉积。
36.根据权利要求29所述的方法,还包括:在所述第一电极元件和所述第二电极元件之间提供隔离部件。
37.根据权利要求36所述的方法,其中,所述隔离部件被设置在所述电解质中。
38.一种制备用于电化学电池的电极的方法,所述方法包括:
设置包括集电极的基底部件;
在所述基底元件的表面区域上使用一种或多种物类沉积一定厚度的材料,所述厚度的材料的特征为纳米复合结构;
从所述厚度材料的第一空间区域到所述厚度材料的第二空间区域在与所述厚度材料的沉积相关的时间段中调节一个或多个参数;以及
形成电极元件,所述电极元件的一个或多个特性从所述第一空间区域到所述第二空间区域具有梯度特征。
39.一种制备用于电化学电池的周期性几何特征的方法,所述方法包括:
通过周期性改变从至少是磁场电场温度梯度、以及光束强度中选择的一个或多个参数,在电极元件基底区域或集电极区域作掩模并曝光,或者暴露所述电极元件自身,以便在所述基底的暴露区域散布一个或多个前体。
40.根据权利要求39所述的方法,还包括:利用从钻孔、作掩模、模塑、压痕、纳米压印、研磨、激光烧蚀、辐射中子散射中选择的至少一种或多种方法,对所述电极元件的基底或所述电极元件自身的暴露区域的一个或多个空间区域进行周期性修饰。

说明书全文

包含功能梯度部件的电化学电池

[0001] 相关申请的交叉引用
[0002] 本申请要求2008年8月5日提交的美国临时专利申请No.61/086,161的优先权,上述美国临时专利申请的内容通过引述结合于此以用于各种用途。

技术领域

[0003] 本发明一般地说涉及电化学电池。更具体地说,本发明提供具有功能梯度化的以及结构化的部件以用于电极的器件和方法。仅举例来说,本发明可以用于包括汽车、通信、一般的能量存储、便携式电器、电动工具、电源等的各种应用中。

背景技术

[0004] 如表明的那样,电化学电池用于存储能量以用于各种应用中。这些应用包括便携式电器,诸如手机、个人数字助理、音乐播放器、视频摄像机等。这些应用也包括电动工具、用于军事用途(例如,通信、照明、成像等)的电源、用于航空航天应用的电源(例如,卫星用的电源)、用于车辆应用(例如,混合动电动车、外接充电式混合动力电动车、以及纯电动车)中的电源等。
[0005] 常规的电化学电池使用造纸技术(paper-making techniques)来制造。这些常规的电化学电池制备时没有解决内部机械应力、嵌入(intercalation)和热致应力。因此,在这些常规的电池中存在缺陷。这些缺陷包括有限的使用寿命、过早损坏、有限的存储容量以及其它不足之处。为了在不减损使用寿命的情况下增加电化学电池的能量和功率密度,已经提出了其它的制造方法。同时,已经开发出使用薄膜、微结构化、功能梯度化材料(诸如“M.M.Thackeray,S.-H.Kang,C.S.Johnson,Li2MnO3-stabilized LiMO2(M=Mn,Ni,Co)Electrodes for Lithium-Ion Batteries,Journal of Material Chemistry17,3112-3125,2007”中所描述的Li2MnO3稳定的LiMO2(M=Mn,Ni,Co))的电极结构。这种类型的电池通常具有被夹在几何形状类似的阴极层和阳极层之间的非电解质。例如,在一种典型的薄膜锂离子电池中,阴极通常为LiCoO2、LiMn2O4,而电解质通常为锂磷氮(lithium-phosphorus-oxynitride,LIPON),阳极为锂箔。薄膜锂离子电池显示出具有
1,000Wh/Kg的能量密度和10,000W/Kg的功率密度,同时放电充电循环数目可能是无限制的。
[0006] 产生性价比很高的微结构化和功能梯度化电极、电池或电池组的主要难题在于,精确地调节材料特性,使材料具有所需的特殊作用。为了获得精确的材料特性,制造过程需要在受控的环境中进行。对于航空航天电池组以及可移植电池组,传统的薄膜电化学电池是在超净间中制造的。然而,这样的过程成本太高,并且不能用于高技术电化学电池的批量生产。
[0007] 因此,希望有成本效率高、生产能力高的制造技术以及微结构化和功能梯度化的电极。

发明内容

[0008] 根据本发明,提供用于电化学电池的技术。更具体地说,本发明提供具有功能梯度化的以及结构化的部件以用于电极的器件和方法。仅举例来说,本发明可以用于包括汽车、通信、一般的能量存储、便携式电器、电动工具、电源等的各种应用中。
[0009] 本发明的实施例包括一种具有连续沉积层的微结构化的薄膜电化学电池,所述连续沉积层具有至少一个(或多个)作为至少一个(或多个)广延特性的函数变化的强度特性,以及包括制造这类电化学电池的相关方法。所述强度特性包括但不限于密度、成分、浓度、热/电/离子的传导率、热/离子的扩散率、最大应力、最大强度、模量、延展性、可塑性及其组合等。另外,所述广延特性包括但不限于体积、面积、厚度及其组合等。
[0010] 仅举例来说,本发明提供锂基电池的用途,但应该明白,其它材料(诸如锌、和镍)可以以同样或类似的方式来设计。层的沉积和层的微结构的形成通过若干方法之一来完成,这些方法可以单独使用或相互联合使用。电极和电池的连续制造通过各种技术来实现。本发明的制造过程在配有足够材料以生成完整电池的沉积腔内通过沉积阳极、阴极、电解质、隔离部件和集电极层来完成。如这里所使用的,术语“连续的过程”意味着基本上没有任何中断,或者说,每个过程都在预定的环境(例如真空)中。利用这种方法构造的电池组至少具有一个阳极、一个阴极、电解质,并根据所用到的电化学过程,可以有隔离部件。当然,可以有其它的变型、修改和替换。
[0011] 在本发明的一个实施例中,提供一种或多种包含微结构化形态的材料,所述微结构化形态具有至少一种减小嵌入和热膨胀应力、强化所述电极材料的机制。
[0012] 在本发明的另一个实施例中,提供一种或多种包含功能梯度结构的材料,所述功能梯度结构具有一个或多个作为所述材料的一个或多个广延特性的函数而变化的强度特性。所述强度特性包括但不限于密度、成分、浓度、热/电/离子的传导率、热/离子的扩散率、最大应力、最大强度、模量、延展性和可塑性。所述广延特性包括但不限于体积、面积和厚度。
[0013] 在本发明的另一个实施例中,提供一种阳极材料,所述阳极材料具有一种成分,该成分包含从IA、IVA、VIA和IIB族中选出的至少一种元素;提供一种阴极材料,所述阴极材料具有一种成分,该成分包含从IA、VIII、IVA、VIA、IB、IVB和VIIB族中选出的至少一种元素。
[0014] 在本发明的另一个实施例中,利用下列技术中的一种或多种技术来产生微结构。所述阳极集电极材料利用物理气相沉积技术形成在微结构化的基底上,或者,所述阳极集电极材料也可以不需要基底,而是单独的微结构化薄膜。所述阴极集电极材料利用物理气相沉积技术形成在微结构化的基底上,或者,所述阴极集电极材料也可以不需要基底,而是单独的微结构化薄膜。所述微结构化的电化学电池包括利用物理气相沉积技术顺序地或按相反顺序沉积的阳极、电解质和阴极。如这里所使用的,术语“微结构化”由普通含义来解释,并且这里的描述不应该是限制性的。例如,术语“微结构化”包括从约100纳米到约100微米以及500微米以下的特征尺寸,但也可以是其它特征尺寸。
[0015] 在本发明的另一个实施例中,提供一种方法,所述方法包括控制所述电极的结构以产生面包式悬突(breadloafing)。所述阳极与阳极集电极相连,其第二端与所述电解质相连。本发明所述的电解质,其第一端与所述阳极层互联,其第二端与所述阴极层互联。权利要求1中的阴极,其第一端与所述电解质互联,其第二端与所述阴极集电极相连。
[0016] 在本发明的另一个实施例中,提供包含控制所述材料以形成纳米复合电极的方法。所述阴极材料的纳米复合结构用来消除内应力、中止裂缝生长、最大化材料强度以及稳定活性材料结构。纳米复合材料通过沉积两层或多层具有不同晶体结构的同一材料来形成。在一个实施例中,通过沉积两层或多层具有不同晶体结构的同一材料、并在交替的层上使用掩模以产生图案来形成纳米复合材料。在另一个实施例中,通过沉积两层或多层不同材料来形成纳米复合材料。在又一个实施例中,通过沉积两层或多层不同材料层、并在交替的层上使用掩模以产生图案来形成纳米复合材料。在又一个实施例中,通过同时沉积两种或多种材料以便在活性材料的主要基质颗粒中产生一个或多个纳米分散相(nanodisperse phases)来形成纳米复合材料。在另一个实施例中,通过同时沉积两种或多种材料以便在活性材料的基质的颗粒边界附近产生分散的次级相来形成纳米复合材料。在另一个实施例中,通过同时沉积两种或多种材料以便在活性材料的基质颗粒的内部和边界附近均产生分散的次级相来形成纳米复合材料。在另一个实施例中,通过同时沉积两种或多种材料以引起相分离来形成纳米复合材料。如这里使用的,术语纳米复合包括从约50埃到约500纳米以及小于500纳米的特征尺寸,但根据普通意义,也可以是其它尺寸。
[0017] 在本发明的另一个实施例中,提供使用多种技术来制备功能梯度化、微结构化固态电极的方法,所述技术包含选自由蒸发、物理气相沉积(PVD)、化学气相沉积、溅射、射频磁控溅射微波等离子体增强化学气相沉积(MPECVD)、脉冲激光沉积(PLD)、激光烧蚀、喷射沉积、喷雾热分解喷涂或等离子体喷涂所组成的组中的至少一种技术,以及使用多种技术来制备功能梯度化、微结构化的非水性电解质的方法,所述技术包含选自由物理气相沉积、激光沉积、离心机、旋涂、微波、热控制、喷射和化学气相沉积所组成的组中的至少一种技术。
[0018] 在本发明的另一个实施例中,提供的方法包括作掩模和沉积以确定活性区域的精确形态,以便在阳极、电解质、阴极和集电极中消除内应力、中止裂缝生长、最大化材料强度以及稳定活性材料结构。
[0019] 在本发明的另一个实施例中,提供利用下列优化技术之一确定周期性的、不规则的、但并非任意的电极的形态的方法,所述优化技术包括但不限于,基于代理模型的分析(surrogate-base analysis)、遗传算法(genetic algorithm)、自适应拓扑优化(adaptive topology optimization)、实验设计(design of experiments)、方差分析/多元方差分析(ANOVA/MANOVA)、基于池的分析(basin based analysis)、固体各向同性中间质量惩罚微结构模型(solid isotropic microstructure with intermediate mass penalization,SIMP)、幂惩罚刚度模型(power penalized stiffness model)、连续体结构拓扑优化(topology optimization of continuum structure)、法线边界交叉优化方法(normal boundary intersection (NBI)optimization method)、多元优化方法(multivariable optimization method)或多学科设计优化(multidisciplinary design optimization)。
[0020] 在本发明的另一个实施例中,提供包含制备微结构化电极的方法。所述微结构化电极的特征在于使用图案化技术形成周期性图案,所述图案化技术选自一组技术,该组技术包含但不限于周期性改变磁场电场温度梯度和光束强度;周期性地在集电极或基底上散布前体;利用钻孔、作掩模、模塑、压痕、纳米压印、研磨、激光烧蚀、辐射中子散射周期性地修饰所述集电极或基底。
[0021] 在一个具体的实施例中,各种电池元件可以使用一种或多种技术来形成。这些技术包括蒸发、物理气相沉积(PVD)、化学气相沉积、低压化学气相沉积(LPCVD)、原子层沉积(ALD)、激光直写(DLW)、溅射、射频磁控溅射、微波等离子体增强化学气相沉积(MPECVD)、脉冲激光沉积(PLD)、纳米压印、离子注入、激光烧蚀、喷射沉积、喷雾热分解、喷雾涂布或等离子体喷涂。当然,可以有其它变型、修改和替换。
[0022] 此外,本发明提供一种微结构化的电化学电池和/或电池组器件。所述电池和/或电池组器件包括阳极和与所述阳极反对称布置的阴极。在一个具体实施例中,所述器件在所述阴极和所述阳极之间具有预定距离。设置电绝缘体以使所述阳极与阴极隔离。在一个具体实施例中,所述电绝缘体的特征在于,在所述预定距离的一部分内变化的梯度材料特性,或用来将所述阳极与阴极隔开的一层或多层绝缘材料。在一个具体的实施例中,所述器件具有纳米复合阳极材料,所述纳米复合阳极材料是所述阳极的特征。在一个优选实施例中,所述纳米复合阳极材料具有一个或多个第一强度特性,所述第一强度特性是一个或多个第二广延特性的函数。纳米复合阴极材料是所述阴极的特征。在一个具体的实施例中,所述纳米复合阴极材料具有一个或多个第一强度特性,所述第一强度特性是一个或多个第二广延特性的函数。在一个具体的实施例中,在所述阳极和所述阴极之间设置电解质材料。在一个具体实施例中,所述器件具有与所述阴极相连的阴极集电极以及与所述阳极相连的阳极集电极。
[0023] 此外,本发明提供一种电化学电池。所述电池具有阳极部件,所述阳极部件具有一个或多个第一空间特征,并主要由第一纳米复合材料形成,所述第一纳米复合材料具有从约50埃到约500纳米的平均特征尺寸。在一个具体的实施例中,所述第一纳米复合材料具有大于8微欧姆厘米的第一电阻率值,但可以是其它值。在一个具体的实施例中,所述电池具有阴极部件,所述阴极部件具有一个或多个第二空间特征。所述阴极部件与所述阳极部件是工作耦联(operably coupled)的,并主要由第二纳米复合材料形成,所述第二纳米复合材料具有从约50埃到约500纳米的平均特征尺寸。在一个具体的实施例中,所述第二纳米复合材料具有大于14.3欧姆厘米的第二电阻率值,但也可以是其它的值。在一个具体的实施例中,所述器件在所述阳极和所述阴极之间具有预定间隙。在一个具体的实施例中,所述预定间隙大于500纳米。所述器件也具有设置在所述阳极和所述阴极之间的电解质以及设置在所述阳极和所述阴极之间的隔离部件。所述器件具有至少通过第一接触与所述阳极耦联的第一集电极以及至少通过第二接触与所述阴极连接的第二集电极。
[0024] 此外,本发明提供一种制备电化学电池的方法。所述方法包括设置具有预定空间图案(例如,图案化的、周期性的)的基底部件。所述方法包括以保形方式在所述预定空间图案上使用一种或多种物类沉积第一厚度的材料。在一个具体的实施例中,所述第一厚度的材料的特征为具有约500纳米或小于500纳米平均特征尺寸的纳米复合结构。所述方法包括从所述第一厚度材料的第一空间区域到所述第一厚度材料的第二空间区域在与所述第一厚度材料的沉积相关的时间段中调节与所述沉积相关的一个或多个参数,以形成第一电极元件,所述第一电极元件的一个或多个特性从所述第一空间区域到所述第二空间区域具有梯度特征。所述方法在所述第一电极元件上形成电解质并在所述电解质上形成第二电极元件。
[0025] 在另一个具体实施例中,本发明提供一种制备用于电化学电池的电极的方法。所述方法包括设置包含集电极的基底部件。所述方法包括在所述基底元件的表面区域上使用一种或多种物类沉积一定厚度的材料。在一个具体的实施例中,所述厚度的材料的特征为纳米复合结构。所述方法包括从所述厚度材料的第一空间区域到所述厚度材料的第二空间区域在与所述厚度材料的沉积相关的时间段中调节一个或多个参数。所述方法也包括形成电极元件,所述电极元件的一个或多个特性从所述第一空间区域到所述第二空间区域具有梯度特征。
[0026] 此外,本发明提供一种制备用于电化学电池的周期性几何特征的方法。所述方法包括,通过周期性改变从至少是磁场、电场、温度梯度以及光束强度中选择的一个或多个参数,在电极元件基底区域或集电极区域作掩模并曝光,以便在所述基底的暴露区域散布一个或多个前体。在其它实施例中,所述方法还包括:利用从钻孔、作掩模、模塑、压痕、纳米压印、研磨、激光烧蚀、辐射和中子散射中选择的至少一种或多种方法,对所述基底的暴露区域的一个或多个空间区域进行周期性修饰。当然,可以有其它的变型、修改和替换。
[0027] 本发明的优点包括它所赋予的合理设计的能力以及多种材料的组合从而以新的配置产生电化学电池。这些反过来为所设计电池赋予优异的特性,并在构造原型电池中避免成本很高的反复试验。根据所述实施例,能够实现这些优点中的一个或多个优点。附图说明
[0028] 图1是根据本发明的一个实施例所述的周期性的、非规则的但并非任意的电极;
[0029] 图2A-2B是简化的剖面图,示出了根据本发明的一个实施例所述的功能梯度电极的制备;
[0030] 图3A-C是简化的剖面图,示出了根据本发明的一个实施例所述的呈现正弦微结构的电极的制备;
[0031] 图4A-D是简化的剖面图,示出了根据本发明的另一个实施例所述的呈现用于电极的纳米复合材料的电极的制备;
[0032] 图5(A)示出了根据本发明的另一个实施例所述的具有薄膜设计的阴极;
[0033] 图5(B)示出了根据本发明的另一个实施例所述的具有柱体设计的阴极;
[0034] 图5(C)示出了根据本发明的另一个实施例所述的具有正弦设计的阴极;
[0035] 图5(D)示出了柱体设计电极上的von-Mises应力的轮廓。

具体实施方式

[0036] 根据本发明,技术涉及三维叉指型电化学电池的制造。更具体地说,本发明提供用于制造三维叉指型电化学电池的三维元件的方法和系统。仅举例来说,本发明利用锂基电池,但应该明白,其它材料(诸如锌、银、铜和镍)可以以同样的方式来设计。另外,这种电池组可以用于各种应用,诸如便携式电器(手机、个人数字助理、音乐播放器、视频摄像机等)、电动工具、用于军事用途(通信、照明、成像等)的电源、用于航空航天应用中的电源(用于卫星的电源)、以及用于车辆应用(混合动力电动车、外接充电式混合动力电动车以及纯电动车)中的电源。这种电池组的设计也可以应用到这样的情形中,在该情形中,这种电池组不是系统中唯一的电源,其它的电力通过燃料电池、其它电池组、内燃机或其它燃烧装置、电容、太阳能电池等来提供。当然,可以有其它的变型、修改或替换。
[0037] 应该明白,如申明的那样,前面的一般性描述和下面的详细描述都只是示例性的和说明性的,并不对本发明产生限制。应该注意,如在说明书和所附权利要求书中所使用的那样,单数形式“a”、“an”和“the”包括复数指称,除非上下文清楚地表明并非如此。因此,例如,提及“一种材料”可以包括材料的混合;提及“一种化合物”可以包括多种化合物。
[0038] 在一个具体实施例中,本发明提供一种形状不规则但具有周期性空间特征的结构。在一个优选实施例中,所述不规则性并非在形状或尺寸上是任意的。所述不规则性具有预定的空间特征。如图1所示,所述结构具有第一周期性空间特征域和第二周期性空间特征域。在一个具体的实施例中,每个所述的域都包括共同特征,所述特征可以包括金字塔形状、梯形形状、圆顶形状、或任何其它形状(包括组合)等。当然,可以有其它变型、修改或替换。
[0039] 在本发明的一个具体实施例中,一种电化学电池器件包括功能梯度化和周期性空间特征的电极,所述电极的使用使得通过减小由于离子嵌入(ionic intercalation)所导致的应力、缓解由于电化学反应所导致的热应力、稳定充电放电过程中基质材料的晶格结构、以及提高基质材料的动力学特性可以提高使用寿命和效率。这里所描述的电极是指单个电化学电池的阳极和阴极。这里所指的阳极和阴极是基于电流的方向和模式。所以,在放电电化学电池(也即是伽伐尼电池)中,阳极是负端,但在充电电化学电池(也即是电解质电池)中,所述阳极为正端。负极则反过来。这里所描述的功能梯度电极的特征在于,成分和结构在单个电极或整个电化学电池的空间体积上逐渐变化。这里所描述的器件的电极或电化学电池的周期性空间特性用来局部地强化材料性能以便于电极内部的离子扩散、电子导电、以及应力减小。
[0040] 使用功能梯度电极的一个好处是,使某种材料的特殊功能与基质活性材料结合,以便添加该特殊功能的优点从而提高总的电极性能。这里所指的基质活性材料是电极内部的在电化学反应中负责与对电极进行电子能量交换的材料。这里所描述的功能包括但不限于,减小因基质材料晶格增量所导致的嵌入应力(intercalation stress)、缓解因所述整个器件内的能量交换所导致的热应力、以及增加特殊区域中的电极的动力学特性等。例如,如在美国专利No.6,680,143B2中所描述的,在锂离子电池的充电放电过程中,使用Li2MnO3会稳定LiMO2晶格结构,其中,M包括Mn、Ni和Co。但在这个专利中,所述稳定基质活性材料的晶格结构的功能是唯一的功能。
[0041] 在本发明的另一个实施例中,提供一种方法以确定如图1所示的电极的周期性空间特征。如所示的那样,根据一个具体的实施例,所述图包括第一周期和第二周期。在一个具体的实施例中,每个所述周期都包括各种形状,诸如金字塔形、梯形、圆顶形。所述电极的空间特征对电池性能有影响,诸如减小由于Li+嵌入和温度升高所导致的应力等。可以利用任何优化技术来确定优选的空间特征。所述优化方法包括但不限于由基于代理模型的分析、遗传算法、自适应拓扑优化、实验设计、方差分析/多元方差分析、基于池的分析、固体各向同性中间质量惩罚微结构模型(SIMP)、幂惩罚刚度模型、连续体结构拓扑优化、法线边界交叉(NBI)优化方法、多元优化方法或多学科设计优化所组成的组中的一种技术。本发明的一个优选实施例将具有正弦电极纵断面轮廓,其中,所述正弦曲线的振幅和频率将由上面列出的优化技术来确定,以便具有健壮的性能、长的使用寿命以及高的安全性。当然,可以有其它的变型、修改和替换。
[0042] 在本发明的某些实施例中,可以改变与电极材料沉积相关的气氛。在一个实施例中,合适的气氛包括氧气氛,以产生金属氧化物材料。在其它的实施例中,所述气氛可以是氮气氛,以便产生电解质层或氮化物材料。
[0043] 在本发明的一些实施例中,可以连续地或台阶状地改变与电极材料形成相关的温度,以获得特定的材料微结构。在一个实施例中,可以引入高达800℃的退火步骤,以引起非晶金属氧化物材料层的重结晶。
[0044] 在其它实施例中,可以通过冷却基底并以固定的速率散热来保持环境温度的恒定。
[0045] 在本发明的一些实施例中,所述电池的具有从100纳米到100微米或500微米以下范围的几何特征的结构化部件可以单独或联合使用下面所列的任何合适的技术来制备:蒸发、物理气相沉积(PVD)、化学气相沉积、低压化学气相沉积(LPCVD)、原子层沉积(ALD)、激光直写(DLW)、溅射、射频磁控溅射、微波等离子体增强化学气相沉积(MPECVD)、脉冲激光沉积(PLD)、纳米压印、离子注入、激光烧蚀、喷射沉积、喷雾热分解、喷雾涂布或等离子体喷涂。当然,可以有其它的变型、修改或替换。
[0046] 在本发明的另一个实施例中,用于每个部件的优选材料包括但不限于:包含薄箔形铜(Cu)、(Al)、不锈或其它合适的导电合金的基底材料,所述基底材料载有包含锂金属(Li)、锂氧化物(Li4Ti5O12)、石墨(C)或中间相结构(meso-carbon structure)(诸如微球或其它微结构)的阳极材料;在所述第一电极材料上并包含锂磷氧氮(LIPON)、与聚氧化乙烯(poly-ethylene oxide,PEO)、聚偏二氟乙烯(poly-vinylidenefluoride,PVDF)或PEO和PVDF的组合混合的锂盐(诸如LiClO4/LiPF6)的电解质材料;以及在所述电解质材料上并包含层叠的金属氧化物材料(诸如LiCoO2)、尖晶石材料(诸如LiMn2O4)、橄榄石材料(诸如LiFePO4、Li(Ni1/3Mn1/3Co1/3)O2、LiNixCoyAl(1-x-y)O2(NCA)、LiNixMnyCo(1-x-y)O2(NCM))的阴极材料。所述方法和器件的进一步的细节可以在本说明书中找到,特别是可以在下面找到。下面的描述只是例子,在这里它们不应该不当地限制权利要求书的范围。本领域中的普通技术人员会意识到其它的变型、修改和替换。
[0047] 例1一种功能梯度电极及其制造技术
[0048] 在图2A和2B中,一种功能梯度石墨阳极这样来产生,即,从集电极到距离聚合物电解质表面的某个预定距离使穿过聚合物电解质的激光束逐层地聚焦,并且当激光束的聚焦点从所述集电极逐渐移开时,该激光束的通断频率降低。电极1包含覆盖在铜集电极3上的聚合物电解质(LiPF6加上聚氧化乙烯,PEO)2,如图2A中详细描述的那样。由于Nd:YAG激光束5的能量高,激光束所瞄准的聚合物电解质中的聚合物将石墨化为图2B中的9。另外,由于激光束的通断频率下降(如图2B中的6到8所示),所以,一层中的石墨化聚合物的面积将减小。因此,石墨状电极的浓度将在远离集电极的时候逐渐下降,如图2B中的9所示。黑颜色的强度9表示石墨的浓度。当然,可以有其它变型、修改和替换。
[0049] 例2微结构化电极的制造
[0050] 在图3A、3B和3C中,利用(Si)基底11作为模板制造具有周期性但非任意的几何形状的微结构化LiMn2O4阴极。使用Nd:YAG激光13来加工所述基底并去掉材料14,产生一组具有利用计算机辅助设计(CAD)软件获得的预定几何形状12的沟和脊。根据计算机模拟,所述设计表明,LiMn2O4材料中的嵌入应力最小化了。一旦完成了所述基底加工,利用物理气相沉积(PVD)在所述基底上沉积保形材料层。分别是,厚度等于或小于50埃的第一钛(Ti)附着层18,厚度等于或大于500纳米的第二铝(Al)层19,以用作阴极集电极。在沉积了所述集电极之后,沿用由所述基底压印出来的同样的几何形状形成活性材料(LiMn2O4)20。所述活性材料的厚度为1-10微米。当然,可以有其它变型、修改和替换。
[0051] 例3用于电极的纳米复合材料的制造
[0052] 在图4A、4B、4C和4D中,利用物理气相沉积通过沉积保形材料层来制备LiMn2O4部分稳定阴极。这里所示的同样的过程可以在有基底22预存在或无基底22预存在的情况下使用。在后者的情形中,所述集电极也用作基底材料22。沉积一层厚度为100到500纳米的第一层LiMn2O4 23。在完成所述第一层之后,在其上覆盖几何特征为100纳米或更大的掩模26,并沉积一层Li2MnO3 29。最后,去掉所述掩模并沉积厚度为100到500纳米的另一层LiMn2O4 34,以嵌入先前产生的Li2MnO3特征。
[0053] 也可以不用掩模,而是采用溅射Li2MnO3以在所述第一层上产生不规则的第二相区域,然后沉积厚度为100到500纳米的一层LiMn2O4以嵌入所述第二相。第三种选择是,在厚度为50到100纳米的第一层LiMn2O4上产生均匀的Li2MnO3层,然后产生厚度为100到500纳米的新的一层LiMn2O4以夹住所述Li2MnO3层。Li2MnO3区域的功能是,当在放电期间Li+离子的数目耗尽并且结构变为亚稳态时,使LiMn2O4的尖晶石晶体结构稳定。通常,所述阴极材料会转换为更稳定的尖晶石型结构,这种结构会降低所述阴极的高电位并限制容量和可再充电性,然而,所述第二相就防止了这种情况的发生。当然,可以有其它的变型、修改和替换。
[0054] 例4面包式悬突:与电解质指状交叉的正弦式电极,以及与电解质指状交叉的梳状电极
[0055] 本例展示了确定具有最佳电极形状的新电化学电池的过程。设计者所遇到的问题的一个例子是,三维电极具有三种不同形态的设计:图5A中的薄膜、图5B中的柱形以及图5C中的正弦形状。用于三维电化学电池的材料是,作为阳极集电极(图5A中的101、图5B中的108、图5C中的113)的铜、作为阳极(图5A中的102、图5B中的109、图5C中的114)的锂金属、作为阴极(图5A中的103、图5B中的110、图5C中的115)的锂锰氧化物、作为电解质(图5A中的104、图5B中的111、图5C中的116)的含有锂盐(LiPF6)的聚合物(聚氧化乙烯,PEO)、以及作为阴极集电极的铝(图5A中的105、图5B中的112、图5C中的117)。
因为使用了聚合物电解质,所以不需要隔离件。这三种电化学电池(100、106和112)通过物理气相沉积(PVD)技术来制造。因此,面包式悬突是不可避免的。由于LiMn2O4 103的动力学特性(诸如Li+的扩散性以及导电性)低的缘故,电池100的电池性能不适于高倍率性能(high-rate performance)。所以,增加LiMn2O4电极的表面积将增加LiMn2O4电极与所述电解质的接触;从而增加所述高倍率性能。电池106和112的形态有两种可能性。利用共同受让、共同待决的美国专利申请No.12/484,959(通过引述而结合在这里)中所描述的计算技术作为数值实验,发现最大应力发生在LiMn2O4 110与集电极111连接的边缘处,如图5D所示。当然,可以有其它变型、修改和选择。
[0056] 尽管上面是具体实施例的完整描述,但可以使用各种修改、替换结构以及等价物。所以,上面的描述和示例不应该视为限制本发明的范围,本发明的范围由所附权利要求书来定义。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈