首页 / 专利库 / 表面处理和涂层 / 电沉积 / 用于电沉积光滑薄膜的方法和电解质

用于电沉积光滑薄膜的方法和电解

阅读:1025发布:2020-05-24

专利汇可以提供用于电沉积光滑薄膜的方法和电解专利检索,专利查询,专利分析的服务。并且一种涉及含有表面光滑添加剂的 电解 质的 电沉积 ,其可产生初始凸起尖端的自修复,而非自生长,所述凸起尖端会导致在基底和/或 薄膜 表面上形成粗糙和/或支晶。为了从 电解质 溶液中的一种或多种反应物将第一导电材料(C1)电沉积在基底上,所述电解质溶液的特征在于,一种可溶性表面光滑添加剂,所述表面光滑添加剂中含有第二导电材料(C2)的阳离子,其中C2的阳离子在溶液中的有效电化学还原电势低于反应物的有效电化学还原电势。,下面是用于电沉积光滑薄膜的方法和电解专利的具体信息内容。

1.一种电解质溶液,其用于从电解质溶液中的一种或多种反应物将第一导电材料
(C1)电沉积在基底上,所述电解质溶液的特征在于可溶的表面光滑添加剂,所述可溶的表面光滑添加剂中含有第二导电材料(C2)的阳离子,其中C2的阳离子在溶液中的有效电化
学还原电势低于反应物的有效电化学还原电势。
2.权利要求1的电解质溶液,其中C1是金属材料,并且所述反应物中包含C1的阳离
子。
3.权利要求2的电解质溶液,其中C1包含一种选自以下的金属:Li、Na、Mg、Al、Sn、Ti、Fe、Ni、Cu、Zn、Ag、Pt、Au以及它们的结合。
4.权利要求1的电解质溶液,其中C1包含导电聚合物,并且所述反应物含有所述聚合
物的单体。
5.权利要求1的电解质溶液,其中C2的阳离子为金属阳离子。
6.权利要求5的电解质溶液,其中C2的阳离子包含选自以下的金属:Cs、Rb、K、Ba、Sr、Ca、Li以及它们的结合。
7.权利要求1的电解质溶液,其中C2的阳离子在溶液中所具有的活性使得C2的阳离
子的有效电化学还原电势低于反应物的有效电化学还原电势。
8.权利要求1的电解质溶液,其中C2的阳离子在溶液中所具有的浓度使得C2的阳离
子的有效电化学还原电势低于反应物的有效电化学还原电势。
9.权利要求1的电解质溶液,其中C2的阳离子的浓度小于或等于反应物浓度的30%。
10.权利要求1的电解质溶液,其中C2的阳离子的浓度小于或等于反应物浓度的5%。
-
11.权利要求1的电解质溶液,其中表面光滑添加剂含有阴离子,所述阴离子选自PF6、
- - - - - - - - - - 2-
AsF6、BF4、N(SO2CF3)2、N(SO2F)2、CF3SO3、ClO4、I、Cl、OH、NO3、SO4 和它们的结合。
12.权利要求1的电解质溶液,其中所述基底为电极。
13.权利要求12的电解质溶液,其中所述电极含有锂。
14.权利要求12的电解质溶液,其中所述电极含有碳。
15.权利要求12的电解质溶液,其中所述电极为储能设备中的电极。
16.权利要求1的电解质溶液,其中C2的阳离子对于C1或反应物不具有化学活性或电
化学活性。
17.一种在第一导电材料(C1)电沉积在基底表面上的过程中改进表面光滑度的方法,
所述方法包括:
提供电解质溶液,所述电解质溶液含有反应物,C1由所述反应物合成;还含有可溶性
表面光滑添加剂,所述表面光滑添加剂含有第二导电材料(C2)的阳离子,其中C2的阳离子在溶液中的有效电化学还原电势低于反应物的有效电化学还原电势;并且
施加电势,从而将反应物还原,并在基底表面上形成C1。
18.权利要求17的方法,所述方法还包括:
在基底表面的凸起处集聚C2的阳离子,从而在各个凸起的附近形成静电防护区域;并

在所述静电屏蔽区域暂时排斥所述反应物。
19.权利要求17的方法,其中C1是金属材料,并且反应物包含所述C1的阳离子。
20.权利要求19的方法,其中所述C1选自Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Al、Ga、In、Tl、Ge、Sn、Pb、As、Sb、Bi、Se、Te、Bi、Po、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、W、Pt、Au、Hg以及它们的结合。
21.权利要求19的方法,其中C1包含Li。
22.权利要求17的方法,其中C1包含一种导电聚合物,并且所述反应物中包含所述聚
合物的单体。
23.权利要求17的方法,其中,所述C2的阳离子为金属阳离子。
24.权利要求23的方法,其中,所述C2的阳离子包含选自下列的金属:Li、Cs、Rb、K、
Ba、La、Sr、Ca、Ra、Zr、Te、B、Bi、Ta、Ga、Eu、S、Se、Nb、Na、Mg、Cu、Al、Fe、Zn、Ni、Ti、Sn、Sb、Mn、V、Ta、Cr、Au、Ge、Co、As、Ag、Mo、Si、W、Ru、I、Fc、Br、Re、Bi、Pt、Pd以及它们的结合。
25.权利要求17的方法,其中所述C2的阳离子在溶液中所具有的活性使得C2的阳离
子的有效电化学还原电势低于反应物的有效电化学还原电势。
26.权利要求17的方法,其中,所述C2的阳离子的浓度小于或等于反应物浓度的
30%。
27.权利要求17的方法,其中,所述C2的阳离子的浓度小于或等于反应物浓度的5%。
-
28.权利要求17的方法,其所述表面光滑添加剂含有阴离子,所述阴离子选自PF6、
- - - - - - - - - - 2-
AsF6、BF4、N(SO2CF3)2、N(SO2F)2、CF3SO3、ClO4、I、Cl、OH、NO3、SO4 和它们的结合。
29.权利要求17的方法,其中所述基底为电极。
30.权利要求29的方法,其中所述电极含有锂。
31.权利要求29的方法,其中所述电极含有碳。
32.权利要求17的方法,其中所述施加的电势低于反应物的电化学还原电势,且高于
C2阳离子的有效电化学还原电势。
33.一种在锂电沉积在基底表面上的过程中改进表面光滑度的方法,所述方法包括:
提供一种电解质溶液,所述溶液含有锂阳离子和可溶性表面光滑添加剂,所述表面光
滑添加剂含有第二导电材料(C2)的阳离子,所述C2选自铯、铷、钾、锶、钡、钙和它们的结合,其中所述C2的阳离子在溶液中所具有的活性使得C2的阳离子的有效电化学还原电势
低于锂阳离子的有效电化学还原电势;并且
施加电势,从而将锂阳离子还原,并在基底表面上形成锂;
在基底表面的凸起处聚集C2的阳离子,从而在各个凸起的附近形成静电屏蔽区域;并

在所述静电屏蔽区域暂时排斥锂阳离子。
34.权利要求33的方法,其中所述C2的阳离子在电解质溶液中的浓度小于或等于锂阳
离子浓度的30%。
35.权利要求33的方法,其中所述C2的阳离子在电解质溶液中的浓度小于或等于锂阳
离子浓度的5%。
36.权利要求33的方法,其中所述表面光滑添加剂含有一阴离子,所述阴离子包括
-
PF6 阴离子。
37.权利要求33的方法,其中所述基底是含有锂的电池阳极,或是含有碳的电池阳极。
38.权利要求33的方法,其中所述施加的电势低于锂阳离子的电化学还原电势,且高
于C2的阳离子的有效电化学还原电势。

说明书全文

用于电沉积光滑薄膜的方法和电解

[0001] 优先权
[0002] 本发明要求于2012年2月7日提交的美国专利申请第13/367,508号名称为“储能设备的电解质中的支晶抑制盐(Dendrite-Inhibiting Salts in Electrolytes of Energy Storage Devices)”的优先权;本发明还要求于2012年6月13日提交的美国专利申请第
13/495,727号名称为“用于电沉积光滑薄膜的方法和电解质(Methods and Electrolytes for Electrodeposition of Smooth Films)”的优先权。
[0003] 关于联邦政府资助的研发项目的说明
[0004] 本发明在美国能源部授予的合同号为DE-AC0576RLO1830的政府资助下而做出。该政府对本发明享有一定的权利。
[0005] 交叉引用相关申请
[0006] 本发明要求于2012年2月7日提交的未授权的美国专利申请第13/367,508号的优先权,并部分地作为该申请的延续;该申请以引用方式纳入本说明书

背景技术

[0007] 电沉积常用于将具有所需性质的功能材料覆盖到原本不具备该性质的表面上。在电沉积过程中,电解质溶液中的带电反应物扩散或是借助于电场而移动,从而覆盖电极表面。例如,电流可以还原反应物阳离子,从而沉积在阳极上。或者,电解质溶液中的反应物阴离子可以扩散或是借助于电场而移动,从而覆盖阴极表面,反应物阴离子在阴极表面化,从而在电极上形成沉淀。
[0008] 电沉积已经成功用于耐摩擦和磨损、腐蚀保护、润滑、美感品质等领域中。其也用在某些储能设备的运行中。例如,在金属电池金属离子电池的充电过程中,电解质中的金属离子从阴极移动并沉积在阳极上。一些具有不饱和-碳双键或三键的有机化合物用无电解质中的添加剂,且经电化学还原并沉积在阳极表面上,或者经氧化并沉积在阴极表面上,从而形成固体电解质界面层,该界面层作为锂电池的阳极和阴极上的保护膜。一些分子中具有共轭键的其他化合物经电化学氧化并沉积在阴极表面上,从而形成作为储能设备的有机阴极材料的导电聚合物
[0009] 在大多数的情况下,理想的是光滑的电沉积涂覆。例如,一张光滑的平整薄膜可以增强用于装饰、耐磨损、腐蚀保护和润滑的薄膜的使用寿命。对于储能设备且特别是二次设备中,也需要光滑的平整薄膜。在这些储能设备的充电/放电过程中,电极表面上产生的粗糙薄膜和/或支晶(dendrite)会导致危险状况、短路、容量降低和/或使用寿命缩短。
[0010] 粗糙和/或支晶可以由多种原因导致,所述原因包括电流密度在电沉积基底(例如阳极)表面上的分布不均匀,以及电沉积材料和/或基底对于电解质溶液、反应物和盐的反应性不一致。在储能设备的反复充电-放电循环中,在某些情况下这些效应可以叠加。因此,为了增强所得薄膜的光滑度,需要改进用于电沉积的电解质和方法。

发明内容

[0011] 本文记载用于电沉积的方法和电解质,所述方法和电解质使初始凸起尖端自修复(self-healing),而非自生长(self-amplification),所述凸起尖端是电沉积过程中不可避免的,且会导致粗糙和/或支晶的形成。对于从电解质溶液中的一种或多种反应物将第一导电材料(C1)电沉积在基底上,本文所述的电解质溶液的实施方案的特征在于,一种可溶的表面光滑添加剂,其含有第二导电材料(C2)的阳离子,其中C2的阳离子在溶液中的有效电化学还原电势(effective electrochemical reduction potential,ERP)低于反应物的ERP。
[0012] 本文所用的C1、C2和/或反应物的阳离子,是指带有净正电荷的原子或分子。在一个实施例中,所述原子或分子中的电子总数可以少于质子总数,使得原子或分子带有净正电荷。所述阳离子并非必须为金属阳离子,而可以为非金属阳离子。在至少一个实施例中,非金属阳离子为铵。阳离子在任何具体情况下均不仅限于+1价氧化态。在本文的一些+描述中,阳离子通常可以表示为X,其通常指任意价的氧化态,而非仅仅是+1价。
[0013] 在另一个实施例中,反应物在技术上可以不为阳离子,而是为带有正电荷的物质如导电单体/导电聚合物。在金属阳离子的电沉积过程中,阳离子在阳极得电子并还原为金属。在通过电沉积形成导电聚合物时,得电子的是共轭单体——其可以为中性但具有双键或三键。所述共轭单体在相同的分子结构中重排所述双键或三键,并且在不同分子间形成新的键。所形成的聚合物或是中性的,或是在质子并入聚合物部分时带正电。
[0014] 在一个实施方案中,C1为金属材料,并且反应物包含C1的阳离子。合适金属材料的实例包括但不限于含有以下物质的基本金属或合金:Li、Na、K、Rb、Cs、Be、Mg、Ca、Sr、Ba、Al、Ga、In、Tl、Ge、Sn、Pb、As、Sb、Bi、Se、Te、Bi、Po、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、W、Pt、Au和/或Hg。优选地,C1是含有以下物质的基本金属材料:Li、Zn、Na、Mg、Al、Sn、Ti、Fe、Ni、Cu、Zn、Ag、Pt或Au。
[0015] 或者,C1可以包括导电聚合物。此情况下,反应物可以包含聚合物的单体。所述单体可以为共轭单体,其在沉积过程中在阳极还原。聚合物的实例可以包括但不限于:聚苯胺、聚吡咯、聚噻吩、聚(3,4-乙烯二氧噻吩)。这些聚合物的单体可以分别包括但不限于:苯胺、吡咯、噻吩、3,4-乙烯二氧噻吩。
[0016] 在另一个实施方案中,C2的阳离子为金属阳离子。C2金属阳离子的实例包括但不限于:Li、Cs、Rb、K、Ba、La、Sr、Ca、Ra、Zr、Te、B、Bi、Ta、Ga、Eu、S、Se、Nb、Na、Mg、Cu、Al、Fe、Zn、Ni、Ti、Sn、Sb、Mn、V、Ta、Cr、Au、Ge、Co、As、Ag、Mo、Si、W、Ru、I、Fc、Br、Re、Bi、Pt和/或Pd。在优选实施方案中,C2的阳离子是Cs、Rb、K、Ba、Sr、Ca、Li的阳离子。
[0017] C2的阳离子可以具有比反应物更高的标准还原电势。此情况下,电解质的一些实施方案中具有的C2阳离子活性,使得C2阳离子的有效ERP低于反应物(C1)的有效ERP。由于活性与浓度和活度系数直接成比例,其活性依赖于阳离子在给定电解质中的移动性和溶解性,较低的活性可能是因为来自于较低的浓度、较低的阳离子活度系数或其二者的因素兼而有之,这是因为活性是活度系数与浓度的表现。有效ERP和活性之间的关系部分地由Nernst方程表示,并在下文更详细记载。在一个具体实施方案中,C2阳离子的浓度小于或等于反应物阳离子浓度的30%。或者,C2阳离子的浓度小于或等于反应物阳离子浓度的
10%。或者,C2阳离子的浓度小于或等于反应物阳离子浓度的5%。
[0018] 所述表面光滑添加剂可以包含一种阴离子,所述阴离子包括但不限于:PF6-、- - - - - - - - - - 2-AsF6、BF4、N(SO2CF3)2、N(SO2F)2、CF3SO3、ClO4、I、Cl、OH、NO3、SO4 和它们的结合。优-
选地,所述阴离子包括PF6。
[0019] 在一个实施方案中,基底为电极。例如,在其上发生电沉积的基底可以为储能设备中的电极。在具体的情况中,所述电极可以包含锂、碳、镁和/或钠。在本文中所使用的电极不仅限于包含活性金属和集电器的完整结构。例如,电极可最初包含集电器,活性材料最终沉积到集电器上形成阳极。或者,电极可以起始于贴在集电器上的活性材料。在初始循环后,活性材料会进入集电器中,产生通常意义上的电极。
[0020] 优选地,C2的阳离子对于C1或反应物不具有化学活性或电化学活性。因此,在电沉积过程中,并非必须消耗表面光滑添加剂。
[0021] 所述电解质也可包含溶剂。溶剂的实例可以包含但不限于水或在室温下溶解溶质的非水极性有机物质,其在室温下溶解溶质。可以使用多于一种溶剂的混合物。当使用水或质子性有机物质作为溶剂时,C1不是与水或与该质子性有机物质反应的金属。通常,所述有机溶剂可以包含但不限于醇、醚、、碳酸酯、羧酸酯、内酯、磷酸酯、腈、砜、酰胺、五元或六元杂环化合物、以及具有至少一个通过氧原子连接至碳的C1-C4基团的有机化合物。所述内酯可以为甲基化、乙基化和/或丙基化的。其他的有机溶剂可以包括甲醇、乙醇、丙酮、环丁砜、二甲砜、乙基甲基砜、碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸乙基甲基酯、碳酸甲基丙基酯、四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环、1,4-二氧六环、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、1,2-二丁氧基乙烷、乙腈、二甲基甲酰胺、甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸丁酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丙酸丁酯、丁酸甲酯、丁酸乙酯、丁酸丙酯、丁酸丁酯、γ-丁内酯、2-甲基-γ-丁内酯、3-甲基-γ-丁内酯、4-甲基-γ-丁内酯、δ-戊内酯、磷酸三甲酯、磷酸三乙酯、三(2,2,2-三氟乙基)磷酸酯、磷酸三丙酯、磷酸三异丙酯、磷酸三丁酯、磷酸三己酯、磷酸三苯酯、以及它们的结合。也可以使用其他的非水溶剂,条件是只要其能够溶解所述溶质盐。
[0022] 在将C1电沉积到基底表面的过程中,改进表面光滑度的方法可以包括:提供电解质溶液,其含有沉积C1的反应物和含有第二导电材料(C2)阳离子的可溶性表面光滑添加剂;并施加电势,从而将反应物还原,并在基底表面上形成C1。在溶液中,C2的阳离子的有效电化学还原电势低于反应物的有效电化学还原电势。在优选的实施方案中,该方法还包括在基底表面的凸起处集聚C2的阳离子,从而在各个凸起的附近形成静电防护区域。所述静电防护区域可以暂时排斥反应物,从而降低局部有效电流密度并减慢在凸起处的沉积,同时增强在凸起之外区域的沉积。以这种方法,凸起的生长和/或扩大得到抑制,表面修复,从而产生相对光滑的表面。
[0023] 在一个实施方案中,应用该方法将锂电沉积到基底表面。锂是一种有效的实例,原+因在于Li 离子在金属中具有最低标准的ERP(浓度为1mol/L,温度为298.15K(25℃),每种气态试剂的分压为101.325kPa(绝对压)(1atm,1.01325bar))。C2阳离子——其标准EPR值高于锂阳离子的标准EPR值——可以具有比锂阳离子低的取决于活性的有效ERP值。
[0024] 根据所述实施方案,该方法包括提供电解质溶液,所述电解质溶液含有锂阳离子和包含第二导电材料(C2)阳离子的可溶性表面光滑添加剂,所述第二导电材料(C2)选自铯、铷、、锶、钡、和它们的结合物。C2阳离子在溶液中所具有的浓度和活度系数使得C2的阳离子的有效电化学还原电势低于与锂阳离子相比具有较低的有效电化学还原电势。该方法还包括施加电势,从而将锂阳离子还原并在基底表面上形成锂。该方法还包括在基底表面的凸起处集聚C2的阳离子,从而在各个凸起的附近形成静电防护区域,并暂时从静电防护区域排斥锂阳离子。在某些情况下,所述静电防护区域具有较高的阻抗,从而阻碍锂阳离子的进一步沉积。
[0025] 在具体实施方案中,C2的阳离子的浓度小于或等于锂阳离子浓度的30%。或者,C2的阳离子的浓度小于或等于锂阳离子浓度的5%。优选地,表面光滑添加剂包含一种阴6-
离子,所述阴离子包括PF 阴离子。所述基底可以为包含锂或包含碳的电池阳极。
[0026] 上述概要旨在使美国专利商标局和不熟悉专利或法律术语的普通公众且尤其是本领域的科学家、工程师和从业者从粗略的视快速确定本申请技术公开的类型和实质。该概述既非旨在在限定本申请的发明,该限定由权利要求作出;亦非旨在以任何方式限制本发明的范围。
[0027] 本文记载了本发明的多个优势和新特征,并且从下文的详细描述中,本领域技术人员会更加了解这些优势和新特征。在上文和下文的描述中,已给出并描述了多种实施方案,包括优选实施方案。为了实施本发明,本文中还包括对最佳实施方式的描述。应了解,在不背离本发明的前提下,本发明可以在多个方面进行变型。因此,下文中给出的附图和优选实施方案的描述实质上应理解为说明性的,而非限制性的。

附图说明

[0028] 下文中,将参照如下附图描述本发明的实施方案。
[0029] 图1A-1F示出描绘了电沉积实施方案,其中使用含有表面光滑添加剂的电解质。
[0030] 图2A-2D包括根据本发明实施方案在电解质中使用或不使用表面光滑添加剂的沉积的Li薄膜的SEM显微照片;(a)无添加剂;(b)0.05MRbPF6;(c)0.05M CsPF6;(d)0.15M KPF6。
[0031] 图3A-3B包括分别为预成型支晶Li薄膜在对照电解液中沉积1小时的SEM显微照片,和相同薄膜在含有添加剂(0.05M CsPF6)的电解质中再进行Li沉积14小时后的SEM显微图像。
[0032] 图4A-4F包括Li电极在对照电解质(a,b和c)和含有Cs+-盐添加剂的电解质(d、e和f)中进行重复沉积/剥离循环后的SEM显微照片。
[0033] 图5A-5B包括在不含Cs+添加剂(a)和含有(b)0.05M Cs+添加剂的电解质的Li|Li4Ti5O12币型电池中Li电极经受100次循环后的SEM显微照片。
[0034] 图6A-6F包括硬碳电极在对照电解质(a、c和e)中和在对照电解质里加入0.05M CsPF6添加剂的电解质(b、d和f)中充电至常规容量的300%后的光学显微照片和SEM显微照片。

具体实施方式

[0035] 以下说明包括本发明一个实施方案的优选的最佳实施方式。从本发明的说明书中应清楚了解,本发明并不限于所述的这些实施方案,本发明还包括多种变型和变型的实施方案。因此,本说明书应视为说明性的而非限制性的。既然本发明可以进行多种变型和替代方案,应当理解,并非旨在将本发明限定为所公开的具体形式;相比之下,本发明旨在包括落入由权利要求所定义的本发明精神和范围内的所有变型、替代方案等效方案。
[0036] 图1-6示出了本发明的多种实施方案和多个方面。首先参照图1,其为一组示意图,示出描绘使用含有表面光滑添加剂的电解质104的电沉积的实施方案。所述添加剂中含有C2102的阳离子102,其具有比反应物103低的有效ERP。图1示出描述了静电防护区域106如何因使得通常不可避免地形成的不可避免地存在的表面凸起105的自我修复而形成静电防护区域106。在沉积的初始阶段中,反应物和C2的阳离子均都在施加的应用电压(Ea)101下吸附在基底表面100上(图1A),所述施加的电压(Ea)101稍微低于反应物的还原电势(Er),但高于添加剂的还原电势 即 反应物将会沉积而在基底上形成C1,并且由于体系的多种波动而不可避免地形成一些凸起尖端(图1B)。电极上的尖锐边缘或凸起产生更强的电场,所述更强的电场会吸引更多的正电荷阳离子(包括C1和C2)。因此,更多的C1的阳离子会优选地围绕该尖端沉积,而非在其他光滑区域沉积。在常规的电沉积中,这一行为的增长会形成表面粗糙和/或支晶。然而,根据本发明的+
实施方案,吸附的添加剂阳离子(C2)具有比Ea低的有效ERP(图1C),并且不会在尖端上沉积(即电化学或化学上的消耗、反应和/或永久结合)。相比之下,它们会暂时静电吸附并且集聚在尖端附近,从而形成静电防护(图1D)。所述带有正电荷的防护会在凸起区域排斥靠近的反应物(例如,带相电荷的种类),而迫使反应物沉积在非凸起区域。净效应是指反应物优选沉积在基底的较光滑区域(图1E),产生整体上更加光滑的沉积表面(图1F)。
这一过程在电沉积中持续和/或重复进行。本文所述的本发明实施方案中的自修复机理似乎会破坏通常的粗糙和/或支晶增长机理,并使得C1在基底上沉积为更光滑的薄膜。
+ +
[0037] 添加剂阳离子(C2)表现出比反应物阳离子(C1)低的有效ERP,ERed。在一些情况下,C2阳离子的标准ERP低于反应物的标准ERP。含有所述C2种类的表面光滑添加剂可以与合适的反应物一起使用,对于其浓度和活度系数基本没有限制。然而,在一些情况下,C2阳离子的标准ERP高于反应物的标准ERP。可以控制C2阳离子的浓度和活度系数,使得+C2阳离子的有效ERP低于反应物阳离子的有效ERP。例如,如果反应物为Li 离子,其在金属中具有最低的标准ERP,则可以控制C2阳离子的浓度和活度系数,使其有效ERP低于锂阳离子的有效ERP。
[0038] 根据Nernst方程:
[0039]
[0040] 其中,R是普适气体常数(=8.314472J K-1mol-1),T是绝对温度(在本过程中,假定T为25℃),α为相关种类的活性(αRed是还原剂的活性,αOx是氧化剂的活性)。αx=γxcx,其中,γx和cx是种类x的活度系数和浓度。F是法拉第(Faraday)常数
(9.64853399×104C mol-1),z是转移电子的摩尔数。尽管在标准条件下(1mol/L)测量时Li+离子在所有金属中具有最低的标准还原电势ERed(Li+),但是,如果M+的活性αx比Li+的活性低很多,则阳离子(M+)可以具有比锂离子(Li+)低的有效还原电势。在活度系数相同的低浓度情况下,α可以简化为浓度cx,那么,方程式(1)可简化为:
[0041]
[0042] 表1示出几种阳离子在多种浓度下的还原电势(相对于标准氢电极(SHE)),假+ + +
定所述阳离子的活度系数γx等于1。当电解质中Cs、Rb 和K 的浓度为0.01M时,其有
+
效ERP分别为-3.144V、-3.098V和-3.049V,所述有效ERP低于Li 在1M浓度下的有效
+ + + +
ERP(-3.040V)。因此,在添加剂(Cs、Rb 和K)的浓度远低于Li 浓度的混合电解质中,这些添加剂不会在锂的沉积电势下沉积。如下文所述,除了低浓度cx之外,极低的活度系数γx(其很大程度上受给定溶液中的阳离子和锂盐的溶解性和移动性影响)也会降低阳离子+
的活性并导致有效还原电势低于锂离子(Li)。
[0043] 表1.所选阳离子相对于SHE的有效还原电势
[0044]
[0045]
[0046] *假定种类x的活度系数γx等于1。
[0047] 锂的电沉积中表现出的表面光滑作用
[0048] 本发明实施方案在锂的电沉积中得到很好地展示,因为锂离子在金属中具有最低的标准ERP。然而,本发明不限于锂,而由权利要求所限定。
[0049] 检验了多种C2阳离子在电沉积锂中用作表面光滑添加剂的效果。这些阳离子+
均具有与Li 离子相近的标准ERP值 电解质中含有1M的LiPF6溶于碳酸亚丙酯中
溶液。将含有表面光滑添加剂的电解液溶液——其含有0.05M RbPF6、0.5M CsPF6或0.15M KPF6——与不含添加剂的对照电解质进行比较。CsPF6、RbPF6和Sr(PF6)2通过以下方法合成:在充入纯化氩气的手套箱(glove box)内,其中氧气和水分含量均少于1ppm,将化学计量学的AgPF6与Cs的碘盐、Rb的碘盐或Sr的碘盐溶于PC的溶液混合。用0.45μm的注射
过滤器从溶液中滤去所形成的AgI。电解质的制备和锂的沉积也在手套箱内进行。使用electrochemical Interface在不同的电解质溶液中在所需的电流密
度下将锂膜沉积在铜(Cu)箔基底(10mm×10mm)上。沉积后,在分析前用DMC洗涤电极以
除去剩余电解质溶液和盐。
[0050] 参照图2A中的扫描电子显微镜(SEM)的显微照片,当使用对照电解质时,电沉积+薄膜表现出通常的粗糙和支晶生长。如图2B所示,在含有0.05M Rb 作为C2阳离子的电解质溶液中沉积的锂膜表现出非常精细的表面形态,未形成支晶。类似地,与对比试验相比,+
在含有0.05M Cs 添加剂下沉积的锂膜,锂形态发生了令人关注的变化,未形成支晶(见图+ + + +
2C)。令人吃惊的是,假定K 和Li 的活度系数均为1,尽管0.15M下的ERed(K)理论上比Li+
的ERed高~0.06V,但在锂的沉积电势下K金属未沉积,使用K 作为添加剂时得到了具有镜+
面形态的锂膜(图2D)。这一实验性发现表明,在这一电解质中K 离子的活度系数γx远+ + +
低于Li 的活度系数,从而导致实际的ERed(K)低于ERed(Li)。
[0051] 通常,考虑到有效ERP、可用C2阳离子数和C2阳离子的移动性,表面光滑添加剂的浓度优选足够高,以使凸起能够被有效地静电屏蔽。例如,在一个实施方案中,其中C2阳离+ + +子包含K,反应物含有Li 并且C1包含锂金属,K 的浓度高于0.05M。
[0052] 参照图3A,特地将支晶的锂膜于对照电解质中铜基底上沉积1小时。之后,将所述基底和薄膜转移至含有表面光滑添加剂(0.05M的CsPF6溶于1M的LiPF6/PC溶液)的电解质中,继续沉积14小时。与对照电解质中沉积的支晶和苔藓状的薄膜不同,图3B中的显微照片显示,在使用本发明实施方案进行进一步电沉积后,得到光滑的锂膜。图3A中显示的粗糙、坑陷和沟壑均被密实的锂沉积物填平。初始的针状支晶晶须已转化为更小的球形颗粒,如果沉积更多的锂,所述球形颗粒也会被掩埋。
[0053] 图4包括对比锂电极形态的SEM显微照片,其为所述锂电极使用对比电解质(见+图4A、4B和4C)和使用包含含有0.05M Cs 的表面光滑添加剂的电解质(见图4D、4E和4F)在电池中重复沉积/剥离循环(2次、3次和10次循环)之后的形态。在对比电解质中沉积+
的锂膜上,清楚地观察到大的锂支晶和深色的锂颗粒。相比之下,在含Cs 的电解质中沉积的锂膜的形态在重复循环后仍保持无支晶的形态。在具有添加剂时沉积的所有的薄膜中,锂膜均呈现出小球形颗粒和更光滑表面。这与对比电解质中生长的针状支晶呈示出强烈对比。
[0054] 电解质和本文所述的方法也应用于可以重复充电的锂金属电池。使用对比电解质+组装具有Li|Li4Ti5O12电极的币型电池。也用包含含有0.05MCs 的表面光滑添加剂的电解质组装类似的电池。图5包括的SEM显微图像示出在100次充电/放电循环后锂金属阳极
的形态。参照图5A,不使用添加剂的电池中的锂电极表现出明显的表面粗糙并形成支晶。
然而,如图5B所示,即使在100次循环之后,在含有表面光滑添加剂的电池中的锂电极上仍未观察到支晶状的锂。
[0055] 也可以使用含有更高价阳离子的表面光滑活性剂。其实例包括但不限于Sr2+,其具有的 值相对标准氢电势为-2.958V(假定γ=1)。这些阳离子的较低活性可以导致其+
有效ERP低于Li 离子的有效ERP。在非水电解质中,应考虑较大的尺寸和较高的电荷可。
2+
使用对比电解质和含有0.05M Sr(PF6)2的电解质进行锂膜的沉积。由含有0.05M Sr 的电
2+
解质沉积得到的锂膜光滑、不含支晶并且在Sr阳极中/上不含空穴。这再表明,Sr 在这些溶液中的活度系数缺乏一致性。
[0056] 使用这种方法,表面光滑添加剂的C2阳离子未被还原并沉积到基底上。所述C2阳离子未被消耗,这是因为这些阳离子显示出的有效还原电势低于反应物的有效还原电势。相比之下,传统的电沉积可使用还原电势高于反应物的添加剂;因此,所述添加剂会在沉积过程中还原并“被牺牲或被消耗”,例如,成为SEI薄膜的一部分或成为合金来抑制支晶生长。其结果是,在电解质中添加剂的浓度随着充电和/或放电循环的增加而下降,并且添加剂的效果会快速降低。相比之下,本文所述的C2阳离子会围绕支晶尖端形成暂时的静电屏蔽或“”,其阻挡C1在该区域继续沉积。一旦出现凸起,这一“云”就会出现,但当除去施加的电压或是凸起消失时,该“云”就会消散。因此,在一些实施方案中,施加的电势值低于或等于反应物的ERP且高于C2阳离子的有效ERP。
[0057] 通过以下方式分析在表面具有SEI层并通过含有0.05M Cs+、Rb+、K+或Sr2+的电解质沉积的锂膜:x-射线光电能谱(XPS)、能量弥散X射线谱(EDX)点图以及电感耦合等离子体发射光谱(ICP/AES)。XPS和EDX结果显示,在所述分析仪器的检测限内在SEI薄膜中未发现Cs、Rb、K和Sr元素。此外,ICP-AES分析在其检测限内未检出沉积的锂膜(包括表面上的SEI层)本体内的Cs、Rb、K和Sr元素。
[0058] 形成支晶不仅在可重复充电锂金属电池中是一个严重的问题,在高功率锂离子电池中也是一个重要的问题,这是因为,在快速充电过程中,当锂离子无法足够快地移动以插入到阳极——其可以包括石墨或硬质碳——中时,锂金属支晶会在阳极表面生长。此情况下,锂支晶会导致短路以及电池的热耗散(thermal runaway)。因此,本文记载了一种含碳阳极,其在锂离子电池中抑制锂支晶生长。图6对比了电池在对照电解质(不含添加剂)和包含含有0.05M CsPF6的表面光滑添加剂的电解质中充电至理论容量的300%之后在硬质碳阳极上形成的锂颗粒的光学照片(图6A和6D)以及SEM图像(6B、6C、6E和6F)。对于在对照电解质中过度充电的样品中,相当大量的锂金属沉积在碳电极的表面上(见图6A中的+灰点)。图6B和6C示出电极表面的清晰的支晶的生长。相比之下,对于在含有0.05M Cs添加剂的电解质中过度充电的样品,在碳电极表面未观察到锂金属支晶(见图6D)(碳样品底部的白线是光反射造成的)。在从样品上除去一小片碳之后(见图6D中的圆形区域),发现过量的锂优先生长在碳电极的底部,如图6E和6F所示。
[0059] 虽然已示出并阐释了本发明的多个实施方案,但本领域技术人员应理解,在不背离本发明的较宽泛的方面的前提下,可以作出多种改变和变型。因此,所附权利要求旨在覆盖落入本发明实质精神和范围内的所有这类改变和变型。
相关专利内容
标题 发布/更新时间 阅读量
电沉积夹具 2020-05-11 187
电沉积装置及其电沉积方法 2020-05-13 765
电沉积磨轮 2020-05-11 741
可电沉积组合物 2020-05-12 437
CoNiP膜的电沉积 2020-05-12 177
电沉积线型工具 2020-05-12 953
电沉积线型工具 2020-05-11 755
一种电沉积装置 2020-05-12 593
电沉积磨具 2020-05-11 266
电沉积涂装系统及电沉积涂装方法 2020-05-13 183
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈