首页 / 专利库 / 专利权 / 申请 / 国际申请 / 请求书 / 保护类型 / 专利 / 可生物再吸收支架的压握方法

生物再吸收支架的压握方法

阅读:0发布:2021-12-14

专利汇可以提供生物再吸收支架的压握方法专利检索,专利查询,专利分析的服务。并且本 专利 申请 涉及一种将具有 支架 内腔的管状支架压握到支架递送 导管 的可膨胀球囊上的方法。,下面是生物再吸收支架的压握方法专利的具体信息内容。

1.一种将具有支架内腔的、可生物再吸收聚合物的管状支架(100)压握到支架递送导管(200)的可膨胀球囊(202)上的方法,所述支架(100)具有围绕所述支架内腔均匀分布的多个支架杆(108)和在所述支架杆(108)之间的多个空隙,并且所述支架(100)具有部署直径和小于所述部署直径的压握直径,所述可生物再吸收聚合物具有玻璃转变温度,所述可膨胀球囊(202)的壁材料布置为多个折叠并且绕所述支架内腔均匀分布,所述方法按下列顺序包括:
-将所述支架递送导管(200)的可膨胀球囊(202)插入到所述管状支架(100)的支架内腔中,其中所述可膨胀球囊(202)呈紧缩直径并且所述管状支架(100)大致呈所述部署直径;
-将所述管状支架(100)加热到处于或高于所述可生物再吸收聚合物的所述玻璃转变温度的温度;
-在所述管状支架(100)的支架内腔内,以0.1和5巴之间的膨胀压,使所述支架递送导管(200)的可膨胀球囊(202)膨胀到膨胀直径;
-在维持所述支架递送导管(200)的可膨胀球囊(202)内的膨胀压力的情况下,将所述管状支架(100)从所述部署直径压握到所述压握直径;
-将所述管状支架(100)冷却到低于所述玻璃转变温度的温度;以及
-在将所述管状支架(100)维持在所述压握直径的情况下,使所述支架递送导管(200)的可膨胀球囊(202)紧缩。
2.根据权利要求1所述的方法,其中所述管状支架(100)包括聚(乳酸)聚合物。
3.根据权利要求1所述的方法,进一步包括:在所述压握步骤之后且在所述紧缩步骤之前,在将所述管状支架(100)维持在所述压握直径的情况下,将所述管状支架(100)的支架内腔内的所述支架递送导管(200)的可膨胀球囊(202)的膨胀压力增大到3.0和7.0巴之间的膨胀压力。
4.根据权利要求1所述的方法,进一步包括:在将所述支架递送导管(200)的可膨胀球囊(202)插入到所述管状支架(100)的支架内腔中之前,将所述管状支架(100)以大致所述部署直径插入到压握机中,且将所述管状支架(100)预先压握到稍微小于所述部署直径的预先压握直径。
5.根据权利要求4所述的方法,进一步包括:在所述紧缩步骤之后,从所述压握机移除所述管状支架(100)和所述支架递送导管(200)的可膨胀球囊(202)。
6.根据权利要求1所述的方法,其中所述管状支架(100)由具有玻璃转变温度的可生物再吸收聚合物形成,且其中所述方法进一步包括:
-在将所述支架递送导管(200)的可膨胀球囊(202)插入到所述管状支架(100)的支架内腔中之前,将所述管状支架(100)以大致所述部署直径插入到压握机中,且将所述管状支架(100)预先压握到稍微小于所述部署直径的预先压握直径;
-在所述压握步骤之前,将所述管状支架(100)加热到处于或高于所述玻璃转变温度的温度;
-在所述压握步骤之前,使所述支架递送导管(200)的可膨胀球囊(202)在所述管状支架(100)的支架内腔内以0.2和2.0巴之间的膨胀压力膨胀,且在所述压握步骤期间,维持该膨胀压力;
-在所述压握步骤之后且在所述紧缩步骤之前,在将所述管状支架(100)维持在所述压握直径的情况下,将所述管状支架(100)的所述支架内腔内的所述支架递送导管(200)的可膨胀球囊(202)的膨胀压力增大到3.0和7.0巴之间的膨胀压力,且将所述管状支架(100)冷却到低于所述玻璃转变温度的温度;以及
-在所述紧缩步骤之后,从所述压握机移除所述管状支架(100)和所述支架递送导管(200)的可膨胀球囊(202)。
7.根据权利要求6所述的方法,其中所述管状支架(100)包括聚(乳酸)聚合物。

说明书全文

生物再吸收支架的压握方法

技术领域

[0001] 本发明涉及一种用于将血管支架压握到支架递送导管上的方法。所揭露的压握方法尤其有利于将可生物吸收或可生物再吸收的聚合物血管支架压握到支架递送导管的可膨胀球囊上。

背景技术

[0002] 在最近数十年,血管支架植入术已成为用于治疗闭塞性血管疾病的重要疗法,包含冠状动脉疾病、颈动脉疾病和外周动脉疾病。支架,也被称为血管支架是一种管状结构,该管状结构有时结合血管成形球囊导管而使用,以疏通血管中的狭窄或变窄,并且保持血管畅通以允许增强的血流。支架还用于治疗除血管外的身体通道中的狭窄或变窄。血管支架通常分组为两个一般类别:球囊扩张式支架和自扩张式支架。本发明中使用的可生物再吸收血管支架可被视为这两种类型的混合。可生物再吸收血管支架被热处理为具有形状记忆,该形状记忆使得支架朝向其部署直径而扩张。这种行为依赖于温度。高于支架材料的玻璃转变温度Tg,支架迅速扩张,但在体温下,支架较缓慢地扩张。因此,可膨胀球囊用于加快支架的部署,但即使在部署之后,支架仍将继续稍微扩张,这会辅助将支架杆置于血管壁。因此,支架可被视为球囊辅助式自扩张支架或自置入球囊扩张式支架。然而,对于压握过程来说,就像球囊扩张式支架来处理可生物再吸收血管支架。
[0003] 通常,球囊扩张式支架通过将支架压握(即,挤压)到位于支架递送导管的远端附近的可膨胀球囊上而安装在导管上。
[0004] 已设计专的压握装置和自动化机器用于将支架压握到球囊导管上。例如,参见美国专利No.8,141,226、PCT国际申请案WO2004/019768和美国专利申请案No.2002/0138966。在得到允许的情况下,本文中所参考的所有这些专利和专利申请案特此以引用方式并入本文中。这些专利中所描述的支架压握装置可通过添加对压握头进行受控制的加热和冷却而修改,以用于本发明的压握方法。
[0005] 当今使用的大多数球囊扩张式支架是金属支架。然而,存在可生物吸收或可生物再吸收的聚合物血管支架的新兴领域。术语“可生物吸收”和“可生物再吸收”在医疗装置产业中能够互换使用,以描述在植入身体中之后随着时间而分解且被周围组织吸收或再吸收的材料。可生物吸收或可生物再吸收的支架的典型材料包含聚乳酸(PLA)和聚乙醇酸(PGA)聚多糖(PLAGA共聚物)。适用于本发明的额外支架材料描述在美国专利No.7,731,740和PCT国际申请WO2005/096992中。一般来说,具有至少45℃的玻璃转变温度(Tg)的聚合物是优选的。
[0006] 聚合物血管支架对支架压握提出特定挑战。美国专利No.7,743,481描述尤其适用于压握聚合物血管支架的设备和方法。这支架压握设备可通过添加受控制的加热和冷却而修改,以用于本发明的压握方法。
[0007] 已设计各种方法来压握球囊扩张式支架,这些方法涉及在压握过程期间使导管上的球囊膨胀的步骤。这些方法的实例描述在以下专利申请中:美国专利No.5,836,965号(参见图3)、美国专利No.5,976,181和美国专利No.8,123,793(参见图4)。
[0008] 一般来说,这些专利参考文献中所描述的方法不适用于应用到可生物吸收或可生物再吸收的聚合物血管支架。金属支架与聚合物支架之间的一个基本区别在于,管状金属支架通常被制造为仅稍微大于其未部署直径或压握直径的直径。在压握步骤期间,支架的直径仅需要少量减小。因此,当球囊在压握过程期间膨胀时,因为球囊受支架和压握设备限制,所以球囊不能呈现其完全扩张直径。如果球囊完全膨胀,那么球囊将对支架杆造成不可逆转的塑性变形,这将高度危害支架。另一方面,管状聚合物支架被制造为接近其部署直径或完全扩张直径的直径。在压握过程期间,支架的直径必须从部署直径或完全扩张直径减小到未部署直径或压握直径。在压握期间将聚合物支架的温度提高到Tg或高于Tg避免金属支架所发生的不可逆转的塑性变形的问题。因为考虑到这些区别,本发明的压握方法尤其有利于将可生物吸收或可生物再吸收的聚合物血管支架压握到支架递送导管的可膨胀球囊上。

发明内容

[0009] 发明人在本文中提供一种将具有支架内腔的管状支架压握到支架递送导管的可膨胀球囊上的方法,该支架具有部署直径和小于部署直径的压握直径。这方法包括:
[0010] -将支架递送导管的可膨胀球囊插入到管状支架的支架内腔中,其中可膨胀球囊呈紧缩直径并且管状支架大致呈部署直径;
[0011] -在管状支架的支架内腔内,使支架递送导管的可膨胀球囊膨胀到膨胀直径;
[0012] -在维持支架递送导管的可膨胀球囊内的膨胀压的情况下,将管状支架压握到压握直径;以及
[0013] -在将管状支架维持在压握直径的情况下,使支架递送导管的可膨胀球囊紧缩。
[0014] 本文中所描述的方法可进一步包括在压握步骤之前将管状支架加热到处于或高于玻璃转变温度的温度的步骤和/或在压握步骤之后将管状支架冷却到低于玻璃转变温度的温度的步骤。
[0015] 在本发明的特定实施例中,支架递送导管的可膨胀球囊在根据本发明的方法的压握步骤之前以通常在0.1到5巴或0.1到2.5巴、优选约0.2到2.0巴之间的膨胀压力在管状支架的支架内腔内膨胀,并且该可膨胀球囊在压握步骤期间维持在这膨胀压力。优选地,方法进一步包括在压握步骤之后且在紧缩步骤之前,在将管状支架维持在压握直径的情况下,将管状支架的支架内腔内的支架递送导管的可膨胀球囊的膨胀压力增大到约3.0到7.0巴的膨胀压力的步骤。
[0016] 在本发明的另一特定实施例中,本发明的方法进一步包括在将支架递送导管的可膨胀球囊插入到管状支架的支架内腔中之前,大致以部署直径将管状支架插入到压握机中的步骤,以及将管状支架预先压握到稍微小于部署直径的预先压握直径的步骤。这方法可进一步包括在紧缩步骤之后,从压握机移除管状支架和支架递送导管的可膨胀球囊的步骤。
[0017] 本发明的优选方法包括:
[0018] -在将支架递送导管的可膨胀球囊插入到管状支架的支架内腔中之前,大致以部署直径将由具有玻璃转变温度的聚合物形成的管状支架插入到压握机中,并且将管状支架预先压握到稍微小于部署直径的预先压握直径;
[0019] -在压握步骤之前,将管状支架加热到处于或高于玻璃转变温度的温度;
[0020] -在压握步骤之前,以通常0.1到2.5巴、优选约0.2到2.0巴之间的膨胀压力在管状支架的支架内腔内使支架递送导管的可膨胀球囊膨胀,并且在压握步骤期间,维持这膨胀压力;
[0021] -在压握步骤之后且在紧缩步骤之前,在将管状支架维持在压握直径的情况下,将管状支架的支架内腔内的支架递送导管的可膨胀球囊的膨胀压力增大到约3.0到7.0巴的膨胀压力,并且将管状支架冷却到低于玻璃转变温度的温度;以及
[0022] -在紧缩步骤之后,从压握机移除管状支架和支架递送导管的可膨胀球囊。
[0023] 本发明的另一目标为一种设备,包括:
[0024] -管状支架,该管状支架具有围绕管状支架的支架内腔布置的多个支架杆和处于支架杆之间的多个空隙,管状支架设置为未部署的压握直径;以及
[0025] -可膨胀球囊,该可膨胀球囊位于管状支架的支架内腔内,可膨胀球囊设置为未部署的紧缩直径,其中可膨胀球囊的壁材料布置为多个折叠;
[0026] 其中多个支架杆绕管状支架的圆周均匀分布,并且可膨胀球囊的壁材料绕管状支架的圆周均匀分布。
[0027] 在先前描述的设备中,可膨胀球囊的壁材料可突出到支架杆之间的多个空隙中。
[0028] 在本发明的特定实施例中,可膨胀球囊的约相等量的壁材料突出到支架杆之间的多个空隙中的每一个空隙中。
[0029] 在本发明的另一特定实施例中,支架可具有近端和远端,并且可膨胀球囊的壁材料可被构造为形成超出支架的近端而定位的增大的直径的近端缓冲器和超出支架的远端而定位的增大的直径的远端缓冲器。
[0030] 多个支架杆可都与可膨胀球囊的壁材料接触。多个支架杆还可构造为i)包围围绕管状支架的圆周而布置的多个闭室或ii)包围围绕管状支架的圆周而布置为环的多个闭室,多个连接杆连接闭室的邻近环。
[0031] 本发明的上下文中所使用的管状支架通常包括可生物再吸收材料,优选为可生物再吸收聚合物。管状支架有利地由具有玻璃转变温度(Tg)、有利地至少45℃的玻璃转变温度(Tg)的材料形成。优选地,管状支架包括聚(乳酸)聚合物。优选地,管状支架包括抗增殖剂。附图说明
[0032] 图1为根据本发明的方法压握到支架递送导管的球囊上的可生物再吸收的聚合物血管支架的照片。
[0033] 图2为图1的可膨胀球囊和血管支架的近端部分的放大的细节照片,示出在压握过程期间形成的球囊锥形体处的缓冲器。
[0034] 图3为使用根据第5,836,965号美国专利的现有技术压握方法压握到支架递送导管的球囊上的支架的横截面。
[0035] 图4为使用根据第8,123,793号美国专利的另一现有技术压握方法压握到支架递送导管的球囊上的支架的横截面。
[0036] 图5为示出本发明的支架压握方法的球囊膨胀步骤的横截面。
[0037] 图6为示出本发明的支架压握方法的压握步骤的横截面。
[0038] 图7为示出本发明的支架压握方法的最终结果的横截面照片。
[0039] 图8为所部署的可生物再吸收的聚合物血管支架的照片。
[0040] 图9为根据现有技术方法预先压握的所部署的血管支架。该支架平坦地布置以示出支架的不均匀的部署。
[0041] 图10为根据本发明的支架压握方法预先压握的所部署的血管支架。该支架平坦地布置,以示出支架的均匀的部署。

具体实施方式

[0042] 申请人用于将PLA可生物再吸收支架压握在半顺应性血管成形球囊上的现有技术方法包含以下步骤:
[0043] 1.以小于PLA支架切割分量直径的约0.2mm的预先压握直径将PLA支架装载在预热的不锈压握头(处于或高于聚合物玻璃转变温度Tg)中;
[0044] 2.在预热时期之后,将PLA支架直径减小到压握直径,且维持在压握直径;
[0045] 3.就在达到压握直径之后,在将球囊压力增大到优选约3.0到7.0巴的情况下,将PLA支架冷却到低于Tg(通常冷却到室温),以在球囊锥形体处产生缓冲器。
[0046] 相比之下,本发明的经过改进的压握方法包含以下步骤:
[0047] 1.将PLA支架装载在预热的不锈钢压握头(处于或高于聚合物玻璃转变温度Tg)中;
[0048] 2.将支架预先压握到小于PLA支架切割分量直径的约0.2mm的直径(该直径恰好足以在压握头内握持支架);
[0049] 3.在允许支架材料在压握头中加热的约30到180秒的时间延迟之后,将支架递送导管的球囊插入到支架的内腔中,且以通常约0.2到5.0巴(例如,1、2、3或4巴)、优选约0.2到2.0巴之间的低压使球囊完全膨胀;
[0050] 4.在足以将支架材料加热到处于或高于聚合物玻璃转变温度Tg的预热时期之后,通过使用压握头而一起减小PLA支架与膨胀球囊的直径,并且将支架维持在压握直径;
[0051] 5.就在达到压握直径之后,在将球囊压力增大到优选约3.0到7.0巴的情况下,将PLA支架冷却到低于Tg(通常冷却到室温),以在球囊锥形体处产生缓冲器;以及[0052] 6.释放球囊中的压力,并且从压握头移除支架压握在球囊上的支架递送导管。
[0053] 经过改进的压握方法相比现有技术提供数个优点:
[0054] 1.显著增大支架保持力;
[0055] 2.增大所压握的支架的同质性,这是因为膨胀球囊导引橡胶状态下(处于约Tg)的PLA支架,从而导致较少的因压握所致的缺陷
[0056] 3.改进支架扩张,这是因为球囊与最终支架直径预先配合(相互协调),从而导致所扩张的支架的同质性增大;
[0057] 4.随着球囊在支架杆之间穿透,在进行跟踪的同时改进所压握的支架的导引;
[0058] 5.将动脉中的跟踪时间显著提高到超过30分钟,这是重要的,因为如上所述,PLA支架在被加热到体温(37℃)时开始缓慢扩张。
[0059] 图8和图10说明适用于本发明的压握方法的血管支架100。如图8所示,支架100通常制造为管状构造,但图10已被绘制为支架100已沿着线1-1纵向地切割且平坦地布置,以更清楚地说明支架100的结构。优选地,支架100由具有至少45℃的Tg的可生物吸收或可生物再吸收的聚合物制成。支架100可制造为许多不同的可能设计。这说明性实施例展示具有闭室102和开室104的组合的支架100,闭室102用于周向方向上的结构强度(即,径向强度),并且开室104用于纵向方向上的柔性。闭室102中的每一者由四个大致上线性的杆108定界,其中杆108的末端结合在一起以形成菱形室102。所说明的支架100在周向方向上具有六个室102,且在纵向方向上具有四个室102。这支架构造可被想象为具有含六个闭室102的四个周向环,闭室102在每一对邻近环之间由两个连接杆106结合。许多其它支架、室和杆构造是可能的。可选地,支架100可包含一个或多个不透射线标记120。此外,可生物再吸收支架可选地包含呈涂层的形式或混合到聚合物中以实现缓释的抗增殖剂,例如,紫杉醇、西罗莫司(雷帕霉素)或另一莫司类药物。
[0060] 图1是利用本发明的方法压握到支架递送导管200的球囊202上的可生物再吸收的聚合物血管支架100的照片。
[0061] 图2是图1的可膨胀球囊202和血管支架100的近端部分的放大的细节照片,示出在压握过程的第二膨胀步骤期间在可膨胀球囊202的近端锥形部分和远端锥形部分处形成的近端缓冲器204和远端缓冲器206。近端缓冲器204和远端缓冲器206帮助在支架递送导管200的插入和进给期间将支架100保持在导管200上。
[0062] 图3是使用根据美国专利No.5,836,965的现有技术压握方法压握到支架递送导管200的球囊202上的金属支架4的横截面。显然,在压握期间使球囊202在支架4内进行部分膨胀之前,球囊202折叠为翼状件。应注意,球囊材料202未均匀分布在支架杆108之间。在支架杆108之间的空隙中的一些中,存在大量冗余球囊材料210,而在支架杆108之间的其它空隙中,基本上不存在冗余球囊材料212。当球囊202膨胀时,支架杆108之间的球囊材料202的不均匀分布可导致支架4的不均匀的部署。
[0063] 图4是使用根据美国专利No.8,123,793的另一现有技术压握方法压握到支架递送导管200的球囊202上的金属支架12的横截面。在这实例中,球囊202不规则地折叠在支架12之下。如同在上述实例中,球囊材料202未均匀分布在支架杆108之间。在支架杆108之间的空隙中的一些中,存在大量冗余球囊材料210,而在支架杆108之间的其它空隙中,基本上不存在冗余球囊材料212。还应注意,支架杆108中的一些与球囊材料接触,而其它支架杆108'不与球囊材料接触。当球囊202膨胀时,支架杆108之间的球囊材料202的不均匀分布可导致支架100的不均匀的部署。
[0064] 图9是根据现有技术方法(例如,上文所述的实例)预先压握的所部署的血管支架100'。支架100'平坦地布置以示出支架100'的不均匀的部署。上部160表示支架100'的在支架杆之间不存在足够的冗余球囊材料的区域,这会导致支架的这区域部署不足。下部162表示在支架的支架杆之间存在过多的冗余球囊材料的区域,这会导致支架的这区域过度部署或过度拉伸。支架的不均匀的部署可危及支架100'的结构强度。对于药物洗脱支架来说,支架的不均匀的部署可导致额外问题。血管壁的支架部署不足的一些区域每表面积可接受过多抗增殖剂,而血管壁的支架过度部署的其它区域每表面积可能不会接受足够抗增殖剂。
[0065] 图5是示出本发明的支架压握方法的球囊膨胀步骤的横截面。应注意,支架100呈支架100的完全部署直径或极接近支架100的完全部署直径,并且膨胀球囊202也呈其标称膨胀直径或极接近其标称膨胀直径。球囊材料202与支架杆108相互协调,即,球囊材料202均匀分布在支架杆108之间。换句话说,在球囊材料与支架的圆周之间存在1对1映射。
[0066] 图6是示出本发明的支架压握方法的压握步骤的横截面。在压握步骤期间,膨胀球囊202将支架杆108从原切割支架直径导引到压握支架直径,且确保均匀间隔开的压握构造。应注意,在压握步骤期间,球囊材料202与支架杆108保持相互协调,并且虽然存在冗余球囊材料202,但球囊材料202均匀分布在支架杆108之间。随着支架的直径通过压握而减小,球囊材料与支架的圆周之间的1对1映射得以维持。随着支架100的直径减小,球囊内的膨胀压力导致球囊材料202在支架杆108之间突出。
[0067] 图7是示出本发明的支架压握方法的最终结果的横截面照片。支架杆108中的每一者与球囊材料202接触,并且球囊材料202均匀分布在支架杆108之间。支架的杆108之间的球囊材料202的突起或穿插大幅提高支架递送导管200上的支架100的保持强度,这对于在患者的血管中的支架100的成功递送和部署来说是极其重要的。其中支架100压握到球囊202上的球囊202已插入到在包装、消毒和操作期间保护组件的管状保护套管220中。在使用中,支架递送导管200插入到患者的血管中,以将支架100递送到动脉或其它血管中的狭窄或变窄部分。球囊202膨胀以扩张支架100且将其置于血管壁。球囊202接着紧缩,并且导管
200被撤回。所扩张的支架100保持疏通动脉的先前狭窄的部分。然而,支架100的材料历经数月逐渐分解,且被周围组织再吸收,因此允许动脉重塑且恢复其正常功能。可生物再吸收支架不会遗留大量可能导致发炎的异物,而发炎可导致再狭窄或晚期支架血栓。
[0068] 图8是根据本发明的支架压握方法预先压握的所部署的可生物再吸收的聚合物血管支架100的照片。图10说明图8的所部署的血管支架100,其中支架平坦地布置以示出支架100的均匀的部署。支架杆108绕支架100的表面区域均匀分布。与图9的现有技术支架100'相比,支架100的上部160和下部162均匀地部署。如果支架100是药物洗脱支架,那么抗增殖药物也将均匀分布在血管壁的内表面周围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈