首页 / 专利库 / 制造过程 / 预浸料 / 复合材料及其用途

复合材料及其用途

阅读:1033发布:2020-09-25

专利汇可以提供复合材料及其用途专利检索,专利查询,专利分析的服务。并且包含如下成分的 复合材料 :(a)对微屈曲(microbuckling)和弯结带(kinkband)形成具有提高的抗性的第一预浸材料;和(b)对脱层具有提高的抗性的第二预浸材料。,下面是复合材料及其用途专利的具体信息内容。

1.复合材料,其包含:
(a)对微屈曲和弯结带形成具有提高的抗性的第一预浸材料,其中该第一预浸材料位于0°参考方向包含以第一树脂浸渍的强化纤维层,以及不溶性和/或部分溶解的颗粒;和(b)排列在邻近该第一预浸材料0°层的层中对脱层具有提高的抗性的第二预浸材料,该第二预浸材料包含预浸材料层和至少下述之一:
(i)在该第二预浸材料层间的不溶性或部分溶解的颗粒;和
(ii)在该第二预浸材料层间的一个或多个强化中间层
其中,第二预浸材料包含以不同于该第一树脂的第二树脂浸渍的强化纤维,其中,在非-0°预浸材料层中使用脱层抗性提高的该第二预浸材料,和
其中,在该0°预浸材料层中的树脂基质比其它所述预浸材料层中的树脂基质具有更高的弹性模数,
且,其中,共固化该第一和第二预浸材料以提供所述复合材料。
2.如权利要求1所述的复合材料,其中该不溶性或部分溶解的颗粒是如下聚合物中的一种:聚醋酸乙烯酯、聚酰胺、聚酸酯、聚缩、聚苯醚、聚苯硫醚、聚烯丙酯、聚酯、聚酰胺酰亚胺、聚酰亚胺、聚醚酰亚胺、聚砜、聚醚砜、聚醚醚、聚醚酮酮、聚芳酰胺、聚苯并咪唑、聚乙烯、聚丙烯、醋酸纤维素和纤维素丁酸酯及其共聚物,和橡胶
3.如权利要求1所述的复合材料,其中该强化中间层包括了分别具有彼此不同的组成的至少两个中间层。
4.如权利要求1或权利要求3所述的复合材料,其中至少一个强化中间层为如下成分之一:
·用于在两种不同的预浸材料之间的区域生成树脂富集区的热固性树脂膜;
·由有机或无机纤维及其组合制成的无纺的纺织品、遮盖物或鱼网布;
·包含有机或无机材料或其组合的薄膜或膜片;和
·包含有机或无机材料及其组合的具有不同于强化纤维所用的纤维的非均质纤维。
5.如前述权利要求1所述的复合材料,其中该第一和/或第二预浸材料包含至少两种不同的强化纤维,使得该第一和第二预浸材料各自分别包含不同于其它预浸材料中的强化纤维的强化纤维。
6.如权利要求5所述的复合材料,其中强化纤维选自碳纤维、聚芳酰胺纤维、玻璃纤维、、氧化锆、碳化、其它复合陶瓷或金属。
7.如权利要求1所述的复合材料,该第一和第二预浸材料包括选自碳纤维的强化纤维。
8.如权利要求1所述的复合材料,在该0°预浸材料层中的该树脂基质是具有高于
3.4GPa的弹性模数的高模数环氧树脂
9.如权利要求1所述的复合材料,在非-0°预浸材料层中的该树脂基质是具有高于
2
0.200KJ/m 的断裂韧度的高韧性环氧树脂。
10.如权利要求8所述的复合材料,在非-0°预浸材料层中的该树脂基质是具有高于
2
0.200KJ/m 的断裂韧度的高韧性环氧树脂。
11.生产固化复合材料的方法,其包括共固化:
(a)对微屈曲和弯结带形成具有提高的抗性的第一预浸材料,其中该第一预浸材料位于0°参考方向包含以第一树脂浸渍的强化纤维层,以及不溶性和/或部分溶解的颗粒;和(b)排列在邻近该第一预浸材料0°层的层中对脱层具有提高的抗性的第二预浸材料,该第二预浸材料包含预浸材料层和至少下述之一:
(v)在该第二预浸材料层间的不溶性或部分溶解的颗粒;和
(vi)在该第二预浸材料层间的一个或多个强化中间层,
其中,第二预浸材料包含以不同于该第一树脂的第二树脂浸渍的强化纤维,其中,在非-0°预浸材料层中使用脱层抗性提高的该第二预浸材料,和其中,在该0°预浸材料层中的树脂基质比其它所述预浸材料层中的树脂基质具有更高的弹性模数。

说明书全文

复合材料及其用途

技术领域

[0001] 本发明涉及复合材料叠层的设计,及其在复杂和多样性高性能复合应用中的用途。在优选的实施方式中,本发明涉及可通过调节实现最大缺口特性(高OHC和FHC)、耐损伤性(CAI)和抗损伤性(低脱层面积和纤维折断)的复合材料。

背景技术

[0002] 纤维强化树脂基质复合物被广泛用作高强度低重量工程材料,从而在航空器结构应用等中替代金属。这些复合材料可通过层压预浸材料制备,该预浸材料包含了用热固性和热塑性树脂基质浸渍的高强度强化纤维,例如玻璃、石墨()、、聚芳酰胺等。该种复合材料的重要特性是高强度和刚度,以及低重量。
[0003] 预浸材料组合物包含了聚合物树脂和强化纤维的混合物,其特征在于所构成的聚合物树脂和强化纤维的单独物理和化学特性,该化合物由此被选择用于特殊用途。通常存在热固性树脂基质成分,其可赋予高耐溶剂性、耐热循环性等。此外,可将热塑性树脂成分添加至该热固性树脂,从而赋予更高平的韧性等,并存在强化纤维以赋予高水平的刚度和强度。
[0004] 复合物通常采用以可固化树脂基质组合物浸渍的强化纤维或结构织物构成的预浸材料制成。可切割预浸材料片材以在给定复合材料构造中进行铺层、制模、固化和层压。可控制预浸材料和所得的复合材料品质,从而调节所得的复合材料特性,例如韧性、强度和弹性。
[0005] 可向基础的热固性树脂基质配方添加添加剂以提高韧性。合适的添加剂包括热塑性塑料、流动改性剂、填充剂等。
[0006] 也可将添加剂添加至用于预浸浸渍的热塑性树脂。这些添加剂包括塑化剂、填充剂、流动改性剂等。
[0007] 根据所考虑的表征复合材料的应状态、几何和边界条件,在设计复合材料时可使用不同的设计允许因素(design allowables)。一个该种设计允许因素是缺口特性。在设计包含孔的结构且当使用固件时,缺口特性非常重要。缺口特性衡量了给定复合材料自身的承重区钻孔时该复合材料的承重能力。该种缺口特性被称为填充孔张力和填充孔压缩(FHT,FHC),以及开孔张力和开孔压缩(OHT,OHC)。这些缺口特性通常是厚度超过3mm的部件的关键设计许可因素。
[0008] 张力特性通常由强化纤维的特性决定,而压缩特性通常由树脂基质以及强化纤维和树脂之间的纤维/基质界面决定。
[0009] 微屈曲可在复合材料叠层被压缩加载时出现。微屈曲是该复合材料中的强化纤维在压缩载荷下发生的屈曲现象。
[0010] 微屈曲可由于多种原因开始于特定的位置,该原因包括强化纤维的局部错位、应力集中等。一旦出现微屈曲,它可传播至整个复合材料,导致形成受损复合材料带,也称为弯结带。微屈曲的范例显示于附图1。
[0011] 另一在复合材料设计中广泛采用的设计允许因素是冲击后的抗压强度(CAI或CSAI)。CAI衡量了复合材料耐损伤的能力。在测量CAI的测试中,该复合材料经受给定能量的冲击,然后压缩加载。在冲击后和压缩测试前测量损伤面积和凹痕深度。在该测试中,复合材料在测试中被约束,以确保不发生弹性不稳定性,并记录该复合材料的强度。
[0012] 可采用多种本领域已知的方法。一种提高CAI的方法是通过提高韧性,通过持续开发发现了提高韧性的方式,通过颗粒增韧,如热塑性塑料、橡胶、核-壳橡胶等颗粒增韧,采用热塑性的遮盖物或薄膜进行层间增韧,或者其它已知增韧材料。
[0013] 该类方法之一包括使用不溶性或部分可溶颗粒来提高复合材料的CAI。然而,现有技术未证实通过使用具有特殊性能的不溶性或部分可溶的颗粒来提高OHC。特别地,以不溶性或部分可溶颗粒提高CAI采用了溶解于树脂的热塑性聚合物,其在固化时相分离。
[0014] 用于提高复合材料CAI的另一已知方法采用颗粒来调节不同预浸材料层之间的层间区域。颗粒提高了复合材料的层间韧性,从而减少了由冲击导致的脱层区。脱层区的减少反应了更高的残余抗压强度。
[0015] 复合材料另一重要的特性是抗损伤性。具有高抗损伤性的复合材料在给定冲击事件下将产生更小的损伤。事实上,具有高耐损伤性的复合材料可导致不同水平的物理损伤,但仍然保留大量残余强度。
[0016] 对于提高复合材料的缺口压缩特性的方法已开展了有限的研究。US-A-5 985 431涉及使用一定范围的特殊环树脂成分以提高开孔压缩性能。然而,已有的专利文献或出版物中没有通过调节复合材料来提高缺口特性的实例。
[0017] 本发明通过在相同复合材料中使用不同的预浸材料来提高所得复合材料的缺口压缩特性、耐损伤性和抗损伤性,从而令人惊奇地克服了现有复合材料的问题。

发明内容

[0018] 本发明的第一方面提供了复合材料,其包含:
[0019] (a)对微屈曲和弯结带形成具有提高的抗性的第一预浸材料;和
[0020] (b)对脱层具有提高的抗性的第二预浸材料。
[0021] 本发明的第二方面提供了复合材料,其包含:
[0022] (a)结合了不溶性和/或部分溶解的颗粒的第一预浸材料;和
[0023] (b)第二预浸材料,其具有如下至少一个特征:
[0024] (i)在该第二预浸材料中结合热塑性成分;
[0025] (ii)在该第二预浸材料中结合不溶性或部分溶解的颗粒;
[0026] (iii)在该第二预浸材料的层间结合不溶性或部分溶解的颗粒;和
[0027] (iv)在该第二预浸材料的层间结合一个或多个强化中间层
[0028] 本发明的第三方面提供了根据本发明的第一或第二方面的复合材料的制备方法,该方法包括共固化该第一和第二预浸材料。
[0029] 本发明的第四方面提供了包含根据本发明的第一或第二方面的复合材料的制造物品。
[0030] 本发明的另一方面提供了通过在相同材料被沉积在工具上或其它层上的同时添加特殊的成分,从而为自动化或非自动化沉积过程(自动化纤维放置、自动化带材铺放、连续带材铺放操作、手工铺层、纤丝缠绕、预成型、镶边、编织)调节预浸材料的过程。
[0031] 本发明优选的非限制性特征可通过权利要求和如下描述进行定义。
[0032] 发明详述
[0033] 该第一和第二预浸材料可在相同的复合材料中共固化。通过调整铺层中这些预浸材料的组合,可能明显改善所得复合材料的缺口压缩特性、耐损伤性和抗损伤性。
[0034] 预浸材料可选自热固性预浸、热塑性预浸、树脂注入纺织品以及预成型和组合。
[0035] 对于该第一预浸材料而言,提高对微屈曲和弯结带形成的抗性可通过结合不溶性和/或部分溶解的颗粒来实现。
[0036] 对于该第二预浸材料而言,提高对脱层的抗性可通过至少如下一项来实现:
[0037] (i)在该第二预浸材料中结合热塑性成分;
[0038] (ii)在该第二预浸材料中结合不溶性或部分溶解的颗粒;
[0039] (v)在该第二预浸材料的层间结合不溶性或部分溶解的颗粒;和
[0040] (vi)在该第二预浸材料的层间结合一个或多个强化中间层。优选选择该复合材料中预浸材料层的排列,使得:
[0041] ●在0°层采用具有提高的微屈曲和弯结带增长抗性的预浸材料层;且[0042] ●在其它层,最优选在邻近该0°层的层中,使用具有提高的脱层抗性的预浸材料层。
[0043] 采用该排列,可实现比仅采用其中一种成分的复合材料更高的缺口压缩特性、耐损伤性和抗损伤性。
[0044] 本发明可应用于不同的预浸材料铺层,包括在不同度的预浸材料不同百分比。通常使用的角度包括但不限于0°、30°、45°、60°和90°。
[0045] 对于负重结构,0°方向通常是该部件承受最高负荷的方向。对于OHC,该0°方向为压缩方向。对于预浸材料,该0°为预浸材料卷中纵纤维方向。
[0046] 本发明依赖于以根据本披露的不同预浸材料制成的层来生产复合材料的过程。
[0047] 本发明证实了具有提高的微屈曲和弯结带形成抗性的复合材料显示了提高的OHC。本发明已经发现了通过在0°层中所用的具有提高的微屈曲和弯结带增长抗性的预浸材料层,提高的微屈曲和弯结带形成抗性、提高的OHC的结合方法。可通过在该树脂基质中提供颗粒得到提高微屈曲和弯结带形成抗性的手段,实施例2和3证实了在树脂基质中提供颗粒可在应力和包含脱层过程中在该复合材料内保持强化纤维的对齐。其它方式为改善的树脂基质系统,优选具有提高的模数。说明书附图2显示了通过提高树脂基质模数来提高OHC的一个范例。
[0048] 另一提高微屈曲和弯结带形成抗性的手段是更高强度和/或模数的强化纤维。
[0049] 其它提高微屈曲和弯结带形成抗性的方法包括通过影响该强化纤维表面处理和/或定型来调节该树脂基质和该强化纤维之间的界面。
[0050] 还显示预浸材料铺层可影响OHC,参见说明书附图3。
[0051] 固化的预浸材料层厚度和AW也可影响OHC。
[0052] 本发明基于如下发现:OHC破坏与该复合物的脱层有关。由于脱层可通过CAI测试评估,本发明证明了在选择层采用具有提高的CAI的材料可以提高OHC。
[0053] 具有提高的脱层抗性的复合材料是具有提高的CAI、G1C和G2C的材料。可结合不同的方法以通过改善该预浸材料来提高CAI。该种方法之一是通过提高韧性,其可通过将热塑性颗粒添加至树脂基质、将颗粒添加至树脂基质或预浸材料层之间或者通过用薄膜、遮盖物等进行中间层韧化的手段将热塑性塑料添加至预浸材料层之间实现。
[0054] 其它提高CAI的方法包括通过影响该强化纤维表面处理和/或定型来调节该树脂基质和该强化纤维之间的界面。
[0055] 已经发现,具有提高的脱层抗性的预浸材料被用于非0°层,最优选用于与0°预浸材料层邻近的预浸材料层。0°层表示排列在第一(任意)参考方向的层,而为其它方向的层指定的角度为相对于该参考方向的角度。
[0056] 本发明基于如下发现:OHC破坏源于初始的强化纤维微屈曲和弯结带增长,然后为脱层。换言之,弯结带通过0°层增长,而脱层随着强化纤维旋转而成核和生长。这样,提高OHC的最佳方法是通过调整的复合物形成方法,该方法通过在0°层采用具有提高的微屈曲和弯结带增长抗性的预浸材料以及在非-0°层(最优选在邻近该0°预浸材料层的预浸材料层)采用具有提高的CAI以提高脱层抗性的预浸材料。这个参见说明书附图4。可通过在不同角度采用不同百分比的预浸材料层,确定最佳预浸材料铺层,从而发现额外最佳的OHC。
[0057] OHC测试结果的提高基于与未调整复合材料(即,未结合或仅结合了一种提高方法的复合材料)的比较。附图的实施例1、2和3显示了与本发明的调整方法相比的基准复合材料特性。
[0058] 待合并入该复合材料的预浸材料可采用不同的方法设计和生产:
[0059] 可采用如下不同方法中的一个或多个生成调整的中间层:
[0060] ■热固性树脂薄膜可用于在两种不同的预浸材料之间的区域生成树脂富集区域,该热固性树脂任选地与浸渍该强化纤维的树脂相同或不同;
[0061] ■可采用由有机或无机纤维及其组合制成的无纺的纺织品、遮盖物或鱼网布;
[0062] ■可采用由有机或无机材料或其组合制成的薄膜或膜片,该膜片任选地具有不同的渗透性水平;以及
[0063] ■可采用不同于用作强化纤维加强的非均质纤维,其由有机或无机材料及其组合制成,并可用作调整的中间层。
[0064] 可在预浸材料层之间结合和/或在任意给定预浸材料层的强化纤维之间分布不溶性或部分可溶颗粒。该种颗粒可包含有机和/或无机材料或杂化物、其组合和混合物,或者由其组成。由例如EP-A-0707 032、EP-A-0 383 174、EP-A-0 274 899或US-A-4 874 661已知在预浸材料中结合热塑性树脂颗粒。
[0065] 因此,预浸材料的任一种或两者还可包含一种或多种类型的颗粒。如果考虑有机颗粒,则可使用各种聚合物及其组合。该颗粒可由选自聚醋酸乙烯酯、聚酰胺、聚碳酸酯、聚缩、聚苯醚、聚苯硫醚、聚烯丙酯、聚酯、聚酰胺酰亚胺、聚酰亚胺、聚醚酰亚胺、聚砜、聚醚砜、聚醚醚、聚醚酮酮、聚芳酰胺、聚苯并咪唑、聚乙烯聚丙烯、聚酰胺、醋酸纤维素和纤维素丁酸酯及其共聚物的一种或多种树脂制成。
[0066] 可在该颗粒配方中使用交联剂以实现交联网络。
[0067] 该颗粒还可以是热塑性和热固性树脂、弹性体和交联弹性体(例如:Zeon Chemicals inc所售的DuoMod DP5045)的混合物。
[0068] 无机颗粒可包括玻璃、石、碳、金属。
[0069] 本发明的颗粒大小分布优选涵盖1μm-150μm限度内的任意范围。
[0070] 本发明还令人惊奇地证明了使用不溶性或部分可溶的聚合物颗粒能够将树脂系统的OHC提高最多21%。各种因素影响该提高,且优选调整颗粒类型为树脂类型。
[0071] 下文表I显示了采用具有在40μm-60μm变化的平均大小的不同颗粒和不同树脂系统进行的测试。
[0072] 表I
[0073]颗粒 描述 997 5276-1 非商业化系
OHC OHC 统
(50∶40∶10) (50∶40∶10)
相对基线提高 相对基线提高
的% 的%
PEKK 半结晶TP +11.2% +10.3% 21.3%
聚合物
DP5045 预先形成 6.4%
的橡胶 - -
PPO - 半结晶TP +5% +8.6%
HPP820 聚合物
TN Toray颗粒 -1.6% 0%
TR55 无定形TP -4.6% -3.4%
聚合物
P84 无定形TP -3.2% 0%
聚合物
P84HT 无定形TP -1.4% -3.4%
聚合物
[0074] 该表显示了OHC的提高依赖于树脂和颗粒类型。由PEKK、PPO和DP5045构成的颗粒显示了OHC性能的提高,而TN、TR55、P84和P84NT构成的颗粒则无作用。
[0075] 在铺层中的每个层的预浸中的调整的纤维也可用于预浸材料。可被使用的候选纤维可具有1um-150um范围内的直径、1GPa-700GPa的模数、200MPa-10,000MPa的张力强度。该纤维可以是有机的,特别是刚性聚合物如聚对苯二甲酰对苯二胺,或者是无机的。在无机纤维中,可采用玻璃纤维如“E”或“S”,或者氧化、氧化锆、碳化硅、其它复合陶瓷或金属。一种非常合适的强化纤维是碳,特别是石墨。已发现在本发明中特别有用的石墨纤维为CytecCarbon Fibers供应的商品名为T40/800、T650-35和T300的石墨纤维;Toray供应的商品名为T300、T700、T800G、T800S、T800-HB、T1000G、M46J、M50J、M55J、M60J的石墨纤维;Hexcel供应的商品名为AS4、AS7、IM7、IM8和IM9的石墨纤维;以及Toho Tenax供应的商品名为HTA、HTS、UTS、IMS的石墨纤维。有机或碳纤维优选是不分大小的或是以与本发明的组合物相容的材料分选,其目的在于溶解于该树脂同时无不良反应或与该纤维和本发明的热固性/热塑性组合物结合。特别为未分大小或以环氧树脂前体分选的碳或石墨纤维。无机纤维优选以同时结合该纤维和该聚合物组合物的材料分选;范例为应用于玻璃纤维的有机-硅烷偶联剂
[0076] 强化纤维特性可针对采用不同表面处理的应用进一步调整。
[0077] 该第一复合材料优选分别包含强化纤维和由一种或多种本领域公知(例如披露于EP-A-0 311 349、EP-A-0 707 032和WO-A-02/16481任一个)的材料组成的树脂基质。
[0078] 该第一预浸材料优选包含强化纤维和选自具有层间颗粒的高模数环氧树脂的树脂基质。优选的树脂具有高于3.4GPA的弹性模数。优选树脂的范例为Cytec Industried Inc.制造的Cycom 977-3和Cycom 997。优选的层间颗粒包括,颗粒大小分布介于10和40微米的PEKK、PPO。
[0079] 该第二预浸材料优选包含强化纤维和选自具有层间颗粒的高韧性环氧树脂的树2
脂基质。优选的树脂具有高于0.200kJ/m 的断裂韧度Gc,其中Gc是在生成新裂缝区域的临界应变能释放率。合适的树脂系统的范例包括Cytec Industries Inc制造的Cycom 977-2。
[0080] 优选的层间颗粒包括具有介于10和40微米的优选颗粒大小的DP5045、P84、尼龙、PPO和PPS。本发明优选的包含层间颗粒的系统的范例包括Cytec Industries Inc.制造的Cycom 5276-1。
[0081] 也可使用在该铺层的每一层的预浸材料中具有调整的树脂基质。该树脂基质的不同特征可通过更改树脂基质化学进行改变。以下特性可被调整以适于本发明:屈服强度、模数、纤维湿润能力、相分离、韧性、Tg、交联密度
[0082] 总体而言,本发明中所用的任意树脂基质可包含热塑性或热固性树脂,或者主要由其组成。优选地,可设计该预浸材料铺层使得0°预浸材料层中的树脂基质比其它预浸材料层中的树脂基质具有更高的弹性模数。优选使用热固性树脂,其选自环氧树脂,加成聚合树脂,特别是双-来酰亚胺树脂,甲醛缩合物树脂,特别是甲醛-苯酚树脂,氰酸酯树脂,异氰酸酯树脂,酚醛树脂及两种或多种的混合物,且优选由芳香族二胺、芳香族单伯胺、基酚、多元酚、多元醇、多聚羧酸等,或其混合物的一种或多种的单或多-缩水甘油基衍生的环氧树脂,氰酸酯树脂,苯并咪唑、聚苯乙烯吡啶、聚亚胺或酚醛树脂。加成聚合树脂的范例为丙烯酸、乙烯基、双-马来酰亚胺和不饱和聚酯。甲醛缩合物树脂的范例为脲、密胺和苯酚。更优选地,该热固性基质树脂包含至少一种环氧、氰酸酯或酚醛树脂前体,其在室温下为液体,例如披露于EP-A-0311349、EP-A-0365168、EP-A-91310167.1或PCT/GB95/01303。优选该热凝物为环氧树脂。
[0083] 环氧树脂可选自50℃下粘度为10-20Pa s的N,N,N’N’-四缩水甘油基二氨基二苯基甲烷(例如Huntsman所售的“MY 9663”、“MY720”或“MY 721”);(MY 721粘度较低的MY 720类型,并为更高的使用温度设计);110℃下粘度为18-22Poise的N,N,N’,N-四缩水甘油基-双(4-氨基苯基)-1,4-二异-丙基苯(例如Hexion所售的Epon1071);110℃下粘度为30-40Poise的N,N,N’,N’-四缩水甘油基-双(4-氨基-3,5-二甲基苯基)-1,4-二异丙基苯(例如Hexion所售的Epon1072);25℃下粘度为0.55-0.85Pa s,优选25℃下的粘度为8-20Pa的对氨基苯酚的三缩水甘油基醚(例如Huntsman所售的“MY0510”);优选地,其构成了所用环氧成分的至少25%;优选在25℃下粘度为8-20Pa的基于双酚A的材料如2,2-双(4,4’-二羟基苯基)丙烷的二缩水甘油醚(例如Dow所售的“DE R 661”,或者Hexion所售的“Epikote 828”)以及Novolak树脂;Novolak酚树脂的缩水甘油醚(例如Dow所售的“DEN 431”或“DEN 438”),在制备根据本发明的组合物时优选低粘度类别的变体;二缩水甘油基1,2-酞酸酯,例如GLY CEL A-100;处于低粘度类别的二羟基二苯基甲苯(双酚F)的二缩水甘油基衍生物(例如Huntsman所售的“PY 306”)。其它环氧树脂前体包括环脂肪族的例如3’,4’-环氧环己基-3,-4-环氧环己烷羧酸酯(例如Ciba Geigy所售的“CY 179”)以及Hexion的“Bakelite”范围内的那些。
[0084] 氰酸酯树脂可选自通式NCOAr(YxArm)qOCN的化合物和低聚体和/或聚氰酸酯及其组合的一种或多种,其中Ar是单独的或稠合的芳香剂或取代的芳香剂及其组合,且在其中核以正位、间位和/或对位连接,而x=0-2,m=0-5,q=0-5。Y为选自氧、羰基、硫、氧化硫、化学键、以正、间和/或对位连接的芳香剂和/或CR2的连接单元,其中R1和R2为氢、卤化烷,例如氟化烷烃和/或取代的芳香剂和/或烃单元,其中所述烃单元单独或多重连接,且R1和/或R2和P(R3R4R’4R5)中的每个由最多20个碳原子构成,其中R3为烷基、芳基烷氧基或羟基,R’4可以等同于R4以及单独连接的氧或化学键,R5双连接的氧或化学键或Si(R3 R4R’4R6),其中R3和R4、R’4如上述P(R3R4R’4R5)定义,R5定义与上文R3类似。任选地,该热凝物可主要由苯酚/甲醛衍生的Novolaks或其双环戊二烯衍生物的氰酸酯组成,其范例为Dow Chemical Company所售的XU71787。酚醛树脂可选自任意由醛(例如甲醛、乙醛、苯甲醛或糠醛)和酚(例如苯酚、甲酚、二羟酚、氯酚)和C1-9烷基酚(例如pheol、3-和4-甲酚(1-甲基、3-和4-羟基苯)、儿茶酚(2-羟基苯酚)、雷琐酚(1、3-二羟基苯)以及对苯二酚(1、4-二羟基苯))衍生的醛缩合树脂。优选地,酚醛树脂包括甲酚和novolak酚。合适的双马来酰亚胺树脂为包含作为活性官能团的马来酰亚胺基团的可热固化树脂。
[0085] 除非另行指明,此处所用的术语双马来酰亚胺包括单-、双-、三-、四-和更高的功能性马来酰亚胺及其混合物。优选具有约为2的平均官能度的双马来酰亚胺树脂。由此定义的双马来酰亚胺树脂可通过马来酸酐或取代的马来酸酐(甲基马来酸酐)与芳香族或脂肪族二胺或聚胺的反应制备。
[0086] 其合成的范例可参见,例如,美国专利3,018,290、3,018,292、3,627,780、3,770,691和3,839,358。也可使用非常接近的桥亚甲基四氢化邻苯二甲胺亚酰(nadicimide)树脂,其可类似地由二胺或聚胺制备得到,但其中该马来酸酐被马来酸酐或取代的马来酸酐与双烯(例如,环戊二烯)的Diels-Alder反应产物所取代。如此处和权利要求书中所用的,术语双马来酰亚胺应当包括该桥亚甲基四氢化邻苯二甲胺亚酰树脂。优选的二胺或聚胺前体包括脂肪族和芳香族二胺。该脂肪族二胺可以是直链、带支链或环状的,并可包含杂原子。该种脂肪族二胺的许多范例可参见上述引用的参考文献。
[0087] 特别优选的脂肪族二胺为己二胺、辛二胺、癸二胺、十二烷二胺以及三甲基己二胺。该芳香族二胺可以是单核或多核的,且还可包含稠环系统。优选的芳香族二胺为次苯基二胺;甲苯二胺;各种亚甲基双苯胺,特别是4,4’-亚甲基双苯胺;二胺;对应于或类似于式H2N-Ar[X-Ar]nNH2的各种氨基封端聚亚芳基低聚物,其中每个Ar可单独地为单-或多-核亚芳基基团,每个X可单独地为-O-、-S-、-CO2、-SO2-、-O-CO-、C1-C10低级烷基、C1-C10卤化烷基、C2-C10低级亚烷氧基、亚芳氧基、聚亚烷氧基或聚亚芳氧基,且其中n为约1-10的整数;以及伯氨烷基末端的二和聚硅氧烷。特别有用的是含有多种双马来酰亚胺的双马来酰亚胺“共熔”树脂混合物。该种混合物通常具有远低于单独双马来酰亚胺的熔点。该种混合物的范例可参见美国专利4,413,107和4,377,657。多种该类共熔混合物已有市售。
[0088] 树脂基质还可以是热塑性树脂。该热塑性树脂可以是结晶、半结晶或无定形聚合物。合适的热塑性物的范例包括聚酰胺、聚碳酸酯、聚苯醚、聚苯硫醚、聚烯丙酯、聚酯、聚酰胺酰亚胺、聚酰亚胺、聚醚酰亚胺、聚砜、聚醚砜、聚醚醚酮、聚芳酰胺、聚苯并咪唑、聚乙烯、聚丙烯、聚酰胺、醋酸纤维素和纤维素丁酸酯及其共聚物。
[0089] 在该复合材料中的固化层厚度或强化纤维单位面积重量可用于调整该复合材料的特性。合适的固化层厚度的范例可在50微米至1000微米范围内。合适的纤维单位面积重量AW的范例在50gsm至1000gsm范围内。
[0090] 本发明可通过在生产成分时通过人工或自动化过程引入中间层、颗粒、树脂和一般调节剂来实施。
[0091] 在优选的实施方式中,可采用能在该预浸材料被铺设时在其表面沉积颗粒和中间层的自动化头。这允许“原位”调整该预浸材料。
[0092] 合适的过程的范例包括自动化纤维放置、自动化带材铺放、连续带材铺放操作、手工铺层、纤丝缠绕。

附图说明

[0093] 图1显示了描述屈曲的显微照相;
[0094] 图2显示了描述OHC对提高树脂基质模数的作用的图;
[0095] 图3显示了部分OHC强度数据;
[0096] 图4显示了OHC作为颗粒定位的函数;
[0097] 图5显示了在实施例中所用的试片的标注尺寸。
[0098] 现在,本发明将通过如下实施例得到更为具体的解释。

具体实施方式

[0099] 实施例1
[0100] 采用表1所述的成分制备树脂混合物:
[0101] 表1
[0102]成分 成分 商品名 数量
ID
1 四缩水甘油基二氨基二苯 Araldite
基甲烷 MY721 15.36
2 三缩水甘油基-对氨基苯酚 Araldite
MY0510 35.84
3 3-3’-二氨基二苯砜 33’DDS 23.81
4 PES:PEES共聚物 内部产
品 25.00
[0103] 将成分1和2放入双轴搅拌器的容器。添加成分4。将树脂混合物加热至120℃,并搅拌至成分4完全溶解。将温度降低至70℃,向树脂混合物添加成分3。成分3分散或溶解于该树脂混合物。来自Toho Tenax(日本)的中等模数的强化碳纤维IMS 12k被用于生产具有单位面积重量为190克/平方米的强化纤维的单向纤维织物。将该树脂混合物制成薄膜,其单位面积重量为51克/平方米。将两个薄膜与该强化纤维合并得到预浸材料。
[0104] 采用如下堆叠顺序[+45/90/-45/0/0/+45/0/-45/0/0]s在板上铺设该预浸材料,然后在高压锅中固化。在固化过程中,温度以2℃/min的速率上升至180℃。在180℃下保持2小时后,以大约3℃/min将板冷却至室温,在固化循环中向板施加6.5Bar的压强。根据图5所示的尺寸从板上切割试片。
[0105] 采用Zwick测试机结合100kN测力计测试该试片。在每一端夹住该试片以避免弹性不稳定问题。采用0.8mm/min的恒定十字头速度(crosshead speed)来加载该试片。
[0106] 在测试末尾,根据如下表达式获得OHC:
[0107] OHCst=(最大负荷)/(总面积)
[0108] 其中:
[0109] OHCst=OHC强度
[0110] 负荷=最大负荷
[0111] 总面积=以试片宽度乘以试片厚度所得的面积
[0112] 测试结果:
[0113] OHC=470MPa
[0114] 实施例2:
[0115] 采用表2所述的成分制备树脂混合物:
[0116] 表2
[0117]成分 成分 商品名 数量
ID
1 四缩水甘油基二氨基二苯 Araldite 15.19
基甲烷 MY721
2 三缩水甘油基-对氨基苯酚 Araldite 35.45
MY0510
3 3-3’-二氨基二苯砜 23.55
33DDS
4 PES:PEES共聚物 内部产 20.81

5 预先形成的交联聚合物颗 DuoMod
粒 DP5045 5
[0118] 采用与实施例1所述相同的制备方法。在从搅拌器容器中排出前在树脂混合物中分散成分5。然后将该树脂混合物制成51g/平方米的薄膜。然后合并两个薄膜和强化纤维以获得预浸材料。在该预浸相中,该颗粒通过碳纤维经过部分或完全过滤,将颗粒浓缩在该预浸材料表面。参照实施例1所述的步骤制备、加工并测试试片。
[0119] 测试结果:
[0120] OHC=499MPa
[0121] 为了测量CAI,以落重冲击测试仪在25J下冲击试片。冲击仪机头具有16±0.5mm的直径和8±0.25mm的半球半径。采用Zwick测试机结合200kN测力计进行CAI测试。采用允许试片末端加载的抗屈曲夹具以减少无效破坏的险。采用0.5mm/min的恒定十字头速度(crosshead speed)来加载该试片。
[0122] 测试结果:
[0123] CAI=259MPa
[0124] 该系统的结果显示了在冲击后具有高耐压强度。
[0125] 实施例3
[0126] 采用表3所述的成分制备树脂混合物:
[0127] 表3
[0128]成分 成分 商品名 数量
ID
1 四缩水甘油基二氨基二苯 Araldite 14.36
基甲烷 MY721
2 三缩水甘油基-对氨基苯酚 Araldite 33.51
MY0510
3 3-3’-二氨基二苯砜 22.26
33DDS
4 PES:PEES共聚物 内部产 23.38

5 聚醚酮酮(25um平均直径 内部产
-喷射磨颗粒) 品 6.5
[0129] 采用实施例2中所述的相同的制备方法,但以PEKK颗粒取代DP5045。参照实施例1所述的步骤制备、加工并测试试片。
[0130] 测试结果:
[0131] OHC=508MPa
[0132] 实施例4
[0133] 参照如下命名(表4)使用来自实施例2和实施例3的材料:
[0134] 表4
[0135]材料A 实施例2
材料B 实施例3
[0136] 采用如下顺序[+45/90/-45/0/0/+45/0/-45/0/0]s以预浸材料铺设板。在铺层时采用如下预浸材料层定向(表5):
[0137] 表5
[0138]层定向 材料
+45,-45,90 材料A
0 材料B
[0139] 采用实施例1所用相同的步骤来固化、加工和测试试片。
[0140] 结果:
[0141] OHC=555MPa
[0142] 实施例5
[0143] 采用表6所述的成分制备树脂混合物:
[0144] 表6
[0145]成分 成分 商品名 数量
ID
1 四缩水甘油基二氨基二苯 Araldite
基甲烷 MY721 25.53
2 三缩水甘油基-间氨基苯酚 Araldite
MY0600 25.53
3 3-3’-二氨基二苯砜 33’DDS 28.94
4 PES聚合物 5003P 20
[0146] 将成分1和2放入双轴搅拌器的容器。添加成分4。将树脂混合物加热至120℃,并搅拌至成分4完全溶解。将温度降低至70℃,向树脂混合物添加成分3。成分3分散或溶解于该树脂混合物。来自Toho Tenax(日本)的中等模数的强化碳纤维IMS 12k被用于生产具有单位面积重量为190克/平方米的强化纤维的单向纤维织物。将该树脂混合物制成薄膜,其单位面积重量为51克/平方米。将两个薄膜与该强化纤维合并得到预浸材料。
[0147] 采用如下堆叠顺序[+45/90/-45/0/0/+45/0/-45/0/0]s在板上铺设该预浸材料,然后在高压锅中固化。在固化过程中,温度以2℃/min的速率上升至180℃。在180℃下保持2小时后,以大约3℃/min将板冷却至室温,在固化循环中向板施加6.5Bar的压强。根据图5所示的尺寸从板上切割试片。
[0148] 采用Zwick测试机结合100kN测力传感器测试该试片。在每一端夹住该试片以避免弹性不稳定问题。采用0.8mm/min的恒定十字头速度(crosshead speed)来加载该试片。
[0149] 在测试末尾,根据如下表达式获得OHC:
[0150] OHCst=(最大负荷)/(总面积)
[0151] 其中:
[0152] OHCst=OHC强度
[0153] 负荷=最大负荷
[0154] 总面积=以试片宽度乘以试片厚度所得的面积
[0155] 测试结果:
[0156] OHC=430MPa
[0157] 实施例6:
[0158] 采用表7所述的成分制备树脂混合物:
[0159] 表7
[0160]成分 成分 商品名 数量
ID
1 四缩水甘油基二氨基二苯 Araldite 24.25
基甲烷 MY721
2 三缩水甘油基-间氨基苯酚 Araldite 24.25
MY0600
3 3-3’-二氨基二苯砜 27.49
33DDS
4 PES聚合物 19.00
5003P
5 预先形成的交联聚合物颗 DuoMod
粒 DP5045 5
[0161] 采用与实施例5所述相同的制备方法。在从搅拌器容器中排出时在树脂混合物中分散成分5。然后将该树脂混合物制成51g/平方米的薄膜。然后合并两个薄膜和强化纤维以获得预浸材料。在该预浸相中,该颗粒通过碳纤维经过部分或完全过滤,将颗粒浓缩在该预浸材料表面。参照实施例1所述的步骤制备、加工并测试试片。
[0162] 测试结果:
[0163] OHC=432MPa
[0164] 实施例7
[0165] 采用表8所述的成分制备树脂混合物:
[0166] 表8
[0167]成分 成分 商品名 数量
ID
1 四缩水甘油基二氨基二苯 Araldite
基甲烷 MY721 23.87
2 三缩水甘油基-间氨基苯酚 Araldite
MY0600 23.87
3 3-3’-二氨基二苯砜 33DDS 27.06
4 PES聚合物 5003P 18.70
5 聚醚酮酮(25um平均直径 内部产
-喷射磨颗粒) 品 6.5
[0168] 采用实施例6中所述的相同的制备方法,但以PEKK颗粒取代DP5045。参照实施例5所述的步骤制备、加工并测试试片。
[0169] 测试结果:
[0170] OHC=433MPa
[0171] 实施例8
[0172] 参照如下命名(表9)使用来自实施例6和实施例7的材料:
[0173] 表9
[0174]材料A’ 实施例6
材料B’ 实施例7
[0175] 采用如下顺序[+45/90/-45/0/0/+45/0/-45/0/0]s以预浸材料铺设板。在铺层时采用如下预浸材料层定向(表10):
[0176] 表10
[0177]层定向 材料
+45,-45,90 材料A’
0 材料B’
[0178] 采用实施例5所用相同的步骤来固化、加工和测试试片。
[0179] 结果:
[0180] OHC=438MPa
[0181] 比较实施例1
[0182] 表11中比较了实施例1和实施例2的结果。由该表可以看到,由于文献广泛报导的DP5045用于抑制脱层的能力(Eric N.Gilbert,Brian S.Hayes,James C.Seferis,Composites:Part A 34(2003)245-252),该颗粒的使用导致了OHC性能的提高。也由于该机制,得以实现高CAI性能。
[0183] 表11
[0184]实施例1 470MPa
实施例2 499MPa
[0185] 比较实施例2
[0186] 表12中比较了由实施例1和实施例3所得的结果。如该表所示,由于PEKK影响弯结带和脱层增长的能力,该颗粒的使用导致了OHC性能的提高。
[0187] 表12
[0188]实施例1 470MPa
实施例3 508MPa
[0189] 比较实施例3
[0190] 表13中比较了由实施例1、实施例2、实施例3和实施例4所述的结果。由该表可见,在采用实施例4所述的预浸材料层定向时,可得到最佳的OHC性能。这是由于在实施例4中,该预浸材料的选择和预浸材料定向被调整以最大化OHC。
[0191] 表13
[0192]实施例1 470MPa
实施例2 499MPa
实施例3 508MPa
实施例4 555MPa
[0193] 比较实施例4
[0194] 表14中比较了实施例5和实施例6所得的结果。如该表所示,由于DP5045抑制脱层的能力以及实现高CAI性能的机制,DP5045的使用导致OHC性能的提高。
[0195] 表14
[0196]实施例5 430MPa
实施例6 432MPa
[0197] 比较实施例5
[0198] 表15中比较了实施例1和实施例3所得的结果。如该表所示,由于PEKK影响弯结带和脱层增长的能力,该颗粒的使用导致了OHC性能的提高。
[0199] 表15
[0200]实施例1 470MPa
实施例3 508MPa
[0201] 比较实施例6
[0202] 表16中比较了实施例5、实施例6、实施例7和实施例8所得的结果。由该结果可见,在采用实施例8所述的预浸材料层定向时,可得到最佳的OHC性能。这是由于在实施例8中,该预浸材料的选择和预浸材料定向被调整以最大化OHC。
[0203] 表16
[0204]实施例5 430MPa
实施例6 432MPa
实施例7 433MPa
[0205]实施例8 438MPa
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈