首页 / 专利库 / 专利权 / 专利合作条约 / 第I章 / 国际申请 / 明显错误 / 反作用垫圈及其紧固套管

反作用垫圈及其紧固套管

阅读:886发布:2021-03-13

专利汇可以提供反作用垫圈及其紧固套管专利检索,专利查询,专利分析的服务。并且本 发明 试图保护 申请 人 的HYTORC Z系统,其包含:具有多速度/多 扭矩 模式的工具,其具有扭矩倍增和振动机构而不利用外部反作用邻接; 力 传递装置,用以产出成直线的共轴作用或反作用,以与这类工具联用;驱动装置和转变装置,其能够将 垫圈 附接到 螺母 下方,以与这类工具和力传递装置联用;与这类工具、力传递装置和驱动装置联用的关联垫圈;以及与这类工具、力传递装置、驱动装置和垫圈联用的相关配件。垫圈位于各种类型的螺母或 螺栓 头下方,其具有多种形状、尺寸、几何结构和锯齿的可接合周缘,诸如垫圈/ 紧 固件 半径接合差异,以及摩擦地偏置的面,该面相对于 法兰 表面具有相对高的摩擦并且相对于螺母具有相对低的摩擦,诸如各种类型、尺寸和 位置 的 摩擦系数 增加处理装置。枪将强大的冲击机构和精确的扭矩倍增器合并在同一工具中,将快速向下运转与校准的扭矩结合起来。具有双驱动共轴作用和反作用的 套管 具有在垫圈上反作用的外套筒和转动螺母或螺栓头的内套筒。 花键 适配器和反作用板用于与的扭矩/拉力系统的向后兼容性,该系统包括方头驱动系统、有限余隙系统、 气动 系列、枪电倍增器等。垫圈和Friction WasherTM的结合包括在接头另一侧上的螺母或螺栓头下方的用于反扭矩的双摩擦增强面垫圈;以及在使用的扭矩/拉力系统时用于紧密的余隙的双驱动偏移 连杆 。,下面是反作用垫圈及其紧固套管专利的具体信息内容。

1.一种反作用垫圈,其用于接收因拧紧或松开螺纹固件而产生的反扭矩,所述反作用垫圈包括:
外边缘,其具有容许与动工具旋转耦接的几何形状;以及
底表面,其具有在从中心孔眼向外的区域中偏置的摩擦系数增大处理结构。
2.如权利要求1所述的反作用垫圈,其中,所述摩擦系数增大处理结构朝向所述外边缘选择性地偏置。
3.如权利要求1所述的反作用垫圈,其中,所述摩擦系数增大处理结构在朝向所述外边缘的区域中不连续地偏置。
4.如权利要求1所述的反作用垫圈,其中,所述摩擦系数增大处理结构不位于所述中心孔眼的半径处或附近。
5.如权利要求1所述的反作用垫圈,其中,所述摩擦系数增大处理结构由以下任一形成:滚花;打磨;喷砂铣削;加工;锻造铸造;成形;塑形;粗制;冲压;雕刻;穿孔;弯曲;削除所述中心孔眼附近的垫圈材料;或其任何组合。
6.如权利要求1所述的反作用垫圈,其中,所述摩擦系数增大处理结构包括以下任一:
粗糙化结构;多边形表面;花键;滚花;尖刺;凹槽;狭槽;突出点或转、其他这类突起;或其任何组合。
7.如权利要求1所述的反作用垫圈,其中,所述摩擦系数增大处理结构按以下任一方式形成:单个地;随机地;成阵列;或其任何组合。
8.如权利要求1所述的反作用垫圈,其中,所述垫圈的有效摩擦半径大于所述螺纹紧固件的有效摩擦半径,
用于与紧固套管组件联用,该紧固套管组件包括:
具有内边缘的内套管,该内边缘具有螺母螺栓头接合装置;
具有内边缘的外套管,该内边缘具有反作用垫圈接合装置,用于接合所述反作用垫圈的外边缘;并且
其中,所述内套管基本位于所述外套管内,并且其中,所述内套管和所述外套管利用一机构耦接在一起,该机构容许所述内套管和所述外套管沿相反方向协作地或选择性地相对旋转。
9.如权利要求8所述的反作用垫圈,其中,所述垫圈外边缘显著延伸超过所述螺纹紧固件的外边缘。
10.如权利要求9所述的反作用垫圈,其中,由所述垫圈外边缘所接收的反作用邻接力在大小上略大于由所述螺纹紧固件的外边缘所接收的作用扭矩。
11.如权利要求1所述的反作用垫圈,其中,所述摩擦系数增大处理结构被放置成显著超过所述垫圈的底表面附近的螺母或螺栓头的有效摩擦半径。
12.如权利要求1所述的反作用垫圈,其中,所述底表面包括形成在接纳螺栓的所述中心孔眼和所述摩擦系数增大处理结构之间的平滑表面。
13.如权利要求8所述的反作用垫圈,其中,所述垫圈的外边缘与所述螺母或所述螺栓头的外边缘具有相同延伸范围或相比其缩短。
14.如权利要求8所述的反作用垫圈,其中,基本竖直的所述垫圈的外边缘及其接合装置与基本竖直的外套管的内边缘及其接合装置接合。
15.如权利要求8所述的反作用垫圈,其中,所述垫圈的外边缘及其接合装置被塑形成具有与外套管内边缘的内边缘及其接合装置能够旋转地耦接的任何合适的几何形状,所述外套管的内边缘的接合装置被塑形成具有任何合适的相应几何形状。
16.如权利要求15所述的反作用垫圈,其中,所述合适的几何形状包括以下任一:
向内延伸的下凹部分和向外延伸的上凸部分,它们沿径向方向围绕所述垫圈的中心点交替地重复地设置;或
任何几何形状,诸如三角形、曲线三角形、正方形、矩形、平行四边形、菱形、梯形、不规则四边形、筝形、五边形、六边形、七边形、八边形、九边形、十边形、具有外突起的圆形、椭圆形或卵形。
17.如权利要求1所述的反作用垫圈,包括形成在所述外边缘和所述底表面之间并且相对于所述螺纹紧固件的外边缘向内延伸且相对于所述外边缘向下延伸的锥形底边缘部分。
18.如权利要求8所述的反作用垫圈,包括相对于所述螺母或所述螺栓头的外边缘向内延伸并且形成在所述外边缘和所述底表面之间的锥形底边缘部分。
19.如权利要求1所述的反作用垫圈,其中,能够实现均匀准确的螺栓延长。
20.如权利要求1所述的反作用垫圈,用于吸收工具的反作用力,从而使得当所述工具向螺母或螺栓头施加转动力并且向所述垫圈的外边缘施加相等但相反的反作用力时,所述螺母或所述螺栓头转动,但所述垫圈维持不动。
21.如权利要求1所述的反作用垫圈,其中,垫圈的径向外边缘适于被所述工具接合,以在所述工具转动所述螺母或所述螺栓头时保持所述垫圈静止,并且所述垫圈的相反轴向侧形成为从而与物体形成摩擦干扰,以避免垫圈在任何情况下一起转动,从而使得所述垫圈保持静止,并且从而使得该一个轴向侧控制所述螺母的面摩擦。
22.一种紧固套管组件,包括:
具有内边缘的内套管,该内边缘具有螺母或螺栓头接合装置;和
具有内边缘的外套管,该内边缘具有反作用垫圈接合装置,用于接合如权利要求1-21中任意一项所述的反作用垫圈的外边缘;并且
其中,所述内套管基本位于所述外套管内,并且其中,所述内套管和所述外套管利用一机构耦接在一起,该机构容许所述内套管和所述外套管沿相反方向协作地和相对地旋转。
23.如权利要求22所述的紧固套管组件,其中,所述外套管内边缘及其接合装置和所述垫圈外边缘及其接合装置是基本竖直的。
24.如权利要求22所述的紧固套管组件,其中,所述外套管包括具有锥形表面的外底边缘,所述锥形表面朝向底内边缘的底部向内倾斜。
25.如权利要求22所述的紧固套管组件,其中,所述外套管形成为 反
作用衬垫
26.如权利要求22所述的紧固套管组件,集成到 偏置连杆中,其具
有:驱动力输入组件;形成为驱动力输出组件的所述内套管;以及形成为反作用力组件的所述外套管。
27.一种用于紧固物体的螺纹紧固件,包括:
螺柱
能够与所述螺柱螺纹接合的待被拧紧或松开的螺母或连接到所述螺柱的待被拧紧或松开的螺柱头;以及
位于所述螺母或所述螺栓头与所述物体之间的如权利要求1-21中任意一项所述的反作用垫圈。
28.如权利要求27所述的螺纹紧固件,包括位于所述物体中的另一个和所述紧固件的将不会旋转的另一部分之间的 双面摩擦垫圈,其中,所述摩擦垫圈具有各自
形成有权利要求6的摩擦系数增大处理结构的顶面和底面,以防止所述紧固件的所述另一部分旋转。
29.如权利要求27或28所述的螺纹紧固件,其将被如权利要求22-26中任意一项所述的紧固套管组件拧紧和/或松开。
30.一种无反作用臂扭矩动力工具,其用于拧紧、松开或拧紧和松开如权利要求27-29中任意一项所述的螺纹紧固件,所述无反作用臂扭矩动力工具包括:
转动力产生机构;
传递转动力的驱动器;以及
如权利要求22-26中任意一项所述的紧固套管组件。
31.如权利要求30所述的动力工具,其被电气地、液压地或气动地驱动。
32.如 权 利 要 求 30 所 述 的 动 力 工 具 ,包 括 以 下 任 一 :
枪;或 枪。
33.一种用于紧固物体的系统,包括:
如权利要求27-29中任意一项所述的螺纹紧固件;以及
如权利要求30-32中任意一项所述的扭矩动力工具。
34.一种无反作用臂动力工具,用于最小化磨损地拧紧、松开或拧紧和松开工业螺纹紧固件,该类型的工业螺纹紧固件具有共轴反作用表面、螺柱以及能够与所述螺柱螺纹接合的螺母或连接到所述螺柱的螺柱头,所述无反作用臂动力工具包括:
产生转动力的达;
传递转动力的驱动器;
外壳中的转动力倍增机构,其包括用于从较低阻力到较高阻力的所有扭矩模式的转动力倍增发射器;以及
至少一个振动力机构,其包括用于能够在从较低阻力到较高阻力的所有扭矩模式期间操作的间歇力模式的振动发射器。
35.如权利要求34所述的动力工具,包括:
其中,所述转动力倍增机构包括一个或多个齿轮级;
其中,振动力机构包括:
具有锤和砧座的转动力冲击机构;以及以下任一:
包括声波力发射器的超声波力机构;
包括质量不平衡力发射器的质量不平衡力机构;或
包括时变干扰(载荷、位移、转动或速度)力发射器的任何其他时变干扰(载荷、位移、转动或速度)机构。
36.如权利要求34所述的动力工具,包括:
其中,所述转动力倍增机构包括一个或多个齿轮级;
其中,振动力机构包括以下任一:
包括超声波力发射器的超声波力机构;
包括质量不平衡力发射器的质量不平衡力机构;或
包括时变干扰(载荷、位移、转动或速度)力发射器的任何其他时变干扰(载荷、位移、转动或速度)机构。
37.如权利要求34所述的动力工具,包括:
其中,所述转动力倍增机构包括用于从低阻力到高阻力的所有扭矩模式的一个或多个齿轮级;以及
其中,所述振动力机构是包括锤和砧座的用于间歇扭矩模式的转动力冲击机构。
38.如权利要求34、35、36或37所述的动力工具,包括:
驱动套管,其与所述螺母或所述螺柱头操作性地连接;
反作用套管,
在较高阻力扭矩模式期间,所述反作用套管操作性地连接到所述外壳和所述共轴反作用表面,以将反作用力传递到所述共轴反作用表面;或
在较低阻力扭矩模式或所述间歇力模式期间,所述反作用套管操作性地连接到所述外壳和所述共轴反作用表面;或操作性地连接到所述外壳并且与所述共轴反作用表面操作性地断开连接。
39.如权利要求34、35、36或37所述的动力工具,包括:
其中,所述共轴反作用表面与待被拧紧的接头一体形成或结合到其上;
驱动套管,其与所述螺母操作性连接;以及
反作用机构,在较高阻力扭矩模式期间,其操作性地连接到所述外壳和所述螺柱,以将反作用力传递到所述螺柱。
40.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,在所述间歇力模式期间,所述工具进行以下任一:
利用沿一个方向的间歇转动力向下运转所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈;
利用沿相反方向的间歇转动力向上运转所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈;
利用施加振动和转动的沿相反方向的间歇转动力、施加振动的间歇振动力、或施加振动和转动的沿相反方向的间歇转动力和施加振动的间歇振动力两者,冲击、振动、或冲击和振动所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈;或上述的任意组合。
41.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,在所述间歇力模式期间,所述工具:
利用沿一个方向的间歇转动力向下运转所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈,以将所述螺母或所述螺柱头从具有明显负面的螺栓连接应用特征的能够受限旋转状态就座到预定的预拧紧扭矩状态,并且压缩在待被拧紧的接头与就座的螺母或就座的螺柱头之间的垫圈;
利用沿相反方向的间歇转动力向上运转所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈,以将所述螺母或所述螺柱头从所述预定的预拧紧扭矩状态离座到具有明显负面的螺栓连接应用特征的所述能够受限旋转状态,并且解压缩在待被松开的接头与离座的螺母或离座的螺柱头之间的垫圈;
利用施加振动和转动的沿相反方向的间歇转动力、施加振动的间歇振动力、或施加振动和转动的沿相反方向的间歇转动力和施加振动的间歇振动力两者,将所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈从不充分地粉碎螺纹腐蚀的状态冲击、振动、或冲击和振动到充分粉碎螺纹腐蚀的状态;或
上述的任意组合。
42.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,在较高阻力扭矩模式期间,所述工具:
利用沿一个方向的低速高扭矩转动力拧紧所述螺母或所述螺柱头,并向所述垫圈施加沿相反方向的反作用力;
利用沿相反方向的低速高扭矩转动力松开所述螺母或所述螺柱头,并向所述垫圈施加沿所述一个方向的反作用力;或
上述的任意组合。
43.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,在较高阻力扭矩模式期间,所述工具:
利用沿一个方向的低速高扭矩转动力扭紧所述螺母或所述螺柱头,以将所述螺母或所述螺柱头从预定的预拧紧扭矩状态拧紧到预定的拧紧扭矩状态,并向所述垫圈施加沿相反方向的反作用力,以在松开的接头与拧紧的螺母或拧紧的螺柱头之间为所述垫圈加压;
利用沿相反方向的低速高扭矩转动力扭松所述螺母或所述螺柱头,以将所述螺母或所述螺柱头从所述预定的拧紧扭矩状态松开到所述预定的预拧紧扭矩状态,并向所述垫圈施加沿所述一个方向的反作用力,以在松开的接头与松开的螺母或松开的螺柱头之间为所述垫圈减压;或
上述的任意组合。
44.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,在较低阻力扭矩模式期间,所述工具:
利用沿一个方向的高速低扭矩转动力向下运转所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈;
利用沿相反方向的高速低扭矩转动力向上运转所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈;或
上述的任意组合。
45.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,在较低阻力扭矩模式期间,所述工具:
利用沿一个方向的高速低扭矩转动力向下运转所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈,以将所述螺母或所述螺柱头从具有不明显负面的螺栓连接应用特征的能够自由旋转状态就座到预定的预拧紧扭矩状态,并且在待被拧紧的接头与就座的螺母或就座的螺柱头之间压缩所述垫圈;
利用沿相反方向的高速低扭矩转动力向上运转所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈,以将所述螺母或所述螺柱头从所述预定的预拧紧扭矩状态离座到具有不明显负面的螺栓连接应用特征的能够自由旋转状态,并且解压缩在待被松开的接头与离座的螺母或离座的螺柱头之间的垫圈;或
上述的任意组合。
46.如权利要求34、35、36或37所述的动力工具,其中,所述工具在较高阻力扭矩模式中拧紧、松开或拧紧和松开所述螺母或所述螺柱头,并且其中,所述工具在所述间歇力扭矩模式或较低阻力扭矩模式中对所述螺母、所述螺柱头、所述螺母和所述垫圈、或所述螺柱头和所述垫圈进行向上运转、向下运转或冲击中的一个、两个或三个。
47.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,当发生以下任一时,所述工具从所述间歇扭矩模式切换到较高阻力扭矩模式:
使所述螺母或所述螺柱头就座并在预定的预拧紧扭矩状态压缩所述垫圈;
螺纹腐蚀的足够粉碎;或
上述的任意组合。
48.如权利要求34、35、36或37所述的动力工具,其中,当使所述螺母或所述螺柱头离座并在预定的预松开扭矩状态解压缩所述垫圈时,所述工具从较高阻力扭矩模式切换到所述间歇扭矩模式或较低阻力扭矩模式。
49.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,当使所述螺母或所述螺柱头就座并在预定的预拧紧扭矩状态压缩所述垫圈时,所述工具从较低阻力扭矩模式切换到较高阻力扭矩模式。
50.如权利要求34、35、36或37所述的动力工具,其中,所述转动力倍增机构包括多个转动力倍增发射器,并且其中,所述振动力机构包括多个振动发射器。
51.如权利要求50所述的动力工具,包括:
与至少一个倍增发射器操作性地连接的外壳;
其中,在较高阻力扭矩模式和较低阻力扭矩模式期间,至少两个倍增发射器相对于另一个旋转;并且
其中,在所述间歇扭矩模式,至少两个倍增发射器是一个单元,以实现来自所述冲击机构的锤击运动。
52.如权利要求34、35、36或37所述的动力工具,包括:
其中,较高阻力扭矩模式能够从扭矩调节模式切换到振动辅助模式,反之亦然;
其中,较低阻力扭矩模式能够从扭矩调节模式切换到振动辅助模式,反之亦然;并且其中,所述间歇扭矩模式能够从振动调节模式切换到扭矩辅助模式,反之亦然。
53.如权利要求34、35、36或37所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,即使所述垫圈开始或停止旋转,所述振动机构也能够继续操作。
54.如权利要求34、35、36或37所述的动力工具,其中,较高阻力扭矩模式在拧紧期间不是振动辅助模式,但在用于松开时能够是振动辅助的,以克服化学的、热的和/或润滑的腐蚀并避免螺栓螺纹磨损。
55.如权利要求51所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,在所述间歇扭矩模式期间,单元的倍增发射器与所述外壳的组合体和所述驱动器沿相同方向旋转。
56.如权利要求51所述的动力工具,其中,在所述间歇扭矩模式期间,单元的倍增发射器与所述外壳的组合体和所述驱动器沿与所述多个转动力冲击发射器相同方向的旋转产生提高所述冲击机构的扭矩输出的惯性,以克服腐蚀、螺纹和面变形并避免螺栓螺纹磨损。
57.如权利要求51所述的动力工具,其中,所述冲击机构的启用或停用手动地或自动地发生。
58.如权利要求34、35、36或37所述的动力工具,包括按以下任一方式切换所述工具的开关
从较高阻力扭矩模式切换到间歇扭矩模式;
从较高阻力扭矩模式切换到较低阻力扭矩模式;
从较低阻力扭矩模式切换到间歇扭矩模式;
从较低阻力扭矩模式切换到较高阻力扭矩模式;
从间歇扭矩模式切换到较高阻力扭矩模式;或
从间歇扭矩模式切换到较低阻力扭矩模式。
59.如权利要求58所述的动力工具,其中,所述开关是自动的或手动的。
60.如权利要求34、35、36或37所述的动力工具,其产生超声波转动力、超声波振动力或以上两者。
61.如权利要求38所述的动力工具,其中,所述驱动套管是内套管,并且其中,所述反作用套管是外套管。
62.如权利要求38所述的动力工具,其中,所述共轴反作用表面是垫圈,并且其中,在较高阻力扭矩模式期间,所述螺母和所述垫圈或所述螺柱头和所述垫圈的同时接合:消除侧面载荷;产出更均匀的螺栓载荷,以确保更均匀的接头压缩;简化工具的使用;降低操作者错误的风险;并且提高操作者的安全性。
63.如权利要求34、35、36或37所述的动力工具,其中,较高阻力扭矩模式是低速高扭矩模式,并且其中,所述低阻力扭矩模式是高速低扭矩模式。
64.如权利要求34、35、36或37所述的动力工具,包括以下任一:
其中,所述共轴反作用表面是垫圈,并且其中,所述垫圈与待被拧紧的接头一体形成或结合到其上;或
其中,所述工业螺纹紧固件是具有所述螺母的类型,并且所述共轴反作用表面是所述螺柱。
65.如权利要求34、35、36或37所述的动力工具,其中,所述工业螺纹紧固件是具有螺柱头的类型,包括以下任一:
六角匙连接结构;
内轴肩螺钉(“SSC”)头;
内平圆头螺钉(“SHBS”)头;
六角平圆头螺钉(“HHCS”)头;
圆头开槽螺钉(“RHSS”)头;
平头梅花螺钉(“FHTS”)头;
定位螺钉(“SSS”)头;或
内圆柱头螺钉(“SHCS”)头。
66.如权利要求34、35、36或37所述的动力工具,其中,所述工具被电气地、液压地、气动地驱动或其任何组合。
67.一种方法,其利用如权利要求34-66中任意一项所述的无反作用臂动力工具最小化磨损地拧紧、松开或拧紧和松开工业螺纹紧固件,该工业螺纹紧固件是具有共轴反作用表面、螺柱以及能够与螺柱螺纹接合的螺母或连接到螺柱的螺柱头的类型,所述方法包括:
其中,拧紧包括:
沿一个方向向下运转所述螺母、所述螺柱头、所述螺母和所述共轴反作用表面、或所述螺柱头和所述共轴反作用表面;
沿所述一个方向扭转拧紧所述螺母或所述螺柱头,同时所述共轴反作用表面沿相反方向反作用离开;
其中,松开包括:
沿相反方向扭转松开所述螺母或所述螺柱头,同时所述共轴反作用表面沿所述一个方向反作用离开;以及
沿相反方向向上运转所述螺母、所述螺柱头、所述螺母和所述共轴反作用表面、或所述螺柱头和所述共轴反作用表面。
68.如权利要求67所述的方法,包括:
其中,拧紧包括:
将所述共轴反作用表面放置在待被拧紧的接头之上;
将所述螺母或所述螺柱头放置在所述共轴反作用表面之上;
切换到较高阻力扭矩模式,
其中,松开包括:
将所述工具放置在拧紧的螺母或拧紧的螺柱头和加压的共轴反作用表面之上;以及从LSHT模式切换到HSLT模式。
69.参照附图并如附图中所示地在此描述的任何新颖特征或特征的新颖组合。

说明书全文

反作用垫圈及其紧固套管

[0001] 相关申请的交叉引用
[0002] 本申请要求以下共同拥有和共同待审专利申请的优先权和/或是它们的继续专利申请或部分继续申请,这些申请的内容通过引用合并于此:美国申请序列号62/012,009,其申请日为2014年6月13日,名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”;专利合作条约申请序列号PCT/US2014/035375,其申请日为2014年4月24日,名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”;美国专利申请序列号61/940,919,其申请日为2014年2月18日,名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”;美国申请序列号61/916,926,其申请日为2013年12月17日,名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”;美国申请序列号13/577,995,其申请日为2012年8月9日,名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”,其要求申请日为2011年2月9日名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”的专利合作条约申请序列号PCT/IB2011/001019的优先权,其要求申请日为2011年1月5日和2010年2月9日名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”的美国申请序列号61/430,105和61/
302,598的优先权;以及美国申请序列号13/1 13,693,其申请日为2011年5月23日,名称为“METHOD FOR TIGHTENING AND LOOSENING THREADED CONNECTORS”,其是申请日为2009年4月23日名称为“WASHER FOR TIGHTENING AND LOOSENING THREADED CONNECTORS”的美国申请序列号12/429,040的分案申请,它现在是授权日为2011年12月20日名称为“WASHER FOR TIGHTENING AND LOOSENING THREADED CONNECTORS”的美国专利No.8,079,795。

背景技术

[0003] 包括螺栓螺柱螺母和垫圈的螺纹固件是已知的并且被用于传统螺栓连接应用。工业应用的维护和修理开始于松开这些螺纹紧固件,结束于拧紧这些螺纹紧固件。当然,工业试图降低例常的、未预见的和/或紧急的维护和/或修理期间的生产损失。
[0004] 存在两种拧紧和/或松开螺栓的方法,扭矩和拉。但是,在申请人的创新之前,不能用同一工具执行液压扭转和液压拉动。操作者需要不同的工具来扭转和拉动螺纹紧固件。
[0005] 扭矩的益处在于:它可被施加于大多数现有螺纹紧固件;在预先计算的螺母的转动阻力的百分之五(5%)内准确;避免意外的松开;确保比扭矩更均匀的周向螺栓载荷;以及克服不均匀的润滑应用、螺母下面的或法兰之上的外来微粒和较小的螺纹损伤。但是,扭矩的害处在于:它经历螺纹摩擦和面摩擦,这两者都是未知的;需要使用备用扳手,其在应用的另一侧应用于螺母以保持螺纹紧固件的底部部分不动;导致未知的剩余螺栓载荷;以及经历螺栓扭曲和侧面载荷,两者都不利地影响螺栓应用。在螺栓连接中可持续地准确地利用扭矩需要建立螺纹、承受面摩擦并消除扭曲和侧面载荷。
[0006] 拉力的益处在于它不存在扭曲和侧面载荷。但是,拉力的害处在于:它需要螺栓突出到螺母上方附近至少其直径那么长,从而使得它可被拉力器向上拖拽,这通常必须更换螺栓和螺母;仅在假定的转动阻力的25%内准确;产出不可预测的手动的螺母就座;经历螺纹摩擦和面摩擦,两者都是未知的;经常过度拖拽,而非拉伸紧固件;因从拖拽器传递的载荷而导致不可控的紧固件松弛;以及导致未知的剩余螺栓载荷。在螺栓连接中可持续地准确地利用拉力需要消除螺柱/螺栓拖拽和载荷传递。
[0007] 扭矩动力工具是本领域已知的,并且包括那些气动地、电气地和液压地驱动的装置。扭矩动力工具产生拧紧和/或松开螺纹紧固件的转动力以及相等相反的反作用力。液压拉力器使用拖拽器向螺栓应用液压压力,其通常导致比期望的螺栓延长率高10%-20%,致使螺栓被过度拖拽。然后,手动拧紧螺母,直到紧贴;释放汽缸上的压力;螺柱回弹;并且载荷从桥被传递到螺母,由此利用夹持力压缩接头。
[0008] 关于扭矩,传统的反作用固定装置紧靠可行的可接近的静止物体,诸如相邻的紧固件,以防止工具的外壳在紧固件前进时后退。此邻接力与螺栓轴线垂直地向待被拧紧或松开的螺母应用拖拽力或侧面载荷。方头驱动工具的反作用力行进通过反作用臂,试图拧开工具的汽缸头和/或弯曲驱动器。注意,申请人在共轴反作用力传递方面的创新在中找到。例如申请人的美国专利第4,671,142;4,706,526;5,016,502;Re.33,951;6,152,243;D500060和7,765,895号中公开了现有技术的传统反作用固定装置的演变,它们的全部内容通过引用合并于此。
[0009] 工业已经不再使用笨重复杂的液压拉力器,并且由于被应用于紧固件的扭曲和侧面载荷也不再使用扭转。实际上,机械拉动是相当受欢迎的。
[0010] 申请人利用其HYTORC NUTTM机械拉力器生产线及与其联用的驱动器和工具改进螺栓连接并解决许多螺栓连接的挑战。此扭转螺母具有两个套筒,一个在另一个内,其中,内套筒与花键垫圈连接,以仅容许内套筒的轴向移动。它被旋拧到螺柱或螺栓上,作为一个单元。专利的驱动器握持到内套筒上并转动外套筒。螺柱与内套管一起被向上拉拔,并且在不过度延伸和反弹的情况下被拉动,如利用液压拉力器。内螺母从不相对于载荷下的螺柱的螺纹转动,消除了螺栓螺纹磨损或其他损伤的可能性。
[0011] HYTORC NUTTM:在拧紧和松开期间机械力采用工具的作用和反作用力;将扭矩转化成无扭曲的螺栓拉伸而非拖拽,如在拉动时;容许精确的螺栓载荷校准,准确地设定和实现期望的剩余的螺栓延长率或载荷,与扭矩相比;消除侧面载荷、扭曲、载荷传递和松弛、反作用臂、备用扳手、拖拽器和桥;消除用于关键应用的螺栓延长率测量;增加安全性、无错误螺栓连接、接头安全性和速度;将螺栓连接时间减少超过50%;并且可在所有接头上工作,而不需要改变。它通过拉伸螺栓而非拖拽它们来提高扭矩和拉力,防止不安全以及紧固件和接头损伤机械回弹。操作者在任何位置设定并实现从30%至90%产出率的螺栓载荷。
[0012] 例如,在申请人的美国专利第5,318,397;5,499,9558;5,341,560;5,539,970;5,538,379;5,640,749;5,946,789;6,152,243;6,230,589;6,254,323;6,254,323和6,461,
093号中公开了的HYTORC NUTTM演变,它们的全部内容通过引用合并于此。
[0013] 但是,HYTORC NUTTM具有其一组挑战。最终用户必须用精确加工、处理和润滑的单元替代标准螺母。此外,内套筒需要在与垫圈连接的点出沿径向相对厚。有时,此连接可保持应用于外套管的整个反作用力。此外,HYTORC NUTTM生产成本高并且通常难以销售给成本最小化的传统螺栓连接最终用户。此外,在HYTORC NUTTM的一些版本中,螺母必须被制造有两个套筒,其外径必须满足普通螺母的外径,因此两个套筒都具有比普通螺母少的材料。这需要使用高强度的材料,会致使顾客这方不情愿改变材料并害怕未知。在HYTORC NUTTM的其他版本中,需要改变螺栓,这是成本高且不容易被工业接受的。
[0014] 申请人利用其HYTORC WASHERTM生产线以及与其联用的驱动器和工具进一步改进了工业螺栓连接并解决了许多螺栓连接挑战。HYTORC WASHERTM是用作在螺旋形螺纹紧固件上扭转螺母和螺栓的反作用点的反作用垫圈的第一个例子。反作用垫圈位于螺栓和螺柱载荷路径中,并且因此总是经历相同和相等的加载。在反作用垫圈系统中,旋转扭矩被应用于顶部螺母或螺栓,同时相反反作用扭矩被给予在反作用垫圈上。顶部螺母或螺栓和配合的反作用垫圈经历相同和相等载荷和扭矩。因此,相对移动仅由摩擦力支配。具有较低摩擦系数的部件将具有移动的倾向,而其他部件将保持相对锚固。
[0015] HYTORC WASHERTM自我反作用载荷垫圈具有与传统螺栓的螺纹连接内螺纹区段。它匹配在普通螺母下方,并阻止螺栓转动,同时为所述驱动工具提供反作用点。它被专利的双套管拧紧。外套管握持在垫圈上,并且内套管转动普通螺母,由此向上拉拔螺柱使其通过TM
垫圈。工具的反作用力被转化成保持HYTORC WASHER 静止的握持力。这在螺母转动时保持所述区段并因而保持螺栓静止,直到螺栓延长致使轴向区段在HYTORC WASHERTM内移动。它通过拉伸螺栓而非拖拽它们来提高扭矩和拉力。缺少传递-松弛或机械回弹容许拉伸至
90%产出率。
[0016] HYTORC WASHERTM:为更均匀的剩余螺栓载荷提供已知的支承面摩擦;不需要精确加工螺钉孔平面;最小化螺栓连接过程的弯曲和侧面载荷;防止螺栓与螺母一起转动;停止平直的轴向螺栓拉伸,而不需要反作用臂和备用扳手;增大剩余螺栓载荷和圆周接头压缩的均匀度;减少设定时间;增大螺栓连接速度;容许螺栓连接变成轴向定向并且即使在转化应用上也免手持;增加螺栓连接安全性;并且最小化紧固件和接头损失的险。
[0017] 例如,申请人的美国专利第6,490,952;6,609,868;6,929,439;6,883,401;6,986,298;7,003,862;7,066,053;7,125,213;7,188,552;7,207,760和7,735,397号公开了HYTORC WASHERTM生产线以及与其联用的驱动器和工具的演变,它们的全部内容通过引用合并于此。
[0018] 但是,HYTORC WASHERTM具有其一组挑战。它向螺栓连接应用添加了不必要的高度。由于在拧紧时需要两个或更多个螺纹从螺母突出的规定,最终用户通常必须将标准螺柱和螺栓替代成更长的版本。此外,HYTORC WASHERTM生产成本高于传统垫圈并且通常难以销售给成本最小化的传统螺栓连接最终用户。此外,如果螺母摩擦较高,则HYTORC WASHERTM沿相反方向自由转动。在操作期间,HYTORC WASHERTM具有两个面摩擦,并且螺母具有面摩擦和螺纹摩擦,因此每个的总体摩擦几乎相同,这意味着HYTORC WASHERTM可以转动或螺母可以转动。为了避免这种情况,需要预载荷,如果HYTORC WASHERTM和螺母同时被向下转动的话,不能达到该预载荷。最后,尽管消除了侧面载荷和扭曲,但腐蚀生成物仍在螺纹中积累,由此不能消除螺纹磨损。
[0019] 申请人利用其HYTORC SMART WASHERTM生产线以及与其联用的驱动器和工具进一步改进了工业螺栓连接并解决了许多螺栓连接挑战。此自我反作用多用途垫圈用于拧紧和松开包括螺母、具有轴线的螺栓的螺纹连接器,在垫圈放入在螺母和物体之间的情况下,该螺栓被引入物体中,从而使得在一个轴向侧上的垫圈的第一支承面表面与螺母协作,并且在相反轴向侧上的垫圈的第二支承面表面与物体协作。垫圈包括:径向外主体,其具有适于大于螺栓直径的径向内开口和适于吸收工具的反作用力的径向外表面;径向内区段,其可与螺栓的螺纹接合,径向地位于外主体内径向内开口中,并且可连接到外主体,相对于主体进行有限的轴向摩擦移动;以及隔片,其适于位于径向内区段和螺母之间,并且也径向地位于外主体内径向内开口中并且与径向内区段轴向地分隔开。外主体、径向内区段和隔片彼此可组装在一起并拆分开,并且可共同地或单独地使用。
[0020] 对于需要均匀准确的螺栓延长的应用,申请人使用插置在螺母和物体之间的径向外主体和径向内区段。当工具以给定的力转动螺母时,径向外主体从工具接收沿相反方向的给定力。径向外主体维持不动,同时与螺栓螺纹接合的径向内区段明确地使螺栓停止转动。螺栓仅延长或松弛。在此情形中,由径向外主体和径向内区段构成的垫圈用作拉力垫圈。
[0021] 对于需要精确的螺栓延长且必须控制螺栓延长的应用,申请人使用插置在螺母和物体之间的径向外主体、径向内区段和隔片。当工具以给定的力转动螺母时,径向外主体从工具接收沿相反方向的给定力。径向外主体维持不动,同时与螺栓螺纹接合的径向内区段明确地使螺栓停止转动。螺栓仅延长或松弛,并且同时径向内区段沿轴向移动,同时隔片限制区段的轴向移动。在此情形中,由径向外主体、径向内区段和隔片构成的垫圈用作高精确度垫圈。
[0022] 对于不需要均匀准确的螺栓延长的普通应用,申请人仅使用插置在螺母和物体之间的垫圈的径向外主体。当工具向螺母应用转动力时,主体的径向外表面用于吸收相等且相反的反作用力。螺母转动,但径向外主体维持不动,在此情形中,仅由径向外主体构成的垫圈用作反作用垫圈。
[0023] HYTORC SMARTWASHERTM提供以低成本和更灵活的包装提供了HYTORC WASHERTM的很多优点。例如,申请人的美国专利No.8,079,795公开了HYTORC SMARTWASHERTM生产线以及与其联用的驱动器和工具的演变,其全部内容通过引用合并于此。
[0024] 但是,HYTORC SMARTWASHERTM具有其一组挑战,类似于HYTORC WASHERTM的那些。它向螺栓连接应用添加了不必要的高度。由于在拧紧时需要两个或更多个螺纹从螺母突出的规定,最终用户通常必须将标准螺柱和螺栓替代成更长的版本。此外,HYTORC SMARTWASHERTM生产成本高于传统垫圈并且通常难以销售给成本最小化的传统螺栓连接最终用户。显然,申请人相信当仅HYTORC SMARTWASHERTM的径向外主体被用作反作用垫圈时不可能实现均匀、准确和精确的螺栓延长。此外,使用具有径向外主体的螺纹插入件会产出均匀准确的螺栓延长,但螺柱的行进受垫圈厚度限制。在使用隔片的情况下,行进进一步被阻碍。最后,尽管消除了侧面载荷和扭曲,但腐蚀生成物仍在螺纹中积累,由此不能消除螺纹磨损。
[0025] 此外,如果螺母摩擦较高,则HYTORC SMARTWASHERTM沿相反方向自由转动。在操作TM期间,HYTORC SMARTWASHER 具有两个面摩擦,并且螺母具有面摩擦和螺纹摩擦,因此每个的总体摩擦几乎相同,这意味着HYTORC SMARTWASHERTM可以转动或螺母可以转动。为了避免这种情况,需要预载荷,如果HYTORC SMARTWASHERTM和螺母同时被向下转动的话,不能达到该预载荷。
[0026] 对于常规反作用垫圈系统,必须应用润滑剂,以选择性地偏置垫圈,从而在处于比螺母或螺柱高的摩擦下时保持不动。这容许螺柱或螺母转动并通过螺旋形配合螺纹产生载荷。在安装反作用垫圈的过程中,所需的润滑偏置是不期望的难以控制的步骤。在常规反作用垫圈上,即使很少量的润滑剂也将具有容许反作用垫圈在螺母或螺栓之前转动或滑动的负面影响。当垫圈在螺旋形螺纹螺栓或螺母之前转动时,系统不能产生螺柱载荷。对润滑或摩擦表面的不适当管理通常导致常规反作用垫圈意外滑动或转动。
[0027] 在现有技术中,反作用垫圈的其他例子包括美国专利第7,462,007和7,857,566号中公开的那些,它们的全部内容通过引用合并于此。这些反作用垫圈是紧螺母和Belleville垫圈的代替品,因为它们在载荷下弹性变形,以存储预载荷或载荷能量。在多数实施例中,包括螺纹孔眼是试图最小化螺栓上的侧面载荷。这些下凹和/或上凸的反作用垫圈与物体接触的面积小于垫圈底表面的总表面积。在一个实施例中公开了无螺纹孔眼。摩擦增强结构包括突出,诸如六边形垫圈形状的顶端,或平面滚花延伸结构,其咬入或挖入物体表面中。也公开了不具有摩擦增强结构的基本平坦的反作用垫圈。
[0028] 申请人努力增大流体操作式扭矩动力工具中紧固件的旋转速度。是流体操作式扳手,其具有:包括汽缸的流体操作式驱动器;可在汽
缸中往复移动并且具有活塞杆的活塞,该活塞杆具有活塞杆端部;棘轮机构,其具有设置有多个齿的棘轮;以及至少两个卡爪,其可与活塞杆末端可操作地连接并且可与棘轮的齿接合,从而使得在活塞的前进冲程期间,所述至少两个卡爪中的一个与至少一个棘轮齿接合,同时所述至少两个卡爪中的另一个以棘轮方式接合在至少一个棘轮齿之上,而在活塞的返回冲程期间,所述至少两个卡爪中的所述另一个与至少一个棘轮齿接合,同时所述至少两个卡爪中的所述一个以棘轮方式接合在至少一个棘轮齿之上。至少两个卡爪中的至少一个可与棘轮齿断开接合并可升高至棘轮齿上方。 还包括断开接合单元,
其可与驱动器相独立地被操作者启用,并且可用作至少一个卡爪,从而将它与棘轮齿区分开并且使它升高至棘轮齿上方。此消隙特征允许棘轮向后转动,以释放积聚的扭曲和材料屈曲,从而使得流体操作式扳手可离开一个任务。 是世界上第一个连
续旋转液压扳手。这使得此工具的速度达到市场上任何其他扳手的速度的三倍。注意,当与联用时HYTORC NUTTM和HYTORC WASHERTM的益处更加突出。
在申请人的美国专利No.6,298,752中公开,其全部内容通过引用合
并于此。
[0029] 然后,申请人将在扭矩动力工具中它的彻底理解和创新应用于手持式液压扭矩强化工具,具体通过产生 生产线和与其联用的驱动器和工具。申请人以商品名 单速、双速和双速加出售这些工具。一旦螺母碰到法兰表
面,用以拧紧或松开它的转动程度就非常小。顾客期望高转动速度,以快速地向下或向上运转螺母。提供高的向下运转和脱离速度的已知冲击扳手具有缺点:一旦螺母碰到法兰面,旋转就会不准确和变慢。相反,已知的手持式扭矩动力工具扭矩准确,但在紧固件向上运转和向下运转时相对慢。但它们仍比冲击枪快很多,当螺母在法兰面上转动时。
[0030] 已知的手持式扭矩强化工具中的达外壳与齿轮外壳相独立,从而使得扭矩不能超过操作者臂/手的扭矩阻力。否则,工具的马达外壳不能被握持并且将在操作者手中旋动。市场上有许多马达驱动式扭矩倍增器,其中一些具有两个速度机构,其中一些对螺栓尖端起反作用,这需要特定的螺栓,以及具有反作用臂的其他扭矩倍增器。无论应用什么样的扭矩或速度,它们的齿轮外壳都沿与输出轴相反的方向转动。在高速下,在于是存在的手持式扭矩强化工具中的转动零件需要轴承,因为齿轮和输出轴在齿轮外壳中转动得如此快。这类工具的高扭矩版本过大且过重。
[0031] 生产线包括具有向下运转或向上运转速度的工具,其中,整个齿轮外壳与内齿轮组件和输出驱动器一起以相同的高速度沿相同方向转动。操作者简单地将工具切换离开以下状态,即,沿一个方向向齿轮和输出轴应用转动力并同时向齿轮外壳应用相反的转动力。注意,HYTORC NUTTM和HYTORC WASHERTM生产线及与其联用的驱动器和工具与 双速兼容。例如,在 双速的高
速低扭矩实施例中,具有螺母的驱动套管和具有HYTORC WASHERTM的反作用套管总是以相同的较高速度和相同的较低扭矩一起转动。HYTORC WASHERTM和螺母通过销集成为一个单元,直到螺母就座在HYTORC WASHERTM上。扭矩增大并且销通过剪应力碎裂,从而使得螺母以较高扭矩和较低速度转动,同时HYTORC WASHERTM成为静止物体并因而成为反作用点。HYTORC WASHERTM与已知螺母的集成不再可接受,因为破碎的连接结构的碎片影响摩擦系数,可引起螺纹磨损,并在螺纹分界面处留下有害的不希望的沉积物
[0032] 当不与HYTORC WASHERTM联用时, 需要使用反作用固定结构,以将螺母转动期间产生的反作用力转移到静止物体。向下运转速度必须受限,以避免反作用臂以高速猛撞相邻的螺母,如果操作者的肢体挡路的话,这可能导致事故。反作用臂的邻接是低速高扭矩操作模式所必须的,用以拧紧或松开紧固件。但是,高速低扭矩操作模式不期望反作用臂,同样是为了避免事故和OSHA可记录情况。
[0033] 申请人应用应用在具有反作用固定结构和 生产线的扭矩动力工具中它的彻底理解和创新,以进一步改进手持式气动扭矩强化工具。申请人创造生产线及与其联用的驱动器和工具。
包括可放置的反作用臂。当位于第一位置时,扭矩强化单元被切换到高速低扭矩模式,并且反作用臂可用作操作者的手柄,同时处于垂直于工具轴线的方向。当反作用臂位于与工具轴线共轴的第二位置时,扭矩强化单元被切换到低速高扭矩模式,并且反作用臂可紧靠静止物体,因为高扭矩不能被操作者吸收。
[0034] 通常,应用特征负面地影响螺栓连接任务,并且包括例如腐蚀的、不干净的、扭结的、满载残渣的、卷边的、磨损的、不规则的、方向错乱的、未对齐的和/或润滑不均匀的螺柱和螺母螺纹和表面。通常,生产损失因这类负面螺栓连接应用特征而加剧。显然,工业试图降低例常的、不可预见的和/或紧急维护和/或修理期间的生产损失。
[0035] 申请人进一步创新其手持式气动扭矩强化工具,具体通过创造生产线及与其联用的驱动器和工具。 是
手持式双模式动力驱动扭矩强化工具,其在无反作用臂和反作用辅助模式中操作,拧紧和松开工业紧固件。它包括:马达,用以产生转动紧固件的转动力;用于低速度/高扭矩模式的转动力倍增机构,包括多个转动力倍增发射器;用于低速度/高扭矩模式的转动力冲击机构,包括多个转动力冲击发射器;外壳,其操作性地连接到至少一个倍增发射器;反作用臂,用以将低速/高扭矩模式期间在外壳上产生的反作用力传递到静止物体;其中,在低速/高扭矩模式期间,至少两个倍增发射器相对于另一个旋转;并且其中,在高速/低扭矩模式期间,至少两个倍增发射器是一个单元,以实现来自冲击机构的锤击运动。有利地,最小化操作者的振动暴露;由于来自倍增和冲击机构之间的
协作的较高质量而在高速低扭矩模式提供高旋转惯性,这增加冲击机构的扭矩输出;即使当需要比操作者可吸收的扭矩高的扭矩来克服螺栓连接应用的主要负面特征(如螺纹和面变形和/或螺纹磨损)时,也可以高速地向下运转和脱离紧固件,而不需要使用反作用臂;以及松开黏住到它们的接头的高度扭转的和/或腐蚀的紧固件,并且在第二模式中利用反作用固定结构将紧固件拧紧到期望的更高更精确的扭矩。
[0036] 在低速/高扭矩(倍增)模式期间,冲击模式不可在 中操作,因为:可放置的反作用臂紧靠静止物体;并且冲击机构在扭矩倍增模式被锁在外面。但是注意,在高速/低扭矩模式期间,来自马达的转动力经由倍增机构的初始级被传递到输出轴,以向下运转或向上运转显示很少或不显示阻力的螺母或螺栓头。当紧固件显示负面螺栓连接特征,因此需要间歇力来克服这类变形时,启用冲击机构。
[0037] 例如,申请人的美国专利和美国申请第6,490,952;6,609,868;6,929,439;6,883,401;6,986,298;7,003,862;7,066,053;7,125,213;7,188,552;7,207,760;7,735,397;7,
641,579;7,798,038;7,832,310;7,950,309;8,042,434;D608,614;和13/577,995号公开了和 生产线及与其联用的驱动器和工
具的演变,它们的全部内容通过引用合并于此。
[0038] 尽管申请人近期利用 进行了创新,但侧面载荷和螺纹磨损仍是工业螺栓连接应用的主要问题,并且完全未被市场中的强化工具解决。磨损是由横向运动或滑动期间金属表面之间的摩擦和粘附两者的结合导致的材料损耗,通常是由于润滑不良。当材料磨损时,一些部分从接触面被拖拽并且黏住到或摩擦焊接到相邻表面,特别是如果存在将表面压缩在一起的巨大的力的话。磨损通常发生在高载荷低速应用中。它涉及可见的材料传递,因为它粘合地从一个表面被拖拽,使它以凸起团的形式黏住到另一表面。磨损通常不是渐进的过程,而是快速发生且迅速蔓延,因为凸起的团块引发更多磨损。
[0039] 很久之前拧紧的腐蚀的紧固件的腐蚀通常发生在螺母和螺栓以及螺母和法兰的接合螺纹之间。腐蚀可来自若干个源,包括化学品、热量、湿度和润滑。在高温应用上,例如,在拧紧期间应用的润滑随时间干涸并将螺纹束缚在一起。此外,容器内和容器外的化学反应通常引起电流腐蚀。在松开期间,内螺纹腐蚀沿螺栓螺纹推动变干的油脂。被应用于静止物体的反作用力在待被转动的螺母的近侧上应用相等的力。实际上,工具的侧面载荷或邻接力可以是其英尺磅扭矩输出的3倍至4倍,因为反作用臂的邻接点通常距驱动器中心半英尺远,如果不是小于一英尺的话。此侧面载荷致使螺纹和螺栓螺纹在大的力应用于近侧的情况下接合,从而使得当螺母被转动时变干的油脂在该位置堆积。螺纹中的不规则通常不能被克服。螺栓和螺母之间的螺纹中仅一半接合并且螺纹开始咬紧。这致使螺栓螺纹磨损,并且需要明显更多的扭矩并因此需要显然更多的侧面载荷来取下螺母,这可毁坏螺栓和螺母螺纹。紧固件通常锁定到所有转动力都被螺纹摩擦使用的点,这可导致紧固件或转动它的工具破裂。
[0040] 最初用于拧紧紧固件的扭矩动力工具通常不足以松开同一腐蚀的紧固件。这类腐蚀的紧固件可需要是拧紧扭矩的1倍至3倍英尺磅的松开扭矩值。高温螺栓连接应用,诸如例如,在涡轮机和箱中,通常是关键的,需要更换成本极高的不锈的或精确制造的紧固件。此外,对近来很受欢迎的细螺纹螺栓的使用倍增了此问题。
[0041] 即使工具未向紧固件应用侧面载荷,螺纹磨损仍可能发生,因为在松开螺母期间,变干的油脂在接合螺纹中积累。这种松开在某一时刻需要比最初拧紧的扭矩高的扭矩,其在应用时会导致螺纹磨损。即使HYTORC NUTTM位于内和外套管之间,这也会发生。工业中的习惯是,操作者用大锤撞击腐蚀的紧固件,以在应用松开扭矩之前粉碎腐蚀。此习惯是危险的,可毁坏延伸到螺母之上的螺栓螺纹,并且不文明。负面的磨损也发生在螺母面和法兰面之间,因为侧面载荷改变待被转动的螺母的垂直方位。这继而增大螺母的转动摩擦,并且使得松开扭矩产生的螺栓载荷不可预测,这会导致不美观、不平行的接头封闭、系统泄漏、以及工具、紧固件和接头故障。
[0042] 已知的垫圈可减小螺纹紧固件、螺母和接头之间的表面磨损,因为垫圈由较硬的材料制成。ASME PCC-1-2010的附录M陈述了:“通常认为使用全硬化垫圈将通过为螺母提供平滑低摩擦的支承表面而提高扭矩输入向螺柱预载荷的转化。垫圈保护法兰的接触面,使其不会因螺母转动而受损。这些是使用扭转方法(手动的或液压的)拧紧螺栓时的重要考量。”但是,已知的垫圈不会最小化和/或消除由侧面载荷产生的表面磨损和螺纹磨损。并且已知的垫圈在被拧紧时可移动,从而使得垫圈可与螺母或螺栓头一起旋转,而非保持固定。这可影响扭矩拉力关系。
[0043] 在典型的螺栓连接系统中安装垫圈的另一个目的是通过提供处于压力下的更大的区域分配螺栓头和螺母下方的载荷。否则的话,螺栓的支承压力可超过连接材料的支承强度,并且这会导致螺栓的预载荷损失和材料蠕变。
[0044] 需要的是:简化工具、驱动器和垫圈的设计和操作;消除反作用力、弯曲力和拖拽力;增大螺栓连接速度、效率、可靠性和可重复性,全部都以低成本实现。本发明因此被设想成解决这些问题。附图说明
[0045] 可参照附图仅以举例方式描述本申请的发明,在附图中:
[0046] 图1A-1C是 垫圈的第一实施例的顶表面和底表面的立体图以及侧视图;
[0047] 图2A-2B是待被包括图 垫圈和螺母的螺纹紧固件( 紧固件)关闭的接头的面向上和面向下立体图;
[0048] 图3A-3C是用于最小化磨损地拧紧和/或松开 紧固件的无反作用臂动力工具(枪)的侧视图和立体图;
[0049] 图4A-4B是拧紧的接头和拧紧的 紧固件的立体图和侧视图;
[0050] 图5A-5D是双驱动共轴作用和反作用组件( 套管)的立体剖视图和侧视剖视图;
[0051] 图6A-6E是 垫圈摩擦系数增大处理装置和作用在 紧固件上的相关力的顶部向下图、底部向上图和侧视图;
[0052] 图7A-7C是具有不同尺寸和宽度的 垫圈摩擦系数增大处理装置(诸如滚花带)的 垫圈的各种实施例的多个图;
[0053] 图8A-8L是具有不同形状的 垫圈的各种实施例的顶部向下图;
[0054] 图8D1-8D3是 垫圈的另一实施例的顶表面和底表面的立体图和侧面图。
[0055] 图8D4-8D10是各种类型、尺寸和位置的 垫圈摩擦系数增大处理装置的剖视侧视图;
[0056] 图9A-9B是与 垫圈联用的替代性 紧固件和 套管类型的剖视侧视图;
[0057] 图10是替代性 紧固件和 套管的剖视侧视图,使得垫圈的直径少于螺母的直径;
[0058] 图11A-11C是具有不同尺寸和宽度的 套管的各种实施例的多个图;
[0059] 图12A-14B是应用于 扭矩工具的 系统应用的立体图,包括花键适配器、反作用板和偏置连杆
[0060] 图15A-15G是将 双面摩擦垫圈应用于 系统的立体图和侧视图;
[0061] 图16A是处于低速高扭矩(“LSHT”)模式的呈工具10A形式的本发明的实施例的立体图;
[0062] 图16B是处于高速低扭矩(“HSLT”)模式的呈工具10B形式的本发明的实施例的立体图;
[0063] 图17A是处于LSHT模式的工具10A的侧视剖视图;
[0064] 图17B是处于HSLT模式的工具10B的侧视剖视图;
[0065] 图18是处于LSHT模式的工具10A的转动力倍增组件200和振动力组件300的侧视剖视图;
[0066] 图19是工具10A和工具10B的驱动工具外壳组件101、驱动工具手柄组件103及相关的内部部件的立体剖视图;
[0067] 图20是工具10A和10B的模式转变组件400的立体图;
[0068] 图21A是呈工具10F形式的本发明的实施例的侧视剖视图;
[0069] 图21B是呈工具10G形式的本发明的实施例的侧视剖视图;
[0070] 图22A是呈工具10H形式的本发明的实施例的侧视剖视图;
[0071] 图22B是呈工具10I形式的本发明的实施例的侧视剖视图。

具体实施方式

[0072] 系统。本发明试图保护申请人的 系统,其包含:具有多速度/多扭矩模式的工具,其具有扭矩倍增和振动机构而不利用外部反作用邻接;力传递装置,用以产出成直线的共轴作用或反作用,以与这类工具联用;驱动装置和转变装置,其能够将垫圈附接到螺母下方,以与这类工具和力传递装置联用;与这类工具、力传递装置和驱动装置联用的关联垫圈;以及与这类工具、力传递装置、驱动装置和垫圈联用的相关配件。
[0073] 系统包括以下:位于各种类型的螺母或螺栓头下方的 垫圈,其具有多种形状、尺寸、几何结构和锯齿的可接合周缘,诸如垫圈/紧固件半径接合差异,以及摩擦地偏置的面,该面相对于法兰表面具有相对高的摩擦并且相对于螺母具有相对低的摩擦,诸如各种类型、尺寸和位置的摩擦系数增加处理装置; 枪,其将强
大的冲击机构和精确的扭矩倍增器合并在同一工具中,将快速向下运转与校准的扭矩结合起来;具有双驱动共轴作用和反作用的 套管,其具有在 垫圈上反作用
的外套筒和转动螺母或螺栓头的内套筒; 花键适配器和反作用板,用于
与 的扭矩/拉力系统的向后兼容性,该系统包括 和 方头
驱动系统、 有限余隙系统、气动 系列、 枪和LITHIUM系列
TM
电倍增器等; 垫圈和 Dual Friction Washer 的结合,包
括在接头另一侧上的螺母或螺栓头下方的用于反扭矩的双摩擦增强面垫圈;在使用的扭矩/拉力系统时用于紧密的余隙的 双驱动偏移连杆;
以及其应用的 振动机构。
[0074] 垫圈。国际螺栓连接标准要求硬化垫圈被放置在工业螺纹紧固件下方。 垫圈是硬化垫圈,本申请人的专利产品,其在拧紧和/或松开期
间成为紧固件的螺母或螺栓头正下方的反作用点。 垫圈与工业螺纹紧固
件联用,该紧固件是具有共轴反作用表面、螺柱以及可与螺柱螺纹接合的螺母或连接到螺柱的螺柱头的那类。它们可消除操作者附近的任何可能的夹点(pinch point)。操作者不需要搜寻在其中进行反作用的满意的静止物体。平直的共轴拉力几乎消除了螺柱的弯曲和/或侧面载荷。它们提供平滑、一致、低摩擦的顶表面,在其上转动螺母或螺栓头;顶部具有抛光的表面,螺母或螺栓头将相对于该表面转动。它们提供摩擦增强底表面,工具将相对于该表面起反作用。
[0075] 垫圈防止法兰表面受损伤或埋置并且由于较大的表面区域而将螺栓载荷均匀地分布在接头周围。对于每种应用,它们可按各种英制和公制尺寸由各种材料选项制成。它们符合对尺寸、硬度和厚度的所有ASME、ASTM和API要求。它们与气动、液压、电气和手动扭矩工具一起工作。并且在添加伴有摩擦垫圈的情况下,不再需要备用扳手来防止相反螺母与螺栓一起转动。
[0076] 申请人目前的 垫圈相关研究和开发包括样机研究和实验评估区别:厚度;外接合尺寸;外接合几何结构和锯齿;紧固件接合(顶)侧面上的低摩擦涂层和处理;法兰接合(底)侧面上的摩擦增强结构(如滚花图案)的尺寸、形状和位置;底面、顶面、内侧面和外侧面上的尺寸和形状;材料规格;以及热处理规格。
[0077] 图1A示出与 的扭矩/拉力系统联用的 垫圈1的第一实施例。它是垫圈1的顶侧或顶支承面2的立体图。图1B示出垫圈1的底侧或底支承面3的立体图。并且图1C示出垫圈1的边缘侧或侧支承面4的侧视图。
[0078] 一般地,垫圈1是具有内部空隙5的环形形状。如图1所示,垫圈1的环形形状包括形成花状形状的径向延伸凸角6。一般地,顶支承面2是平滑的,相对于螺母或螺栓头具有相对低的表面摩擦。注意,可在顶支承面2上使用润滑剂,以降低它和螺母、螺栓头或任何其他这种螺纹紧固件之间的表面摩擦。底支承面3是有纹理的,相对于法兰表面具有相对高的表面摩擦。底支承面3被示出具有平滑的内表面3A和具有较高表面摩擦的粗糙的摩擦增强件7,诸如滚花。径向凸起的滚花图案7增加底支承面3的表面摩擦。在所示实施例中,滚花表面7呈位于超出平滑表面3A处的环或环形物的形式。外凸角6包括形成在底支承面3和侧支承面4之间的成角度的斜面8。
[0079] 垫圈1具有,除其他之外,环形半径R1A、凸角半径R1L、滚花半径R1K和空隙半径R1V。垫圈1具有高度H1、第一斜面高度H1Bi、第二斜面高度H1Bii、滚花高度H1K和斜角°1。
[0080] 图2A示出待关闭接头30的面向上的立体图,并且图2B示出面向下的立体图。接头30包括被紧固件20,在本领域中通常被称作螺栓,紧固成面对面关系的第一构件31和第二构件32。紧固件20包括具有螺栓头22的第一端21和具有螺纹接合结构24的第二端23。紧固件20的第二端23被插入通过第一和第二构件31和32中的开口33,该开口33从第二构件32的支承面34延伸到第一构件32的支承面35。在准备拧紧过程时,垫圈1被套在第二端23上,底支承面3朝向支承面35。螺纹螺母36被套在第二端23上。
[0081] 仅在接头的一侧上使用 垫圈,并且在其下方不应该使用其他垫圈。应该遵循正常的螺栓和螺母润滑实践。润滑剂仅需要在螺栓头上及螺母或螺栓头和 垫圈的顶部之间,并且不应该用于垫圈和法兰之间。注意,任何给定螺栓的正确扭矩值严重取决于所使用的润滑剂。通常,背面的螺母或螺栓头不需要润滑剂。
[0082] 典型的工业螺栓连接实践是调整螺柱,从而使得当它被拧紧时,顶端将在螺母上方突出2-3个螺纹。这是为了检查,以确保螺母和螺柱完全接合。通常螺柱没有理由延伸得比这更多,并且任何过多的长度应该被调整到法兰的另一侧,从而使得套管可无阻碍地接合整个螺母。在高腐蚀区域中,允许在拧紧之后螺柱与螺母齐平,以降低螺纹损伤的风险,并从而使得可更容易地拆卸螺母。有利地,垫圈1的厚度是理想的。如果垫圈过厚,则紧固件系统将不具有足够多的可用凸螺纹。相反,如果垫圈不够厚,则它可能在高压缩载荷下发生故障。
[0083] 枪(一般地)。用于最小化磨损地拧紧和/或松开工业螺纹紧固件的无反作用臂动力工具,该紧固件是具有共轴反作用表面、螺柱以及可与螺柱螺纹接合的螺母或连接到螺柱的螺柱头的那类,所述工具包括:产生转动力的马达;传递转动力的驱动器;外壳中的转动力倍增机构,其包括用于从较低阻力到较高阻力的所有扭矩模式的转动力倍增发射器;以及至少一个振动力机构,其包括用于可在从较低阻力到较高阻力的所有扭矩模式期间操作的间歇力模式的振动发射器。
[0084] 标准的空气冲击式扳手用不受控的力锤击螺栓,产生高噪声和过多振动。枪是精确的扭矩倍增器,其在螺栓上螺栓之后产生一致的经测量的动
力,而不会产生标准空气冲击式扳手的不受控的力、高噪声和/或过多的振动。 枪是世界上第一种扭矩准确的无反作用臂气动螺栓连接工具。它确保均匀准确的螺栓载荷。 枪将强大的冲击机构和精确扭矩倍增器合并在同一工具中,将快速向下运转与经校准的扭矩相结合。它由手枪握把式触发器操作并且特点是具有用于拧紧或松开的方向控制开关、用于高和低速的速度旋转手柄以及接合螺母下方的 垫圈的自我反作用套管驱动器。冲击机构将螺母装上或卸下,不论是否存在腐蚀或螺纹缺陷。扭矩倍增器机构起出紧固件或拧紧它们。它与 垫圈联用,因而没有外反作用臂,没有夹点,也没有不准确的侧面载荷。它比从前更快、更安全、更好地进行任何螺栓连接任务,全都用一个工具完成。
[0085] 枪具有内置的双速性能,通过从高速向下运转模式简单快速地转变至低速扭转动力并且再次返回来控制它。在高速模式,双套管以数百转每分钟旋转,但是扭矩受限,从而使得工具不能在操作者手中旋动或反弹。向上转变选择器会将工具锁定到动力/扭矩模式,并且螺母或螺栓自动地被拧紧至期望的扭矩,基于经校准的气动液体压力。
[0086] 有利地, 枪利用液压的、气动的或电气的扭矩强化工具处理工业中的顾虑和问题。它:最大化扭矩和拉力的益处并消除其害处;最大化HYTORC NUTTM、HYTORC WASHERTM、HYTORC和 (由于侧面载荷和干燥的腐蚀生成物的积
累,它们都可模式螺纹接合)益处并消除其害处;最小化操作者的振动暴露;由于来自倍增和冲击机构之间的协作的较高质量而在间歇力模式提供较高的惯性,这增加冲击机构的扭矩输出;即使当需要比操作者可吸收的扭矩高的扭矩来克服螺栓连接应用的负面特征时,也可以以较高速度向下运转和脱离紧固件,而不需要使用反作用臂;松开黏住到它们的接头的高度扭转的和/或腐蚀的紧固件,并且在较高阻力的扭矩模式利用共轴反作用表面将紧固件拧紧到期望的更高更精确的扭矩。可在螺母紧贴时启用振动力机构,以在向螺母应用松开的全扭矩之前粉碎干燥的腐蚀生成物。这致使松开工业螺纹紧固件所需的扭矩较小,并且被粉碎的干燥油脂不会堆积或聚集在螺纹的一部分上。此外,在拧紧和松开期间,螺母保持平行于接头面,并且螺纹不经受巨大的不规则的侧面载荷,使得面摩擦和螺纹摩擦更一致。这确保更均匀的扭矩载荷,并因此确保均匀的接头压缩,以避免泄漏和拧紧时的垫片故障。此外,工具的使用被简化,操作者错误的风险降低,并且操作者的安全性提高。
[0087] 通常利用扭矩、拉力和/或扭矩和拉力工具液压地、气动地或电气地驱动工业螺纹紧固件20。图3A、3B和3C示出无反作用臂动力工具10, 枪,用于最小化磨损地拧紧和/或松开紧固件20。工具10包括产生转动力的马达;传递转动力的驱动器;外壳中的转动力倍增机构,其包括用于从较低阻力到较高阻力的所有扭矩模式的转动力倍增发射器;以及至少一个振动力机构,其包括用于可在从较低阻力到较高阻力的所有扭矩模式期间操作的间歇力模式的振动发射器。注意,工具10在较高速度、较低扭矩(“HSLT”)模式操作,如图3A和3B的工具10A所示,并且在较低速度、较高扭矩(“LSHT”)模式操作,如图3C的工具10B所示。
[0088] 图3A和3B的工具10A和图3C的工具10B包括:驱动输入和输出组件100;转动力倍增组件200;振动力组件300;模式转变组件400;以及双驱动输出和反作用套管(reaction socket)组件15,诸如 套管。
[0089] 在HSLT模式,工具10A进行以下任一:将预加载的紧固件20上预拧紧的接头30上的就座螺母36之间的垫圈1压缩至预定的预拧紧扭矩;从预定的预拧紧扭矩解压缩未加载的紧固件20上松开的接头30上的螺母36之间的垫圈1;和/或振动加载的紧固件20上拧紧的接头30上的拧紧的螺母36之间的加压垫圈1,以充分地粉碎螺栓螺纹腐蚀。在LSHT模式,工具10B进行以下任一:将加载的紧固件20上的拧紧的螺母36和拧紧的接头30之间的垫圈1加压至预定的拧紧扭矩;和/或从预定的拧紧扭矩压缩预松开的紧固件20上预松开的接头30上的就座螺母36之间的垫圈1。
[0090] 在HSLT模式,工具10A进行以下任一:利用沿一个方向的转动力向下运转紧固件20上的螺母36或螺母36和垫圈1两者,以使螺母36就座并将预加载的紧固件20上预拧紧的接头30上的垫圈1压缩至预定的预拧紧扭矩;从预定的预松开的扭矩利用沿相反方向的转动力向上运转紧固件20上预松开接头30上的就座螺母36或就座螺母36和压缩垫圈1两者;或振动(冲击)加压垫圈1之上的拧紧螺母36,以应用合适地粉碎螺栓螺纹腐蚀的振动。在LSHT模式,工具10B进行以下任一:利用沿一个方向的转动力将压缩垫圈1上预加载的紧固件20上预拧紧的接头30上的就座螺母36拧紧至预定的预拧紧扭矩,并沿相反方向向压缩垫圈1应用反作用力;或从预定的拧紧扭矩利用沿相反方向的转动力松开加压垫圈1之上加载的紧固件20上预拧紧的接头30上的拧紧螺母36,并沿一个方向向加压垫圈1应用反作用力。
[0091] 在操作期间,通过以预定的预松开扭矩使螺母36离位并解压缩垫圈1,处于LSHT模式的工具10B切换到处于HSLT模式的工具10A。在操作期间,处于HSLT的工具10A在以下任一情况下切换至处于LSHT模式的工具10B:以预定的预拧紧扭矩使螺母36就座并解压缩垫圈1;或合适地粉碎螺纹腐蚀。注意,操作者利用模式转变组件400将工具从LSHT模式切换至HSLT模式,反之亦然。注意,模式转变组件400是手动开关,但是可以是自动的。类似地,注意,可手动地或自动地启用或停用振动(冲击)力组件300。注意,LSHT模式可从扭矩调节切换至振动辅助,反之亦然,并且HSLT模式可从振动调节切换至扭矩辅助,反之亦然。注意,即使垫圈1开始或停止旋转,振动(冲击)力组件300也可继续操作。并且注意,LSHT模式可以是用于松开螺母36的振动辅助模式,以帮助克服化学、热和/或润滑腐蚀并避免螺栓螺纹磨损。
[0092] 向紧固件施加扭矩会产生面摩擦、螺纹摩擦以及螺栓载荷。摩擦和螺栓载荷成反比:当摩擦增大时,所产生的螺栓载荷的量减少。拧紧紧固件的速度对摩擦的大小有显著影响,并且由此对待关闭接头中产生的螺栓载荷有显著影响。有利地, 枪能够利用螺纹和承面摩擦系数随旋转速度的增大而减小的原理。
[0093] 例如, 枪如下地操作。假设一个任务需要利用 枪-A1将具有23/8”螺母的1”螺柱拧紧至520英尺磅的扭矩。 枪-A1用于300-1200英尺磅范围内的扭矩。 枪-A1伴有”标准驱动器尺寸的方头驱动器,并具有11.92”乘3.29”乘9.47”(L×W×H)的尺寸。驱动器输出外壳具有1.98”的半径。手柄高度和宽度分别为6.94”和2.12”。向下运转和最终扭矩RPM范围分别为从4000至7。工具的转动力由过滤器/调节器/润滑器(FRL)供应的空气压力决定。操作者在相应的压力/扭矩转换表中查阅此值。在此情形中,520英尺磅的最终扭矩对应于气动压力50psi。操作者因此将FRL的空气供应压力设定为50psi。
[0094] 按照图3B,在HSLT模式,工具10A向下运转螺母36,直到紧靠法兰。垫圈1’被压缩在就座的螺母36’和就座的接头30’之间。在向下运转(HSLT)模式,转变器(模式转变组件400)处于向下位置,并且工具10A被双手握持。
[0095] 按照图3C,为了在LSHT模式开始扭转,操作者朝向他将转变器400拖拽到向上位置。就座的螺母36’被接合,确保外反作用套管17完全包围压缩的垫圈1’。注意,由于双手都安全地离开就座螺母36’的拧紧区,因此没有夹点。操作者下压触发器,直到工具10B停顿并且不再使内驱动套管16前进。操作者已经向拧紧的螺母36”和加压垫圈1”应用了520英尺磅的扭矩,并且所有其他螺母将获得相同的拧紧力,只要FRL压力保持不变。图4A和4B示出拧紧的接头30”,其包括拧紧的紧固件20”、拧紧的螺母36”和加压的垫圈1”。
[0096] 注意,斜面8辅助垫圈1清除形成在法兰和接头30中的管之间的填角焊缝(weld fillet)和其他余隙问题。此外,斜面8辅助外反作用套管与垫圈1接合和可选地耦接。斜面8还可接受对外反作用套管17的修改,以容许在反向的螺栓连接应用上使用。
[0097] 操作者倒转拆卸拧紧的螺母36”的过程,这次在LSHT模式开始。时间和腐蚀的作用可使得螺母和/或螺栓与拧紧它们相比更难以拆卸。由于在松开时不关心是否达到特定的扭矩值,因此操作者可将FRL空气压力调大至其最大值或最大值附近,给予工具几乎全功率。方向控制器被转变成松开。操作者将工具10B应用至所述应用,并且将内驱动套管16放置在拧紧的螺母36”上并将外反作用套管17放置在加压的垫圈1”上。操作者向上拖拽速度选择器400,启用工具10B,并且进行松开拧紧的螺母36”,直到螺母可用手转动并且反作用离开加压垫圈1”。操作者将速度选择器400转变至HSLT位置,以脱离螺母36。可回想起,在螺母紧贴时可启用振动力机构,以在向螺母施加用于松开的全扭矩之前粉碎干燥的腐蚀生成物。这致使松开工业螺纹紧固件所需的扭矩较小,并且被粉碎的干燥油脂不会堆积或聚集在螺纹的一部分上。
[0098] 注意,本说明书的与图16-23相关联的部分提供对 枪和相关工具的彻底论述。
[0099] 套管。当与具有双驱动共轴作用和反作用的套管联用时, 垫圈的益处被优化。对 垫圈起反作用的外套筒以及内套筒转动与垫圈相邻(在垫圈之上)的螺母或螺栓头。本发明的若干双套管系统和 的专利产
品正是作此用途。首要地,具有 套管的 枪是获得此无反作用技术的所有益处的最快最容易的方法。外套管的一部分包围 垫圈并且可旋转地与扭矩工具主体上的花键耦接。
内套管连接到工具驱动器并转动螺母。 枪冲击作用快速向下运转螺母,然后轻松地转变至受控的扭转模式,同时反作用于 垫圈。不存在外部夹点或不希望的侧面载荷。空气工具第一次可以产生受控扭矩,而不牺牲速度和灵活性。这些专利套管组件超过了韧性和安全性的所有可适用ANSI标准,并且具有各种英制和公制尺寸,以适合任何任务。
[0100] 申请人在其HYTORC WASHERTM相关专利提交文件中公开了关于垫圈的重要特征。位于加载路径中的垫圈与螺母(或螺栓头)一起转动或维持不动;由于面摩擦和载荷压缩,垫圈绝不会沿与螺母相反的方向转动。申请人的创新决定了无反作用成直线垫圈的效力。尽管存在来自螺纹插入件的摩擦益处,但HYTORC WASHERTM由于此观察而可行。
[0101] 一般地,利用螺栓和螺母拧紧本发明的待关闭接头。具有与其螺栓头相邻的硬化垫圈的螺栓被插入通过接头中的孔。具有相邻的在可几何地接合的硬化垫圈的螺母被旋拧到螺栓上。内作用套管转动螺母并拧紧接头,并且外反作用套管将工具的反作用力传递到可几何地接合的硬化垫圈。当作用于接头的作用扭矩增大时,作用扭矩的反作用力正比例地增大。可旋转地耦接的外套管与硬化垫圈几何地接合,这消除了由反作用力引起的工具相对于操作者的旋转。
[0102] 图5A、5B和5C是双驱动共轴作用和反作用组件15的立体图。图5A是组装的剖视立体图。图5B是组装的立体图。图5C是分解立体图。图5D是在拧紧的接头30”上的双驱动共轴作用和反作用套管组件15的平面剖视图。
[0103] 在HSLT模式,如图3A和3B所示,套管组件15基本上用于沿一个方向将振动形式的转动力传递到螺母36和垫圈1。在LSHT模式,如图3C所示,其结果在图4A和4B中示出,套管组件15基本上用于沿一个方向将多种形式的转动力传递到螺母36,并且沿另一方向将相应的多种形式的反作用力传递到垫圈1,垫圈1用作静止物体。
[0104] 参照图5A,内驱动套管16包括具有螺母或螺栓头接合装置51的内边缘52。外反作用套管17具有下部内边缘62,边缘62具有用于接合垫圈外边缘4或外套管接合装置9的垫圈1接合装置61。内驱动套管16基本上位于外反作用套管17内。它们经由套管耦接装置18耦接在一起。套管沿相反方向协作地相对地旋转通过工具外壳。下部内边缘62及其垫圈1接合装置61以及垫圈1外边缘4及其外套管接合装置9基本是竖直的。外反作用套管17包括具有朝向下部内边缘62的底部向内倾斜的锥形表面的下部外边缘63。内套管16的底面54在外套管
17的下部内边缘65的上部面64上和/或之上旋转。注意,套管耦接装置18被设计成与的液压方头驱动工具联用。注意,套管耦接装置18A被设计成与
的气动和电气扭矩枪(诸如工具10A(和10B))联用。
[0105] 垫圈1具有,除其他之外,环形半径R1A、凸角半径R1L、滚花半径R1K和中心孔眼半径R1V。垫圈1具有高度H1W、第一斜面高度H1Bi、第二斜面高度H1Bii、滚花高度H1K和斜角°1。螺母36具有六边形半径R36N和高度H36N。外反作用套管17具有垫圈接合半径R17W,其包括垫圈/外套管间隙宽度G1A,其辅助外反作用套管17容易地接合垫圈1。具有分离高度H1L的空隙空间19在内和外套管16和17之间提供足够的余隙。内套管16在上部面64上自由旋转。
[0106] 注意,任何合适的接合几何结构都可用,诸如通过引用合并于此的的专利和专利申请。
[0107] 但是注意,美国专利No.8,631,724,授权日为2014年1月21日,名称为“FASTENING SOCKETS,WASHERS AND FASTENERS USED WITH THE WASHERS AND THE FASTENING SOCKETS”,其全部内容通过引用合并于此。‘724专利的外套管接合装置不接合垫圈的外表面,而是仅接合“外边缘部分”,由此增加故障的可能性。
[0108] 工具10A的外反作用套管17在HSLT模式是空转和闲置的。它并未与转动力倍增组件200的外壳花键接合。振动力组件300的冲击和/或振动力发射器花键接合到输出驱动轴,该驱动轴继而转动内驱动套管16,以向上或向上运转紧固件20上的螺母36。但是,工具10B的外反作用套管17与螺母36下方的垫圈1可旋转地耦接并几何地接合。通过使螺母36’就座,压缩的垫圈1’用作静止物体,通过垫圈,转动力倍增组件200的外壳经由反作用套管17产生反作用。在转动力倍增组件300的外壳保持不动的情况下,转动力倍增发生器经由转动力输出驱动轴拧紧就座的螺母36”。
[0109] 在具有本发明的反作用套管组件的工具的任何实施例的操作期间,驱动套管转动螺母或螺栓头。在这种工具的一个实施例的操作期间,反作用套管在HSLT模式期间维持不动。在这种工具的另一实施例的操作期间,反作用套管在HSLT模式沿与驱动套管相同的方向转动,但在LSHT模式维持不动。并且在这种工具的另一实施例的操作期间,反作用套管在HSLT模式维持不动或沿与驱动套管相反的方向转动,但在LSHT模式维持不动。
[0110] 换言之,在从较低阻力至较高阻力的所有扭矩模式期间,驱动套管总是与螺母或螺栓头操作性地连接。并且反作用套管进行以下之一:在较高阻力扭矩模式期间,操作性地连接到外壳和共轴反作用表面,以将反作用力传递到共轴反作用表面;在较低阻力扭矩模式或间歇力模式期间,操作性地连接到外壳和共轴反作用表面;或者在较低阻力扭矩模式或间歇力模式期间,操作性地连接到外壳并操作性地与共轴反作用表面断开连接。
[0111] 换言之,本发明的扭矩动力工具包括:驱动装置,用以与双驱动共轴作用和反作用套管组件的驱动套管连接,以转动螺母或螺栓头;反作用装置,用以与双驱动共轴作用和反作用套管组件的反作用套管连接,以将反作用力传到垫圈;在驱动装置和反作用装置之间的连接装置;包括高速低扭矩模式和低速高扭矩模式的至少两个操作模式;其中,在低速高扭矩模式和高速低扭矩模式两者期间,驱动装置沿一个方向转动驱动套管;其中,当驱动装置和反作用装置之间的连接装置在高速低扭矩模式中被启用时,反作用套管沿一个方向转动,但是当连接装置在高扭矩低速模式中被停用时,不转动垫圈。
[0112] 并且换言之,本发明的扭矩动力工具包括:用于将驱动套管连接到螺母或螺栓头的驱动装置;用于将反作用套管连接到垫圈的第一反作用装置和第二反作用装置;至少两个操作模式-高速低扭矩模式和低速高扭矩模式;其中,在两个模式期间,驱动套管被驱动装置转动,以转动螺母或螺栓头;其中,反作用套管连接到螺母或螺栓头下面的垫圈;第一反作用装置,其停止所述反作用套管在低速高扭矩模式转动,同时垫圈得到较大大小的反作用力;以及第二反作用装置,其停止反作用套管在高速低扭矩模式转动,同时操作者得到较小大小的反作用力。在此情形中,容纳花键适配器的转动力倍增组件是第一反作用装置。并且具有花键适配器的模式转变组件切换臂是第二反作用装置。
[0113] 本发明的双套管,具体是反作用套筒(套管),被开放成与 的电气、液压和气动扭矩/拉力系统一起使用。有必要最小化反作用套筒的外径,以在工具反作用系统和周围紧固件环境之间提供最大余隙。最小化反作用套筒的外径也需要最小化作用套管的外径。
[0114] 一般地,为本发明的套筒、套管和适配器环设想了许多零件几何结构。在研究和开发中心中,对所有可能的部件进行样机研究和实验评估。品质测试包括使零件经受无数循环的它们特定的应用载荷。也实验评估各种材料和热处理替代物。
[0115] 注意,本说明书的与图16-23相关联的部分提供对 套管的额外论述。
[0116] 垫圈-紧固件径向接合结构差异。在具有现有技术的反作用固定装置的扭矩工具中,反作用扭矩等于作用扭矩并与其相反。但是反作用臂应用的反作用力在附近的静止物体上明显更大。反作用力与距离(反作用臂长度)相乘。实际上,工具的侧面载荷或反作用邻接力的范围可为其邻接点处的扭矩输出的2倍至4倍,所述邻接点与驱动器的转动力轴线相距例如英尺的距离。该较大位置处。当然,较短的反作用臂向较靠近驱动器的转动力轴线的邻接点传递较小的反作用邻接力。显而易见的是,极短的反作用臂将传递与扭矩工具输出类似大小(但略大)的反作用邻接力,因为邻接点极靠近驱动器的转动力轴线。
[0117] 螺纹中的不规则产出负面的螺栓连接特征。除其他害处之外,侧面载荷致使螺母和螺栓螺纹在近侧上受到巨大的力(该力被应用于该近侧),从而使得当螺母转动时干燥的油脂在该位置堆积。通常,总螺纹表面区域的仅一小部分接合在螺栓和螺母之间。这致使螺栓螺纹磨损,需要明显更大的扭矩并因此需要明显更大的侧面载荷来松开螺母。这一系列事件通常毁坏螺栓和螺母螺纹。紧固件在所有转动力都被螺纹摩擦使用的点处锁定或抓住,这可导致破坏紧固件或转动它的工具。
[0118] 最初用于拧紧紧固件的扭矩动力工具通常不足以松开同一被腐蚀的紧固件。这种被腐蚀的紧固件可能需要是拧紧扭矩的2倍至4倍范围内的松开扭矩值,需要用于起出松开的更强大的工具。高温螺栓连接应用,诸如例如,在涡轮机和箱中,通常是关键的,需要更换成本极高的不锈的或精确制造的紧固件。此外,对近来很受欢迎的细螺纹螺栓的使用倍增了此问题。
[0119] 类似地,在 双驱动共轴作用和反作用套管组件中,反作用扭矩等于作用扭矩并与其相反。但是也可以应用反作用力强化特征。再次参照申请人的HYTORC WASHERTM和SMARTWASHERTM相关专利公开,这些垫圈具有与螺母的半径基本类似的半径。应用于这些垫圈的反作用力具有与相等且相反的反作用扭矩类似的大小。这帮助解释HYTORC WASHERsTM和SMARTWASHERsTM为什么有时与螺母或螺栓头一起旋转。
[0120] 工业螺栓连接的专业人员已经意识到使用相对类似的紧固件部件尺寸的必要性。在正常的螺栓连接操作中,是螺栓头还是螺母被扭转并不重要。当然,这假设螺栓头和螺母面具有相同直径,并且接触表面相同以产出相同的摩擦系数。如果它们不是这样,那么是螺栓头还是螺母被扭转就很重要。比如说,螺母是带凸缘的,并且螺栓头不带凸缘。如果拧紧扭矩是确定的,假设螺母将被拧紧,但螺栓头随后替代地拧紧螺栓头,则螺栓可能过载。通常,50%的扭矩被用于克服拧紧表面下方的摩擦。因而,较小的摩擦半径将致使更多扭矩来到螺栓的螺纹并因而被过度拧紧。如果情况相反,即,扭矩是确定的,假设螺栓头将被拧紧并且螺母随后被拧紧,则螺栓将未被足够地拧紧。
[0121] 正如极长的反作用臂向附近的静止物体应用极大的反作用力,极短的反作用臂与扭矩工具的输出类似大小(但略大)的反作用邻接力。在此意义上,外反作用套管17可被认为是无限地包围垫圈1的外边缘4的360°反作用臂,其应用与扭矩工具的输出类似大小(但略大)的该反作用邻接力。实际上,外反作用套管17向螺母36下方的反作用垫圈1应用更大的反作用邻接力。这仅可通过使垫圈1-外反作用套管17经几何塑形的接合结构略大于螺母36-内驱动套管16经几何塑形的接合结构来实现。申请人对垫圈的基本观察以及此新观察一起确保了进行反作用的不动垫圈。
[0122] 参照图5D,加压垫圈1”的外边缘4延伸超过拧紧的螺母36”的外边缘37。显然,垫圈外边缘4接收到的沿另一方向94作用的反作用力92大于螺母36接收到的沿一个方向93作用的作用扭矩91。加压垫圈1”吸收工具10B的反作用力92,从而使得工具10B向就座的螺母36’应用作用扭矩91并且向垫圈外边缘4应用略大但相反的反作用力92。就座的螺母1’转动,但压缩的垫圈1’维持不动。此相对放置,即,垫圈外边缘4比螺母外边缘37更远离旋转中心或转动力轴线A10,是本发明的一个创新方面。反作用力92通过外套管17的有效杠杆臂作用,远离转动力轴线A10距离R1A,其倾向于保持垫圈1不动。由于外多边形接合结构的半径差异,当紧固件20被拧紧或松开时,垫圈1在接头30上保持静止,而非与螺母36一起旋转。
[0123] 垫圈摩擦系数增大处理装置。参照图6,其示出形成有摩擦系数增大处理装置60的底支承面3的底朝上视图。螺母36被示出与平滑的顶支承面2相邻。摩擦力在螺母36和垫圈1之间在平滑接触表面2和38的接合处低于在粗糙接触表面3和法兰表面
30的接合处。因此,螺母36倾向于旋转,而垫圈1倾向于保持不动。
[0124] 图6B、6C、6D和6E解释此现象。图6B示出螺母36被扭转并被压缩靠着垫圈1的顶支承面2。顶支承面2和螺母1的底支承面38是平滑的。在拧紧过程期间,螺母36和垫圈1之间的摩擦力71r沿一个方向92作用。螺母36的压缩力Fn在沿转动力轴线A10的向下方向上作用于垫圈1上。半径r是有效摩擦半径,或从转动力轴线A10到螺母36的底支承面38的摩擦区域73r的中心的距离。
[0125] 图6C示出垫圈1被压缩靠着接头30的支承面35。支承面35和垫圈1的底支承面3在有载荷的情况下摩擦接合。在拧紧过程期间,垫圈1和接头30之间的摩擦力72R沿另一方向93作用。接头30的压缩力Fb在沿转动力轴线A10的向上方向上作用于垫圈1上。半径R是有效摩擦半径,或从转动力轴线A10到垫圈1的底支承面3的摩擦区域74R的中心的距离。
[0126] 图6D示出图6B和6C的结合。图6E示出Fn和Fb。在紧固件20上拧紧的螺母36所产生的压缩力Fc在垫圈1的两侧上相等,从而使得Fn=Fb=Fc。摩擦力(FR)=μ*Fc,其中,μ是摩擦系数。注意,摩擦系数增大处理装置60的有效摩擦半径或R大于螺母36的有效摩擦半径或r,从而使得Fc*R>Fc*r。这意味着克服螺母36和垫圈1之间的摩擦的扭矩小于可克服垫圈1的摩擦系数增大处理装置60和接头30之间的摩擦的扭矩。
[0127] 再次参照图6A中的例子,摩擦系数增大处理装置60被示为例如具有内径R7的径向凸起的滚花图案7。径向凸起的滚花图案7被示出以基本最大半径RMAX被放置得尽可能远离转动力轴线A10,以最大化扭矩(τRMAX),同时仍在螺母36的压缩区域下面。当夹持力增大时,滚花图案7将自身设定在法兰面35材料上,由此抵抗垫圈1与螺母36一起旋转的尝试。摩擦系数μ保持恒定,并且与恒定的压缩力Fc相乘以产出恒定的摩擦力(Fb)。反作用扭矩(τR)是F*R。最大扭矩可在基本最大半径RMAX处达到,从而使得τRMAX=F*RMAX。换言之,垫圈1的有效摩擦半径R大于螺母36的有效摩擦半径r。一般地,本发明的 垫圈的有效摩擦半径大于螺母或螺栓头的有效摩擦半径。注意,描述传统螺栓连接应用和相关联的力的机械(静态、动态等)原理是本领域周知的。
[0128] 换一种方式解释,当反作用力被应用时,垫圈1’对滑动或旋转的阻力是载荷和摩擦系数的函数。以下表达式描绘反作用垫圈中的滑动力、摩擦、载荷和扭矩之间的关系:
[0129] 滑动力阻力=(摩擦系数)×(载荷)
[0130] FR=μ*FN
[0131] 其中:FR=力(阻力),μ=摩擦系数,并且FN=正常力(重力或载荷)。
[0132] 在螺纹紧固件中,用以克服摩擦并产生滑动或旋转的力是所应用的扭矩和摩擦半径的函数。因此,用以产生滑动的力可被表达为:
[0133] FS=(扭矩)/(摩擦半径)
[0134] FS=τ/rF
[0135] 其中:FR=力(滑动),τ=扭矩,并且rF=有效摩擦半径。
[0136] 因此,在紧固件中:
[0137] FS=FR
[0138] τ/rF=μ*FN,从而使得:
[0139] τ=μ*rF*FN
[0140] 以上表达式示出了扭矩下的滑动阻力是摩擦系数、载荷和摩擦表面半径的函数。此有效摩擦半径通常被取为中心孔眼孔和外支承面面积的平均值。当摩擦半径增大时,阻止滑动或转动的阻力增大。因此应该理解,相对于螺母或螺栓摩擦半径增大垫圈摩擦半径的装置将相对于螺母或螺栓锚固垫圈。由于它们是相等且相反的扭力,因此反作用垫圈和螺母或螺栓将总是具有相同的应用的螺栓载荷扭力。当自始至终应用类似的材料和润滑剂时,紧固件中的摩擦系数相同。通过增大垫圈支承面的摩擦半径,可因此确保垫圈将在所有紧固情况中保持相对于螺母或螺栓被锚固。
[0141] 通过向外偏置支承面增大垫圈摩擦半径。这可通过向支承面的最外侧区域添加表面特征同时忽略最内侧区域来实现。由于高载荷和配合表面的典型埋置,仅需要选择性的表面微调,以有效地增大摩擦半径。
[0142] 摩擦系数增大处理装置(例如凸起的滚花特征)的位置和覆盖区域及其与螺母或螺栓头的所占区域的关系确保了 系统的效力。垫圈的底表面包括向外放置的摩擦系数增大处理装置,限定用于与接头的表面接合的摩擦部分。所述摩擦部分位于底表面的外周部分附近并且向内延伸至小于垫圈主体的总宽度的宽度。摩擦增强表面倾向于通过保持螺栓载荷而锁定螺母,由此防止意外的松开。换言之,垫圈的底表面是粗糙化的,以便确保拧紧或松开紧固件时接头和垫圈之间的较大的摩擦。在垫圈和接头之间出现的摩擦力较大并且可靠地用于防止在加载时及卸载的最初阶段期间垫圈不期望地旋转。
[0143] 出乎预料地,如果摩擦增强表面7完全覆盖或位于垫圈1的下表面3的中心孔眼处或相对靠近该孔眼,则不可能获得实验可重复的性能。大多数时候,此配置发生故障并且垫圈1与螺母36一起转动。
[0144] 垫圈构思类似地仅对具有摩擦系数增大处理装置的外环起作用。不必既具有平滑的内部(即,内表面3A)也具有粗糙化的外部。但是垫圈的下侧的不同表面纹理并未有助于在作为一个整体的底表面上以及垫圈的底侧和顶侧之间的摩擦偏置。
[0145] 本申请试图限定、要求权利并保护具有向外移位的摩擦区域的反作用类型垫圈,例如反作用垫圈摩擦半径相对于螺母向外偏置。这产生新颖的非显而易见的摩擦表面半径移位,防止垫圈在螺母之前旋动。不具有摩擦偏置的现有技术的反作用类型垫圈倾向于旋动,尤其是当在硬表面上使用时。它们的性能差,并且仅在理想情况下在理想表面上工作。不期望地旋动反作用类型垫圈会致使法兰面损伤、低效的工业螺栓连接和系统维护操作、以及经济损失。并且,本发明的在外侧放置摩擦系数增大处理装置的垫圈保持无瑕疵的法兰面,增加工业螺栓连接和系统维护操作的效率,并且最小化经济损失。
[0146] 再次涉及图5D,相对的垫圈/紧固件径向接合差异,即,垫圈1外边缘4比螺母36外边缘37更远离旋转中心或转动力轴线A10,用作本发明的另一实施例摩擦系数增大处理装置。相比具有较短接合半径的较小螺母/垫圈表面区域,具有较长接合半径的较大垫圈/法兰表面区域增大面摩擦。
[0147] 换一种方式解释,在本发明的螺栓连接应用中,垫圈-法兰表面区域相互作用所产生的摩擦扭矩大于螺母垫圈表面区域相互作用所产生的摩擦扭矩。垫圈保持静止,从而使得可以相对于工具外壳不可旋转地附接握持套管。当拧紧工具可作用地接合螺母时,握持套管与垫圈的多边形外边缘接合。当拧紧时,垫圈被压缩在螺母下方,并且工具的外壳被固定成不能相对于垫圈旋转。垫圈吸收工具外壳的反作用力矩和反作用力,其与拧紧扭矩相反并将其转移到压缩的垫圈中。不需要外部反作用装置。
[0148] 图7A、7B和7C示出改变的垫圈尺寸和摩擦系数增大处理装置(诸如滚花带)的宽度。图7A示出具有内部空隙或中心孔眼57A的垫圈17A,其与尺寸相对小的M14螺栓联用。滚花带77A包含表面区域下支承面37A的大部分。但是,下支承面37A具有与空隙57A相邻的平滑内表面3A7A。实际上,平滑内表面3A7A形成在接受紧固件20的空隙57A和滚花带77A之间。垫圈17A具有内经rin7A、外径rout7A、内滚花半径rinK7A、外滚花半径routK7A和凸角半径rL7A。类似的尺寸可应用于图7B和7C,但未示出。
[0149] 可回想起,HYTORC WASHERsTM和HYTORC SMARTWASHERsTM为螺栓连接应用添加了不必要的高度。本发明的 垫圈的厚度与它们的外径相比通常是小的。例如,附图中公开的垫圈的厚度H1W与外径D1A的平均比率为约0.08,并且可在0.04至0.12的范围内。其他比率描述本发明的 垫圈,包括:垫圈的高度H1W与螺母的高度H36N的平均比率为约0.170,并且可在0.10至0.30的范围内;垫圈的直径D1A和螺母的直径D36之间的平均比率为约1.10,并且可在0.80至1.40的范围内。仅为了描述性目的而提出这些比率。
[0150] 注意量化 系统摩擦偏置的有意义特征时的困难。例如,垫圈和螺母(或螺栓头)的相关表面最低限度地产生 系统的摩擦偏置结果。实际上,相比相对大的螺纹紧固件,相对小的螺纹紧固件可具有很不同的比率。
[0151] 最有用的信息数据包含计算垫圈和螺纹紧固件的有效摩擦半径。 垫圈如此可靠的工作,因为摩擦系数增大处理选择性地远离中心孔眼朝向外边缘偏置。垫圈的有效摩擦半径大于螺纹紧固件的有效摩擦半径。例如,在其底侧上具有摩擦系数增大处理径向带的垫圈的有效摩擦半径是该带的中心。注意,此论述正确地假设理想情形,其中,由于使用垫圈,螺栓载荷均匀地分布在螺母或螺栓头下方。
[0152] 注意,摩擦增强在许多应用中可能不必要,但是它们确保垫圈在所有应用上保持不动,而不考虑:相关垫圈/紧固件表面积或接合半径;相关紧固件/接头材料硬度;以及相关紧固件/接头表面处理,如润滑剂(钼涂层(molycoat)等)或涂层(漆等)。摩擦增强在拧紧过程开始时(此时螺柱和/或螺母上存在很少的或不存在载荷)变得有效。此摩擦偏置每次都启动垫圈握持。
[0153] 替代性地,摩擦系数增大处理装置包括粗糙化结构、多边形表面、花键、滚花、尖刺、凹槽、狭槽、突出点、刻痕或其他这类突起。其他选项包括压装突起、同心的或螺旋的环、径向里夫(riff)或齿、格子图案等。将迫使外表面区域与法兰表面具有更侵略性的相互作用的任何操作(诸如选择性滚花、打磨、喷砂铣削、加工、锻造铸造、成形、塑形、粗制、冲压、雕刻、穿孔、弯曲或甚至仅削除内部区域)是足够的。注意,可采用这类摩擦系数增大处理装置的组合。如果垫圈1-外反作用套管17接合结构略大于螺母36-内驱动套管16接合结构,则摩擦系数增大处理装置进行以下任一:可能不被需要;可被放置在围绕垫圈底表面的任何位置;或者可被放置成围绕垫圈底表面显著超过螺母或螺栓头的有效摩擦半径。为了获得本发明的特性,平坦的垫圈底侧是足够的。但是,相反的摩擦表面也可向外成锥形,由此摩擦环的外边缘厚于内边缘。但是,如果需要的话,垫圈并且因而其底侧也可具有弯曲部分。特别好的结果由朝向接头的上凸弯曲获得。这在授权日为2008年12月9日名称为“Reactive Biasing Fasteners”的美国专利No.7,462,007中公开,该专利的全部内容通过引用合并于此。但是注意,本发明的垫圈未给予细长螺栓轴向偏置力。
[0154] 一般地,用于工业螺栓连接的本发明的反作用垫圈包括:容许与扭矩应用装置旋转耦接的外部形状;和在从中心孔眼向外的区域中不连续并且选择性地偏置的下侧支承摩擦表面。这些表面摩擦特征选择性地产生在垫圈下侧并且排除中心孔眼的半径附近区域的任何部分。这些表面摩擦特征可通过滚花、打磨、喷砂、铣削、加工、锻造、铸造、成形、塑形、粗制、冲压、雕刻、穿孔或弯曲来产生。表面摩擦特征可通过仅削除反作用垫圈孔眼附近的材料来产生。表面摩擦特征还可以是以下任一:由展现在从孔眼向外的区域中的不连续表面和/或纹理产生;和/或单个地、随机地或以任何阵列布置方式放置。
[0155] 替代性的 垫圈几何形状。图8A至8L示出垫圈1的替代性形状。本发明的垫圈可具有塑形成任何合适的几何形状的外边缘(和相应的接合装置),以不可旋转地接合到塑形成相应合适的或基本相同的几何形状的外套管内边缘(及其相应的接合装置)。 垫圈1的标准商业形状是“花状”垫圈,其包括向内延伸的下凹部分和向外延伸的上凸部分,它们交替且重复地围绕假想的参考圆(其以垫圈的中心点为中心)沿径向方向设置。图8B、8E、8G、8H和8I显然是这类花形垫圈的衍生物。注意,图8K示出多侧面形状接合结构,并且图8J示出花键接合结构,两者都被认为是具有数量增多的接合齿的花形。
[0156] 其他合适的几何形状包括诸如三角形、曲线三角形、正方形、矩形、平行四边形、菱形、梯形、不规则四边形、风筝形、五边形、六边形、七边形、八边形、九边形、十边形、具有外突起的圆形、椭圆形或卵形的形状。注意,任何合适形状的外侧边缘可以是弯曲的而非有角的,以促进容易地与本发明的 套管接合。
[0157] 图8D1、8D2和8D3示出图8D的实施例,与各种动力工具联用的 垫圈18D。分别示出了垫圈18D的顶面和底面的立体图和侧视剖视图。一般地,垫圈18D具有环形六边形形状,其具有与图1A、1B和1C中所示类似的尺寸和特征,除了“8D”下标之外。垫圈18D的六边形形状包括形成六边状形状的径向延伸侧转角68A。一般地,顶支承面28D是平滑的,具有较低表面摩擦,并且底支承面38D具有摩擦增强结构或底转角78D,具有较高表面摩擦。注意,可在顶支承面28D上使用润滑剂,以降低它和螺纹螺母36或任何其他这种螺纹紧固件之间的表面摩擦。径向底转角78D增大底支承面38D的表面摩擦。虽然未示出,但侧转角68D可包括形成在顶支承面28D和侧支承面48D之间的成角度斜面88D。这种斜面88D可组成包括锥形表面和接合齿的外边缘部分,锥形表面向外并且朝向底支承面38D和侧支承面48D逐渐倾斜。
[0158] 垫圈18D具有,除其他之外,环形半径R8A、凸角半径R8L、滚花半径R8K和空隙半径R8V。垫圈18D具有高度H8、第一斜面高度H8Bi、第二斜面高度H8Bii、滚花高度H8K和斜角°8。这种斜面
88A可帮助垫圈18A清除法兰的转角半径和其他余隙问题。此外,斜面8帮助外反作用套管与垫圈1的接合和可旋转耦接。斜面8也可接受对外反作用套管17的修改,以容许反向的螺栓连接应用。
[0159] 垫圈摩擦系数增大处理装置的替代性放置。图8D4-8D10示出各种反复的摩擦偏置面的垫圈18D,其相对于法兰表面具有相对高的摩擦,并且相对于螺母具有相对地的摩擦。换言之,垫圈18D被示出具有各种类型、尺寸和位置的摩擦系数增大处理装置。注意,参照垫圈18D示出了这些变形,但它们应用于本发明中公开的所有反作用垫圈。图8D4示出不具有摩擦增强结构,仅有平滑的底侧。图8D5示出具有摩擦增强结构,其通过移除中心孔眼附近的材料而凹陷地形成在垫圈底面内。图86D示出形成在底面的外边缘部分处的相对薄的一圈摩擦增强结构。图87D示出形成为与底面的内边缘和外边缘部分等距的相对厚的一圈摩擦增强结构。图8D8示出形成为与底面的外边缘相距1倍距离并且与内边缘相距2倍距离的具有1倍宽度的相对薄的一圈摩擦增强结构。图8D9示出摩擦增强装置,在此情形中,具有尖锐边缘的向下偏斜的环形成在底面的外边缘处。虽然被示出是弯曲的,但垫圈18D5未给予细长螺栓轴向偏置力。替代性地,除了在尖锐边缘处之外,垫圈18D5可没有高度变化。
[0160] 如图8D10所示,本发明的垫圈还可设置有用于与外反作用套管强制地锁定接合的配置。这种强制锁定接合结构是形成在垫圈18D的外边缘中的缺口。外反作用套管将包括相应的接合装置,以容许免手持操作,并且一旦螺母就座,就对反向螺栓连接应用进行免手持操作。
[0161] 应用工业螺栓连接的具有现有技术的摩擦表面的反作用式垫圈的公开内容既未论述位置的重要性,也未论述这类摩擦表面的覆盖范围。申请人发现位于螺栓附近的内垫圈半径处或围绕垫圈的整个底侧的摩擦系数增大处理装置有助于垫圈移动或与螺母一起旋转。这些策略很少成功,偶尔产出不动的垫圈。换言之,在垫圈的较大的整个底侧和/或底侧的内部部分上较大的摩擦处理结构与较小的和/或外部部分上的摩擦处理结构相比明显更低效。
[0162] 与 垫圈联用的替代性紧固件和 垫套管类型。图9A示出与穿在盲孔中具有螺栓头20A的螺栓及 双驱动共轴作用和反作用套管组件15联用的垫圈18D。图9B示出与穿在盲孔中的内圆柱头螺钉20B及修改的 双驱动共轴作用和反作用
套管组件15C联用的垫圈18D。各种紧固件几何形状可与具有相应设计变化的 系统的工具、零件和配件(诸如图9B所示)联用。修改的套管组件15C包括凸紧固件驱动接合装置16C而非作用套管16。
[0163] 减小的 垫圈表面积。除了加压垫圈110A”的外边缘410A相比拧紧的螺母36”的外边缘37缩短之外,图10类似于图5D。显然,垫圈外边缘410A所接收的沿另一方向94作用的反作用扭矩力9210A可小于螺母36所接收的沿一个方向93作用的作用扭矩力91。加压垫圈110A”吸收工具10B的反作用扭矩力9210A,从而使得工具10B向就座的螺母36’应用作用扭矩91,并且可向垫圈外边缘410A应用较小的反作用力9210A。侵略性的摩擦增强结构710A是防止垫圈110A与螺母36一起旋转所必需的。就座的螺母36’转动,但压缩的垫圈110A’维持不动。此相对放置,即,摩擦增强结构710A并因而垫圈110A的有效摩擦半径相比螺母36的有效摩擦半径更远离旋转中心或转动力轴线A10,是本发明的一个创新方面。反作用力9210A通过外套管17A作用,远离转动力轴线A10距离R10A左右,其倾向于保持垫圈110A不动。由于有效摩擦半径的差异,当紧固件20被拧紧或松开时,垫圈110A在接头30上保持静止,而非与螺母36一起旋转。注意,内套管16的底面54在外套管17A的下部内边缘65A的上部面64A上和/或之上旋转。在此情形中,内套管16和外套管17A由于上部面64A的较大表面积而可经历额外的面摩擦。
[0164] 换言之,具有下述外边缘的垫圈可与 系统联用,即,该外边缘与螺母或螺栓头的外边缘有相同延伸范围或相比其缩短。在这类情形中,垫圈的底表面必须形成有侵略性的摩擦系数增大处理装置,以确保垫圈的有效摩擦半径大于螺母或螺栓头的有效摩擦半径。利用侵略性摩擦增强结构很可能获得成功的结果,即使垫圈外边缘所接收的反作用力基本等于或小于螺母或螺栓头外边缘所接收的作用扭矩。在这些情况中,这类侵略性摩擦增强结构可包括粗糙化结构、多边形表面、花键、滚花、尖刺、凹槽、狭槽、突出点或其他这类突起。在此情形中,偏移侵略性摩擦系数增大处理装置超过R20仍是重要的特征。
注意,修改的外套管17A需要复杂的设计,以与垫圈1接合和可旋转地耦接。此外注意,修改的外套管17A可容许反向螺栓连接应用。
[0165] 替代性的 套管尺寸。图11A、11B和11C示出各种反作用套管尺寸,包括具有平直壁的外套管1711A以及具有锥形壁的外套管1711B和1711C。这些变形容许不同尺寸的螺纹紧固件和 垫圈与同一 枪联用。可根据需要使用其他配置。
[0166] 应用于 扭矩工具的 系统。 已经开发了用于使系统适配其一阵列电气地、液压地和气动地操作的扭矩动力工具模型的花键适配器和反作用板,用于规律的余隙、低余隙和偏移连杆螺栓连接应用。图12A示出套管耦接装置或花键适配器18和18A,如参照图5A、5B、5C和5D论述的。花键适配器18A被设计成用于与气动和电气扭矩枪,诸如 枪10A(和10B)联用,再次如图12B所示。它被塑形
成在其内侧和外侧上具有花键接合结构的圆环。双驱动套管15的内驱动套管16和外反作用套管17协作地耦接在一起,并且在LSHT模式可通过工具外壳和/或其他已知的和/或专利的装置经由套管耦接装置18A沿相反方向相对地旋转。
[0167] 如图12C所示,花键适配器18被设计成用于与申请人的液压扭矩工具,诸如10C和 10D及其他这类工具联用。它被塑
形成台阶式圆环,该圆环具有熔接在一起的半径不同的上部和下部。上部环具有较短的半径和内花键接合结构,以与工具10C和10D的花键反作用支撑部分19A和19B不可旋转地接合。下部环具有较长的半径和外花键接合结构,以与外反作用套管16上的花键部分不可旋转地接合。双驱动套管15A的内驱动套管16和外反作用套管17协作地耦接在一起,并且可通过工具外壳和/或其他已知的和/或专利的装置经由套管耦接装置18沿相反方向相对地旋转。
[0168] 图13A和13B示出与 10E联用的 反作用衬垫17B,10E被设计成主要用于低余隙螺栓连接应用。反作用衬垫17B被塑形成配合
10E的尺寸并且经由销或螺钉不可旋转地附接到工具外壳。 反作用衬垫17B与 垫圈1不可旋转地接合。
[0169] 应用于 偏移连杆的 系统。 系统的益处可利用专利的双驱动可互换偏移连杆,诸如例如,设备80,来实现。通过 的专利的共轴作用和反作
用扭矩工具,诸如例如 10C液压扭矩工具或, 枪10B
(或10A)气动扭矩倍增器,为连杆80提供动力。其他这类工具包括 的专利
单速、 双速加、 10D和/或 10E。这类专利的
双驱动可互换偏移连杆在以下共同拥有和共同待审的专利申请中彻底地公开,这些申请的全部内容通过引用合并于此:专利合作条约申请序列号PCT/US2014/035375,提交日为2014年4月24日,名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”;以及美国申请序列号No.61/940,919,其提交日为2014年2月18日,名称为“APPARATUS FOR TIGHTENING THREADED FASTENERS”。
[0170] 图14A和14B示出偏移驱动连杆组件80的顶视和底视立体图,用于传送和倍增来自10C的用于在 垫圈1之上拧紧或松开螺纹紧固件(未示出)的扭矩。
连杆80包括:驱动力输入组件81;驱动力输出组件82;和反作用力组件83。
[0171] 一般地,在拧紧操作期间, 垫圈1的底滚花面静置在待关闭的接头上,同时待拧紧的螺母或螺栓头的底面静置在 垫圈1的平滑顶面上。 垫圈1的外边缘不可旋转地接合到反作用力组件83的外反作用套管的凹陷中并在其中进行反作用。同时,驱动力输出组件82的内套管在 垫圈1之上拧紧螺母或螺栓头。
[0172] 有利地,偏移驱动连杆组件:由于例如突起的螺纹、有限的余隙和阻碍而容许接近之前不可达到的紧固件;使得电气地、液压地、手动地和/或气动地驱动之前不可用的装置可行;使得之前不可用的高级材料(诸如例如,航空级)可用;产生模块化的部件,诸如例如,六边形减少和增加驱动衬套、凸凹驱动适配器,以满足螺栓连接应用的特征;产出准确的可定制的扭矩倍增;改良驱动力和反作用力应用;克服腐蚀、螺纹和面变形;避免螺栓螺纹磨损;使侧面载荷无效;确保平衡的螺栓载荷,应用对称的接头压缩;简化连杆和工具使用方法;最小化操作者错误的风险;以及最大化螺栓连接安全性。
[0173] 与 双面摩擦垫圈联用的 系统。按照图15A-15G,可能必须的是,根据 系统使用期间产生影响的相对摩擦情况,防止后螺
母或螺栓头转动。如果需要的话,操作者将 专利的双面摩擦垫圈85插在后螺
母或螺栓头22下方。它的两个摩擦增强面86和87防止螺栓头22转动,尤其是一旦载荷开始被应用于螺栓24。一般地,与 垫圈1相关的摩擦论述应用于摩擦增强面86和87。通过将摩擦增强结构策略地放置在面86和87上,实现与在 垫圈1的下支承面3中类似的益处。
[0174] 换言之, 专利的垫圈系统或双反扭矩垫圈系统包括具有外反作用力接合装置和用于待被拧紧或松开的螺母或螺栓头下方的一个摩擦面的第一垫圈(诸如,垫圈1)和具有用于在接头的另一侧上的螺母或螺栓头下方的两个摩擦面的第二垫圈(诸如,双面摩擦垫圈85)。此双反扭矩垫圈系统阻止螺柱或螺栓一起转动,从而控制紧固件的螺纹和面摩擦,以实现从扭矩值螺栓载荷的更好转化。注意,参照 垫
圈论述的任何摩擦系数增大处理结构可应用于 双面摩擦垫圈85。
[0175] 注意,此双反扭矩垫圈系统可与 系统的任何部分、任何组合或这个系统联用。可回想起,扭矩具有未知的摩擦,并且拉力具有未知的螺栓松弛。此垫圈系统可成套出现,以消除不可控的面摩擦和不可控的侧面载荷,以提高扭矩和拉力的螺栓载荷准确度。
[0176] 枪(详细)。例如,参照图16A和16B,这些示出了最初在图3A-3C中被示出为 枪的工具10A和10B的立体图。工具10A和10B包括:驱动输入
和输出组件100;转动力倍增组件200;振动力组件300;模式转变组件400;和双驱动输出和反作用套管组件15或 套管。
[0177] 例如,参照图17A,其示出处于LSHT模式的工具10A的侧视剖视图。例如,参照图17B,其示出处于HSLT模式的工具10B的侧视剖视图。
[0178] 图17A和17B示出工具10A和10B的驱动输入和输出组件100。驱动输入部件包括驱动工具外壳101,外壳101包含驱动产生机构102、手柄组件103和切换机构104。驱动产生机构102产生沿一个方向93的扭矩转动力91以转动螺母36,并且被示出形成为可包括液压、气动、电气或手动马达的马达驱动装置。驱动工具外壳101总体被示出为具有由操作者握持的手柄组件103的圆柱形主体。手柄组件103包括用于在非操作位置和操作位置之间切换驱动产生机构102的切换机构104。转动力输入轴121使驱动输入和输出组件100的驱动输入部件与转动力倍增组件200和振动力组件300连接并且在其间传递转动力91。转动力输出轴122包括驱动零件123,该零件可形成为例如方头驱动器。转动力输出轴122使驱动输入和输出组件100的驱动输出部件与转动力倍增组件200和振动力组件300连接并且在它们与双驱动输出和反作用套管组件15之间传递倍增或振动形式的转动力91。在一个操作模式中,反作用力花键适配器443接收沿相反方向94的扭矩反作用力92。
[0179] 图18是处于LSHT模式的工具10A的转动力倍增组件200和振动力组件300的侧视剖视图。图18还示出驱动输入和输出组件100的一部分。其他图中未示出的部件包括转动力输出轴的轴承191。图19是工具10A和工具10B的驱动工具外壳组件101、驱动工具手柄组件103和相关内部部件的立体剖视图。图19示出驱动输入和输出组件100的一部分。所示部件包括:手柄后盖131;与后盖131和外壳101的后面相邻的垫圈137;马达组件102;具有通过钉销135保持就位的外空气133和内空气阀134的空气阀组件132。后盖131通过BHCS扭矩螺钉
136附接到外壳101中的这类部件的后面并保持在这类部件中。触发器组件150包括:切换机构104;弹簧151;触发器轴衬套152;以及触发器杆153。手柄103包括:具有控制阀157和钉销
156的控制阀组件155;圆锥弹簧161;调节器阀隔片162;o形环163,一个形成在控制阀组件
155和内调节器外壳164上,一个形成在内调节器外壳164和底板173之间。网筛171形成在底板173和噪声过滤器172之间。内圆柱头螺钉174将这类部件和具有垫片176的底板173连接到手柄组件103。空气附件175从底板173伸出并且连接到内调节器外壳164。手柄按钮组件
180(未示出)容许操作者改变扭转力方向并且包括:按钮手柄插入件181;按钮架182;弹簧
183;和连接器184。
[0180] 转动力倍增组件200包括在转动力倍增机构外壳201中的转动力倍增机构210,基本上用于LSHT模式,包括多个转动力倍增发射器组件。在图17A和17B所示的实施例中,转动力倍增组件200包括五个(5)倍增发射器组件211、212、213、214和215。应该理解,存在许多已知类型的力倍增机构。一般地,转动力倍增发射器组件211-215组成转动力倍增机构210,复合周轮齿轮系统。它可包括围绕中心太阳齿轮旋转的多个外行星齿轮。行星齿轮可被安装在可移动的载架上,载架自身可相对于太阳齿轮旋转。这种复合周轮齿轮系统可包括与行星齿轮啮合的外环形齿轮。简单的周轮齿轮系统具有一个太阳齿轮、一个环形齿轮、一个载架和一个行星齿轮的套件。复合行星齿轮系统可包括啮合的行星结构、阶梯行星结构和/或多级行星结构。与简单周轮齿轮系统相比,复合周轮齿轮系统具有减速比更大、扭矩-重力比更高及配置更灵活的优点。
[0181] 转动力倍增发射器组件211-215可包括:齿轮支架;行星齿轮;环形齿轮;太阳齿轮;摆动齿轮;摆线齿轮;周轮齿轮;连接器;隔片;转变环;保持环;衬套;轴承;帽;传动齿轮;传动轴定位销;驱动轮;弹簧;或其任何组合或部分。转动力倍增发射器,诸如211-215,也可包括其他已知的相似部件。注意,转动力输入轴121也可被认为是转动力倍增发射器;特别地,它是转动力倍增发射器211的第一级马达太阳齿轮。转动力倍增组件是周知的并且被公开和描述。申请人的美国专利No.7,950,309公开并描述了一个例子,该专利的全部内容通过引用合并于此。
[0182] 图18比图17A和17B更详细地示出转动力倍增组件200的一些部分。图18示出而图17A和17B未示出的转动力倍增组件200的部件包括:锁定螺母250;锁定垫圈249;轴承241;
外壳适配器247;轴承隔片252;内保持环243;轴承242;齿轮箱连接器248;顶部和底部内保持环251;顶部和顶部球形轴承246;双密封轴承244;以及内保持环245。
[0183] 振动力组件300包括在振动力机构外壳301中的振动力机构310,基本上用于HSLT模式,包括一个或多个振动发射器。在图17A和17B所示的实施例中,振动力组件300包括两个振动(特别是冲击)发射器311和312。应该理解,存在各种已知的振动力机构,并且通常包括由砧座和转动锤构成的冲击力机构。锤被马达转动,并且砧座具有转动阻力。每个冲击给予锤击力,该力被传到输出驱动器。
[0184] 一般地,振动力组件可包括振动力机构,诸如包括声波力发射器的超声波力机构;包括质量不平衡力发射器的质量不平衡力机构,或包括时变干扰(载荷、位移或速度)力发射器的任何其他时变干扰(载荷、位移或速度)机构。其他振动力组件可包括:锤;砧座;连接器;隔片;转变环;保持环;衬套;轴承;帽;传动齿轮;传动轴;定位销;驱动轮;弹簧;或其任何组合。振动发射器,诸如311和312,还可包括其他已知的相似部件。图18还示出钉销320。
[0185] 一般地,工具10A和10B的RPM随着扭矩输出的增加而减小。振动力机构310的启用或停用替代性地可以使得,当RPM下降到预定数量以下或超过预定数量时,振动力机构310变得无效或有效。在HSLT模式中,振动力机构310向螺母提供转动力。在LSHT模式中,振动力机构310用作延伸部分,以将转动力从工具的一个零件传到另一个零件。注意,振动力机构310可被放置成靠近工具马达、靠近工具输出驱动器或其间的任何位置。
[0186] 在HSLT模式,振动力机构310总是接收转动力并转动;外壳可以也可以不接收转动力;并且扭矩输出相对低,这是外壳不需要进行反作用的原因。注意,在图17A和17B的实施例中,振动力机构310仅可在较高速度模式(诸如HSLT模式)操作。这继而意味着当扭矩强化机构可以以较低速度操作时,诸如LSHT模式,不存在冲击和/或存在较小的振动。在HSLT模式,至少两个倍增发射器是一个单元并且与锤一起旋转,以增大惯性并帮助来自冲击机构的锤击运动。注意,当紧固件显示不存在或存在很少的腐蚀、螺纹和面变形和/或螺纹磨损时,在HSLT模式可不需要振动力机构310。
[0187] 滑动作用模式转变组件400基本上用于将工具10A从LSHT模式转变到HSLT模式,并且将工具10B从HSLT模式转变到LSHT模式。在图17A和17B所示的实施例中,滑动作用模式转变组件400包括:转变器基底401;转变器套箍442;花键转变器转体443;转变器花键环445;外转变环456;以及内转变组件450。如图17A和17B所示,内转变组件450包括:内转变衬套
452;内转变环453;和耦接球形轴承454。
[0188] 滑动作用模式转变组件400可包括:手动组件(相继手动的、非同步的或预选器)或自动组件(手动的、半自动的、电动液压的、离心式装置(saxomat)、双离合器或连续可变的);扭矩转换器;;行星齿轮;离合器;带;阀;连接器;隔片;转变环;保持环;衬套;轴承;套箍;锁定球;帽;传动齿轮;传动轴;同步装置;定位销;驱动轮;弹簧;或其任何组合或部分。模式转变部件还可包括其他已知的相似部件。应该理解,存在各种已知的模式转变组件,并且通常包括由套箍、环和锁定球构成的转变部件。
[0189] 图18比图17A或17B更详细地示出滑动作用模式转变组件400的一些部分。图18示出而图17A和17B未示出的转变组件400的额外部件包括:内保持环451、457和459;底部和顶部衬套446和447;以及转变器环反作用塞458。图20是工具10A和10B的模式转变组件400的立体图。图20示出模式转变组件400的主要外部部分。其他图中未示出的部件包括:锁定轴帽402;手柄插入件403;手柄握把404;拖拽手柄405;致动器连杆和转变器销406;枢转销407;转变器延伸托架410;SHCS 411;转变器紧固件组件430;底部和顶部转变器连杆441;波形弹簧448;以及握持器花键449。
[0190] 再次参照图5A-5D,它们示出工具10A和10B的双驱动输出和反作用套管组件15以及工具10C和10D的双驱动输出和反作用套管组件15A立体和剖视图。
[0191] 在LSHT模式,双驱动输出和反作用套管组件15基本上用于沿一个方向93将倍增形式的转动力91传递到螺母36并且沿另一方向94将相应的倍增形式的反作用力92传递到垫圈1,垫圈用作静止物体。在HSLT模式,双驱动输出和反作用套管组件15基本上用于沿一个方向93将振动形式的转动力91传递到螺母36或螺母36和垫圈1。在图17A和17B所示的实施例中,双驱动输出和反作用套管组件15包括内驱动套管16和外反作用套管17。外反作用套管17在LSHT模式期间可不可旋转地接合到反作用力花键转变器旋体443。应该理解,存在将转动力和反作用力传递到螺纹紧固件和螺母及其垫圈的各种已知的接合机构,包括雉堞(castellation)、花键和其他几何结构。
[0192] 工具10A在LSHT模式按照以下进行操作。操作者朝向后面位置拖拽转变器基底401。耦接/锁定球形轴承454与转动力倍增机构外壳201断开接合并与反作用力花键转变器旋体443内的转变器花键环445接合。转变器基底401与转动力倍增机构外壳201联接。转动力倍增发射器211-215被解锁并且相对于彼此自由旋转。操作者朝向后面位置拖拽转变器基底401还会使转变组件振动(冲击)力花键环453与振动(冲击)力机构外壳301接合。这会锁定振动(冲击)力发射器311和312,并因此锁定振动(冲击)力组件300。并且这容许转动力输出驱动轴120被转动力倍增发射器215的第五齿轮支架驱动,该发射器215与振动(冲击)力机构外壳301花键接合。花键转变器旋体443与反作用套管17花键接合。并且反作用套管
17与螺母36下方的垫圈1几何地接合。在使螺母36就座时,压缩锁定盘形垫圈1用作静止物体,通过垫圈1,转动力倍增机构外壳201反作用离开反作用套管17。在转动力倍增机构外壳
201保持不动的情况下,转动力倍增发射器211-215经由转动力输出驱动轴120拧紧就座的螺母36。
[0193] 一般地,工具10B的操作需要启用或停用冲击机构310。滑动动作模式转变组件400可在以下任一之间转变10A:倍增机构210;冲击机构310;倍增机构210的零件(诸如例如,多个倍增发射器中的一个);冲击机构310(诸如例如,多个冲击发射器中的一个);或其任何组合。
[0194] 工具10B在HSLT模式按照以下进行操作。操作者朝向向前位置拖拽转变器基底401。耦接/锁定球形轴承454与转动力倍增机构外壳201和振动(冲击)力机构外壳301接合。
转变器花键环445与内侧反作用力花键转变器旋体443断开接合,由此使它空转并且闲置。
因此,反作用套管17空转并且闲置,因为它未与转动力倍增机构外壳201花键接合。耦接/锁定球形轴承454与振动(冲击)力机构外壳301接合的情况下,转动力倍增发射器211-215被锁定并且不能相对于彼此旋转。因此,转动力倍增组件200经由转动力输入轴121作为单元体旋转。马达102转动转动力输入轴121,其包括转动力倍增发射器211的第一级马达太阳齿轮。操作者朝向向前位置拖拽转变器基底401还会使转变组件振动(冲击)力花键环453与振动(冲击)力机构外壳301断开接合。这会解锁振动(冲击)力发射器311和312,并因此解锁振动(冲击)力组件300。振动(冲击)力机构外壳301与转动力倍增发射器215的第五齿轮支架花键接合。振动(冲击)力发射器312(砧座)花键接合到转动力输出驱动轴120,其通过振动(冲击)力发射器311(锤)的冲击向上或向下运转螺柱23上的螺母36。
[0195] 再次参照图3A-3C和图4A-4B,一般地,并且从螺母36的角度看,工具10A在LSHT模式拧紧、松开或拧紧并松开螺母36。并且工具10B在HSLT模式向上运转、向下运转或向上运转并向下运转螺母36。一般地,并且从垫圈1的角度看,在LSHT模式工具10A进行以下任一:将加载的螺柱23”上的拧紧的螺母36”和拧紧的接头30”之间的垫圈1”加压至预定的拧紧扭矩;和/或从预定拧紧扭矩在预松开的螺柱23’上预松开的接头30’上的就座的螺母36’之间压缩垫圈1’。一般地,并且从垫圈1的角度看,在HSLT模式工具10B进行以下任一:将预加载的螺柱23’上预拧紧的接头30’上的就座的螺母21’之间垫圈1’压缩至预定的预拧紧扭矩;
从预定的预拧紧扭矩解压缩螺柱23上松开的接头30上的螺母36之间垫圈1;或振动加载的螺柱23”上拧紧的接头30”上的拧紧的螺母21”之间的加压垫圈1”,以合适地粉碎螺栓螺纹腐蚀。注意,具有“和”的附图标记代表类似的力大小。
[0196] 在HSLT模式,工具10B进行以下任一:利用沿一个方向93的转动力91向下运转螺母36或螺母36和螺柱23上的垫圈1两者,以使螺母36’就座并将预加载的螺柱23’上预拧紧的接头30’上的垫圈1’压缩至预定的预拧紧扭矩;从预定的预松开的扭矩利用沿相反方向94的转动力92向上运转预松开的螺柱23’上预松开接头30’上的就座螺母36’或就座螺母36’和压缩垫圈1’两者;或振动(冲击)加压垫圈1”之上的拧紧螺母36”,以应用合适地粉碎螺栓螺纹腐蚀的振动。在LSHT模式期间,工具10A进行以下任一:利用沿一个方向93的转动力91将压缩垫圈1’上预加载的螺栓23’上预拧紧的接头30’上的就座螺母36’拧紧至预定的拧紧扭矩,并沿相反方向93向压缩垫圈1’应用反作用力92;或从预定的拧紧扭矩利用沿相反方向94的转动力92松开加压垫圈1”之上加载的螺柱23”上拧紧的接头30”上的拧紧螺母36”,并沿一个方向93向加压垫圈1”应用反作用力91。注意,具有“和”的附图标记代表类似的力大小。
[0197] 在操作期间,通过以预定的预松开扭矩使螺母36离位并解压缩垫圈1,处于LSHT模式的工具10A切换到处于HSLT模式的工具10B。在操作期间,处于HSLT的工具10B在以下任一情况下切换至处于LSHT模式的工具10A:以预定的预拧紧扭矩使螺母36就座并解压缩垫圈1;或合适地粉碎螺纹腐蚀。注意,操作者利用模式转变组件400将工具从LSHT模式切换至HSLT模式,反之亦然,但是这种切换也可包括其他已知的相似部件。注意,模式转变组件400是手动开关,但是可以是自动的。类似地,注意,可手动地或自动地启用或停用振动(冲击)力组件300。注意,LSHT模式可从扭矩调节切换至振动辅助,反之亦然,并且HSLT模式可从振动调节切换至扭矩辅助,反之亦然。注意,即使垫圈1开始或停止旋转,振动(冲击)力组件
300也可继续操作。并且注意,LSHT模式可以是用于松开螺母36的振动辅助模式,以帮助克服化学、热和/或润滑腐蚀并避免螺栓螺纹磨损。
[0198] 注意,根据本发明的用于减小磨损地拧紧和松开工业紧固件的的动力工具还可具有以下特征:转动力倍增机构外壳201与至少一个转动力倍增发射器211-215操作性地连接;在LSHT模式期间,倍增发射器211-215中的至少两个相对于另一个旋转;并且在HSLT模式期间,倍增发射器211-215中的至少两个是一个单元,以帮助转动力冲击机构310所给予的锤击运动。在HSLT模式期间,转动力输出驱动轴120和转动力倍增组件200(包括其外壳)的组合作为一个单元体沿同一方向转动。这产生惯性,其提高冲击机构的扭矩输出,以克服腐蚀、螺纹和面变形并避免螺栓螺纹磨损。
[0199] 公开了利用动力工具(10A和10B)利用工业螺纹紧固件20最小化磨损地相对于彼此拧紧和/或松开两个零件的方法,该紧固件是具有螺母36、垫圈1和螺柱23的那类,所述工具是包括以下的那类:产生转动力的马达102;传递转动力91的驱动器(122和123);在转动力倍增机构外壳201中的用于LSHT模式的转动力倍增机构210,其包括转动力倍增发射器211-215;用于HSLT模式的振动力机构310,其包括振动发射器311、312;与螺母36操作性地连接的驱动套管16;反作用套管17:在LSHT模式期间,其操作性地连接到垫圈1,以将反作用力92传递到垫圈1;并且在HSLT模式,操作性地连接到垫圈1或与其操作性地断开连接。这种方法包括:其中拧紧包括:将垫圈1放置在自由螺柱端25上;将螺母36放置在自由螺柱端25上的垫圈1之上;在HSLT模式,将自由螺柱端25上的螺母36或螺母36和垫圈1向下运转至预定的预拧紧扭矩,以使螺母36就座并压缩垫圈1;将HSLT模式切换至LSHT模式;以及在LSHT模式,将就座的螺母36扭转拧紧至预定的拧紧扭矩并且在拧紧的螺母36和拧紧的接头30之间加压垫圈1;其中,松开包括:将工具10A放置在拧紧的螺母36和加压的垫圈1之上;在LSHT模式,将加压垫圈1之上的拧紧的螺母36扭转松开至预定的松开扭矩;将LSHT模式切换至HSLT模式;以及在HSLT模式,向上运转自由螺柱端25上的就座螺母36或就座螺母36和加压垫圈1。所述松开方法还包括:在HSLT模式,振动加压垫圈1之上的拧紧螺母36,以应用粉碎螺栓螺纹腐蚀的振动;以及从HSLT模式切换至LSHT模式。
[0200] 以上工具10A和10B以及以下工具10F、10G、10H、10I大体被描述成用于最小化磨损地拧紧和松开工业螺纹紧固件的动力工具,该紧固件是具有共轴反作用表面、螺柱以及可与螺柱螺纹接合的螺母或连接到螺柱的螺柱头的那类。工具10A、10B、10F、10G、10H、10I包括:产生转动力的马达;传递转动力的驱动器;外壳中的转动力倍增机构,其包括用于从较低阻力到较高阻力的所有扭矩模式的转动力倍增发射器;以及至少一个振动力机构,其包括用于可在从较低阻力到较高阻力的所有扭矩模式期间操作的间歇力模式的振动发射器。
[0201] 替代性地,以上工具10A和10B以及以下工具10F、10G、10H、10I大体被描述成用于最小化磨损地拧紧和松开工业螺纹紧固件的动力工具,该紧固件是具有螺母、垫圈和螺柱的那类,所述工具包括:产生转动力的马达;传递转动力的驱动器;外壳中的转动力倍增机构,其包括用于连续扭矩模式的转动力倍增发射器;振动力机构,其包括用于以下任一模式的振动发射器:间歇扭矩模式;间歇力模式;或间歇扭矩模式和间歇力模式两者。
[0202] 例如参照图21A,其示出本发明的实施例的剖视图,如工具10F,用于最小化磨损地拧紧、松开或拧紧且松开工业螺纹紧固件801的动力工具,该紧固件是具有螺柱和可与螺柱螺纹接合的螺母的那类。工具10F包括:驱动输入和输出组件810;转动力倍增组件820;振动力组件830;模式转变组件840;和驱动输出套管和反作用臂组件850。
[0203] 例如参照图21B,其示出本发明的实施例的剖视图,如工具10G。工具10F和10G类似,如重复的附图标记指示的。工具10G是用于最小化磨损地拧紧、松开或拧紧且松开工业螺纹紧固件802的无反作用臂动力工具,该紧固件是具有共轴反作用表面(诸如例如,垫圈1)、螺柱和可与螺柱螺纹接合的螺母的那类。工具10G包括:驱动输入和输出组件810;转动力倍增组件820;振动力组件830;模式转变组件840;和双驱动输出和反作用套管组件855,其类似于 套管15。
[0204] 工具10F和10G包括具有一个或多个齿轮级的转动力倍增机构。振动力机构包括:具有锤和砧座的转动力冲击机构;和间歇力机构860,其是以下任一:超声波力发射器的超声波力机构;包括质量不平衡力发射器的质量不平衡力机构;或包括时变干扰(载荷、位移或速度)力发射器的任何其他时变干扰(载荷、位移或速度)机构。工具10F代表包括间歇力机构860的修改的 枪。工具10G代表包括间歇力机构860的修改
的 枪。
[0205] 例如参照图22A,其示出本发明的实施例的剖视图,如工具10H,用于最小化磨损地拧紧、松开或拧紧且松开工业螺纹紧固件901的动力工具,该紧固件是具有螺柱和可与螺柱螺纹接合的螺母的那类。工具10H包括:驱动输入和输出组件910;转动力倍增组件920;振动力组件960;模式转变组件940;和驱动输出套管和反作用臂组件950。
[0206] 例如参照图22B,其示出本发明的实施例的剖视图,如工具10I。工具10H和10I类似,如重复的附图标记指示的。工具10I是用于最小化磨损地拧紧、松开或拧紧且松开工业螺纹紧固件901的无反作用臂动力工具,该紧固件是具有共轴反作用表面(诸如例如,垫圈1)、螺柱和可与螺柱螺纹接合的螺母的那类。工具10I包括:驱动输入和输出组件910;转动力倍增组件920;振动力组件960;模式转变组件950;和双驱动输出和反作用套管组件955,其类似于 套管15。
[0207] 工具10H和10I包括具有一个或多个齿轮级的转动力倍增机构。振动力机构960包括以下任一:超声波力发射器的超声波力机构;包括质量不平衡力发射器的质量不平衡力机构;或包括时变干扰(载荷、位移或速度)力发射器的任何其他时变干扰(载荷、位移或速度)机构。工具10H代表包括间歇力机构960的修改的 双速加装置。工具10I代表包括间歇力机构960和双驱动输出和反作用套管组件955(其类似于
套管15)的修改的 双速加装置。
[0208] 此外,对于工具10A、10B、10G和10I,驱动套管与螺母操作性地连接。在较高阻力扭矩模式期间,反作用套管可操作性地连接到外壳和共轴反作用表面,以将反作用力传递到共轴反作用表面。替代性地,在较低阻力扭矩模式或间歇力模式期间,反作用套管可以操作性地连接到外壳和共轴反作用表面,或操作性地连接到外壳并操作性地与共轴反作用表面断开连接。驱动套管被示出为内套管,并且反作用套管被示出为外套管。
[0209] 以下论述涉及工具10A、10B、10F、10G、10H、10I。注意,为了易于描述,对“螺母”或“紧固件”的任何涉及包括以下可能性:附接到螺柱的螺柱头;在螺柱上和/或之上的螺母和垫圈;附接到螺柱的螺柱头和螺柱之上的垫圈。注意,任何合适的紧固件几何形状可与本发明联用,诸如例如:六角匙(allen key)连接结构;内轴肩螺钉(“SSC”)头;内平圆头螺钉(“SHBS”)头;六角平圆头螺钉(“HHCS”)头;圆头开槽螺钉(“RHSS”)头;平头梅花螺钉(“FHTS”)头;内定位螺钉(“SSS”)头;或内圆柱头螺钉(“SHCS”)头。
[0210] 这些论述将共轴反作用表面描述为垫圈。但是,在一些例子中,垫圈可与待被拧紧或松开的接头一体形成或结合到所述接头上。在其他例子中,共轴反作用表面是延伸超过螺母的螺柱的一部分。在其他例子中,共轴反作用臂可紧靠可行和可接近的静止物体,以便最小化磨损地进行拧紧和松开。
[0211] 垫圈1总体被示出为花形垫圈,其具有滚花底面,以提供反作用扭矩。按照图8A-8L,注意与本发明的反作用套管、板和连杆不可旋转地接合的几乎任何外部形状的适合性。
此外,注意增大面摩擦的几乎任何表面特征的适合性。外部形状的例子包括:任何合适的几何形状,如五边形、六边形、八边形等;滚花;切口;压孔;雉堞等。表面摩擦增强特征的例子包括:图案;漆;处理;涂层;层;粗糙度等。有创造性地,即使在使螺母和/或螺栓头就座之前,共轴反作用表面也成为可行和可接近的共轴静止物体,工具的反作用力被传递到其中。
[0212] 一般地,工具10A、10B、10F、10G、10H和10I在间歇力模式期间可进行以下任何行为。工具可利用沿一个方向的间歇转动力向下运转螺母或螺母和垫圈。工具可利用沿相反方向的间歇转动力向上运转螺母或螺母和垫圈。或者工具可利用沿相反方向应用振动和转动的间歇转动力、应用振动的间歇振动力或两者,冲击、振动或冲击且振动螺母或螺母和垫圈。
[0213] 更具体地,工具10A、10B、10F、10G、10H和10I在间歇力模式期间可进行以下任何行为。工具可利用沿一个方向的间歇转动力向下运转螺母或螺母和垫圈,以将螺母从具有明显负面的螺栓连接应用特征的可受限旋转状态就座到预定的预拧紧扭矩状态,并且在待被拧紧的接头和就座的螺母之间压缩垫圈。工具可利用沿相反方向的间歇转动力向上运转螺母或螺母和垫圈,以将螺母从预定的预拧紧扭矩状态离座到具有明显负面的螺栓连接应用特征的可受限旋转状态,并且解压缩待被拧紧的接头和就座的螺母之间压缩垫圈。或者工具可利用沿相反方向应用振动和转动的间歇转动力、应用振动的间歇振动力或两者,将螺母和垫圈从不充分地粉碎螺纹腐蚀的状态冲击、振动或冲击且振动到充分粉碎螺纹腐蚀的状态。例如,工具可经由超声波发生器,诸如振动力机构960,产生超声波,以超高速地振动紧固件,从而粉碎螺纹腐蚀。
[0214] 通常,在向下运转以将垫圈牢固地压缩在螺母和法兰面之间时需要间歇(冲击、振动、超声波等)力。在不存在此冲击引起的压缩的情况下,垫圈可能由于两个垫圈面的两个摩擦而未接受反作用力。当被合适地压缩时,邻接螺母的垫圈面接收由工具的扭矩输出产生的顺时针转动摩擦和由反作用力产生的相等且相反的逆时针转动摩擦。就此来说,来自与法兰面邻接的垫圈面的转动摩擦防止垫圈转动。换言之,工具被设计成在转动螺母时保持垫圈静止,这消除了通常的侧面载荷和螺母之间的表面区别。实现了对螺纹和表面摩擦的更好的控制,以便提高扭矩至紧固件载荷的转化。
[0215] 一般地,工具10A、10B、10F、10G、10H和10I在较高阻力扭矩模式期间可进行以下任何行为。工具可利用沿一个方向的低速高扭矩转动力拧紧螺母,并向垫圈应用沿相反方向的反作用力。和/或,工具可利用沿相反方向的低速高扭矩转动力松开螺母,并向垫圈应用沿一个方向的反作用力。
[0216] 更具体地,工具10A、10B、10F、10G、10H和10I在较高阻力扭矩模式期间可进行以下任何行为。工具可利用沿一个方向的低速高扭矩转动力扭紧螺母,以将螺母从预定的预拧紧扭矩状态拧紧到预定的拧紧扭矩状态,并向垫圈应用沿相反方向的反作用力,以在松开的接头和拧紧的螺母之间为垫圈加压。和/或,工具可利用沿相反方向的低速高扭矩转动力扭松螺母,以将螺母从预定的拧紧扭矩状态松开到预定的预拧紧扭矩状态,并向垫圈应用沿一个方向的反作用力,以在松开的接头和拧紧的螺母之间为垫圈减压。
[0217] 一般地,工具10A、10B、10F、10G、10H和10I在较低阻力扭矩模式期间可进行以下任何行为。工具可利用沿一个方向的高速低扭矩转动力向下运转螺母或螺母和垫圈。和/或,工具可利用沿相反方向的高速低扭矩转动力向上运转螺母或螺母和垫圈。
[0218] 更具体地,工具10A、10B、10F、10G、10H和10I在较低阻力扭矩模式期间可进行以下任何行为。工具可利用沿一个方向的高速低扭矩转动力向下运转螺母或螺母和垫圈,以将螺母从具有不明显负面的螺栓连接应用特征的可自由旋转状态就座到预定的预拧紧扭矩状态,并且在待被拧紧的接头和就座的螺母之间压缩垫圈。和/或,工具可利用沿相反方向的高速低扭矩转动力向上运转螺母或螺母和垫圈,以将螺母从预定的预拧紧扭矩状态离座到具有不明显负面的螺栓连接应用特征的可自由旋转状态,并且解压缩待被松开的接头和离座的螺母之间压缩垫圈。
[0219] 一般地,工具10A、10B、10F、10G、10H和10I可在较高阻力扭矩模式拧紧、松开或拧紧且松开螺母。工具可在间歇力模式和降低阻力扭矩模式向上运转、向下运转或冲击螺母或螺母和垫圈。当在预定的预拧紧扭矩状态和/或充分粉碎螺纹腐蚀的情况下使螺母就座并且压缩垫圈时,工具可从间歇力模式切换到较高阻力扭矩模式。当在预定的预松弛扭矩状态使螺母离座或解压缩垫圈时,工具可从较高阻力扭矩模式切换到间歇扭矩模式和/或较低阻力扭矩模式。当在预定的预拧紧扭矩状态使螺母就座或压缩垫圈时,工具可从较低阻力扭矩模式切换到较高阻力扭矩模式。
[0220] 在操作中,工具可:从较高阻力扭矩模式切换到间歇扭矩模式;从较高阻力扭矩模式切换到较低阻力扭矩模式;从较低阻力扭矩模式切换到间歇扭矩模式;从较低阻力模式切换到较高阻力模式;从间歇扭矩模式切换到较高阻力扭矩模式;或从间歇扭矩模式切换到较低阻力扭矩模式。
[0221] 振动机构或扭矩倍增机构的启用或停用可手动或自动地发生。因此,切换机构可以是手动的或自动的。此外,切换机构并且因而任何模式或模式组合和相应的机构可根据紧固件上观察到的载荷自动地被启用。例如,本发明的磨损最小化动力工具可能需要振动和/或冲击,以粉碎拧紧紧固件中的腐蚀并且以高速向上或向下运转螺母。用扭矩拧紧的螺母不能仅因振动和/或冲击而转动。操作者可能需要启用振动和/或冲击,以粉碎用扭矩拧紧的螺母中干燥的腐蚀生成物,这可与扭矩倍增机构相独立或结合地发生。如指明的,松开螺母所需的扭矩大于初始拧紧扭矩,因为润滑剂干燥或消失,存在腐蚀,并且螺柱仍被加载和拉伸。换言之,需要更高的扭矩值来卸载和不再拉伸螺柱。在低阻力扭矩模式和/或间歇扭矩模式期间,一旦螺母被松开,它就可以高速转动或加速运转。但是,螺母可能必须在腐蚀的和/或损坏的或有缺陷的螺柱螺纹之上释放自己。通常,这需要振动和/或间歇力与扭矩倍增机构的结合。在向下运转时,螺母在低阻力扭矩模式和/或间歇扭矩模式以较高速度被转动。同样,低阻力扭矩模式自身不足以克服腐蚀的和/或损坏的或有缺陷的螺柱螺纹。类似地,这通常需要振动或间歇力和/或间歇力与扭矩倍增机构的结合。本发明解决这些问题。
[0222] 一般地,公开了利用无反作用臂动力工具最小化磨损地拧紧和/或松开工业螺纹紧固件的方法,该紧固件是具有共轴反作用表面、螺柱以及可与螺柱螺纹接合的螺母或连接到螺柱的螺柱头的那类,所述工具是具有以下的那类:产生转动力的马达;传递转动力的驱动器;外壳中的转动力倍增机构,其包括用于从较低阻力到较高阻力的所有扭矩模式的转动力倍增发射器;以及至少一个振动力机构,其包括用于可在从较低阻力到较高阻力的所有扭矩模式期间操作的间歇力模式的振动发射器。拧紧方法包括:沿一个方向向下运转螺母、螺柱头、螺母和共轴反作用表面、或螺柱头和共轴反作用表面;以及沿一个方向扭转拧紧螺母或螺柱头,同时共轴反作用表面沿相反方向反作用离开。松开方法包括:沿相反方向扭转松开螺母或螺柱头,同时共轴反作用表面沿一个方向反作用离开;以及沿相反方向向上运转螺母、螺柱头、螺母和共轴反作用表面、或螺柱头和共轴反作用表面。
[0223] 以下论述涉及根据本发明的用于减小磨损地拧紧和松开工业紧固件的无反作用臂动力工具的配置。注意,相似的用语是可互换的,诸如例如:强化器、倍增器和倍增装置;冲击力和冲击。
[0224] 更具体地,在冲击模式的一个实施例中,工具外壳和齿轮级维持不动,同时冲击迅速进行。当冲击机构与马达分隔开时,马达的轴通过倍增器的中心到达冲击机构,并且从该处到达输出驱动器。当冲击机构贴近地位于马达后面并且在倍增器之前时,马达驱动冲击机构并且轴从冲击机构通过倍增器的中心到达输出驱动器。
[0225] 在冲击模式的另一实施例中,工具外壳和齿轮级作为一个单元旋转,同时通过锁定齿轮级冲击迅速进行。这可通过以下连接方式实现:将太阳齿轮与环形齿轮连接;将太阳齿轮与齿轮支架连接;或将齿轮支架与行星级的环形齿轮连接。在每种情形中,所有齿轮级和外壳如一个部件那样起作用,将延伸结构从马达转到冲击机构并且从冲击机构转到工具的输出驱动器。
[0226] 在冲击模式的另一实施例中,工具外壳维持不动,并且齿轮支架作为一个单元旋转,同时通过相对于彼此锁定齿轮支架冲击迅速进行。当冲击机构与马达分隔开时,齿轮支架用作外壳内从马达到冲击机构的延伸结构。当冲击机构贴近地位于马达后面并且在倍增器之前时,齿轮支架用作外壳内从冲击机构到工具的输出驱动器的延伸结构。
[0227] 一般地,在LSHT模式期间,至少两个倍增发射器相对于另一个旋转。在倍增器模式,工具外壳总是与太阳齿轮和倍增器的输出轴相反地旋转,这是工具外壳必须进行反作用的原因。当扭矩被倍增器强化时,转动速度如此低以致于冲击机构无效。如果冲击机构位于倍增器后面并且靠近工具的输出驱动器,则冲击机构在它与最后一个太阳齿轮一起转动的情况下将不会冲击。如果冲击机构位于倍增器前面并且靠近马达,则冲击机构高速转动并且需要被锁定。
[0228] 在一个实施例中,其中冲击机构与马达分隔开,以下发生:冲击机构维持不动,同时倍增器转动;马达的输出轴到达用于扭矩倍增的倍增器;并且最后一个太阳齿轮延伸通过冲击机构,到达输出驱动器。当冲击机构贴近地位于马达后面并且在倍增器之前时,马达的输出轴通过冲击机构到达用于扭矩倍增的倍增器,并且最后一个太阳齿轮延伸到输出驱动器。
[0229] 在另一实施例中,冲击机构以力应用倍增器的最后一个太阳齿轮的速度转动。当冲击机构与马达分隔时,马达的输出轴到达应用扭矩倍增的倍增器,并且最后一个太阳齿轮转动冲击机构,其转动工具的输出轴。当冲击机构贴近地位于马达后面并且在倍增器之前时,转动冲击机构以转动倍增器将引起应该避免的冲击。在另一方面,可通过用冲击外壳锁定锤或通过用砧座锁定锤来锁定冲击机构。冲击机构用作马达输出驱动器和倍增器的第一太阳齿轮之间的延伸结构。
[0230] 倍增器的最后一个太阳齿轮的速度可以足够高,以操作冲击机构。可通过用冲击外壳锁定锤,用砧座锁定锤,用工具外壳锁定冲击外壳,或用工具外壳锁定锤,来避免对工具的输出轴的冲击。
[0231] 在LSHT模式的特定实施例中,倍增机构靠近马达,并且在冲击机构前面。马达绕过倍增机构并且凭借朝向输出驱动器的销使其输出力延伸通过倍增机构的至少一部分。在LSHT模式的另一特定实施例中,冲击机构靠近马达,并且在倍增机构前面。冲击机构凭借朝向输出驱动器的销使其输出力延伸通过倍增机构的至少一部分。
[0232] 根据本发明的用于最小化磨损地拧紧和松开工业紧固件的动力工具在此被描述成具有两个或三个模式,低速高扭矩模式、高速低扭矩模式和间歇力模式。应该理解,在此描述的至少两个模式仅是例子。其他模式可被添加到一个或其他模式和/或输入和/或输出装置中。应该理解,本发明不仅仅限于两个速度,而是可以具有多个速度。例如,已知的扭矩强化工具通常由空气或电马达提供动力。通常,这类马达的力输出和旋转速度凭借行星齿轮等(其可称为马达的一部分)增大或减小。通常,已知的扭矩强化工具临时消除强化装置中的一个或若干个,以增大工具马达旋转速度。其他已知的扭矩强化工具将齿轮强化和/或减速机构用作独立的部件或在马达附近使用它们,以增大和/或减小轴旋转速度。本发明还可包括这类齿轮强化和/或减速机构,作为独立的部件,作为倍增发射器和倍增机构210的一部分,或作为振动发射器和振动机构310的一部分。实际上,倍增组件200可被配置成具有包含在多个倍增组件外壳中的多个倍增发射器。
[0233] 应该理解,上述元件中的每个,或者两个或更多个一起,也可在与上述类型不同的其他类型的构造中找到有用的应用。在以上描述或以下权利要求或附图中公开的特征,以它们的特定形式表达或依照应用执行所公开的功能的装置或应用获得所公开的结果的方法或过程表达,根据情况,这类特征可单独地或任意结合地被用于实现本发明的不同形式。注意,在说明书中对标号部件的描述可略有不同。
[0234] 虽然已经图示和描述了被具体化成流体操作工具的本发明,但是本发明并非意图受限于所示细节,因为在不以任何方式脱离本发明的精神的情况下可进行各种修改和结构改变。
[0235] 在不进行进一步分析的情况下,前述内容相比其他所能够的通过应用当前知识将如此全面地揭示本发明的主旨,使其容易地适用于各种应用,而不需要省略从现有技术立足点看很大程度上构成本发明的一般或特定方面的基本特征的特征。
[0236] 当用于本说明书和权利要求中时,用语“包括”、“包含”、“具有”及其变形表示包括特定的特征、步骤和整体。用语不应该被解释成排除其他特征、步骤或部件的存在。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈