首页 / 专利库 / 化学元素和化合物 / / 一种自清洁抗菌抗紫外的复合织物及其制备方法

一种自清洁抗菌抗紫外的复合织物及其制备方法

阅读:1050发布:2020-06-11

专利汇可以提供一种自清洁抗菌抗紫外的复合织物及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种自清洁抗菌抗紫外的复合织物,包括复合基材和纳米膜,所述的复合基材由织物基材和功能层复合而成,所述的纳米膜负载于复合基材的表面,所述的纳米膜中均匀密布有纳米颗粒。本发明还提供了一种自清洁抗菌抗紫外的复合织物的制备方法,包括前处理、制备复合基材、制备纳米胶液、浸胶超声处理、冲洗焙烘、分切、计量并封装。本发明一种自清洁抗菌抗紫外的复合织物,功能层可根据复合基材的应用场合对功能层进行设计,以满足不同的使用需求,通过多次浸胶超声处理,纳米颗粒与复合基材织物牢固结合,耐久性强,采用纳米 银 颗粒和纳米TiO2颗粒,可提高光催化效果,使得复合织物具有较强的自清洁性能和杀菌防紫外性能。,下面是一种自清洁抗菌抗紫外的复合织物及其制备方法专利的具体信息内容。

1.一种自清洁抗菌抗紫外的复合织物的制备方法,在复合生产流线上进行生产,其特征在于:包括如下步骤:
第一步、前处理:对织物基材(1)和功能层(2)进行退浆,然后充分清洗,以去除油剂,收缩织物基材(1)和功能层(2)的幅,并晾干;
第二步、制备复合基材:将织物基材(1)和功能层(2)通过双点涂层进行复合,得到复合基材,烘干后收卷备用;
第三步、制备纳米胶液:将纳米TiO2颗粒和纳米颗粒加入到去离子水中,先磁搅拌后超声搅拌,得到纳米水溶胶,备用;磁力搅拌时间为3~4h,超声搅拌时间为1~1.5h,所述的纳米TiO2颗粒和纳米银颗粒的重量比为1:(0.5~1);
第四步、浸胶超声处理:将第二步中制备好的复合基材卷安装在复合生产流水线的开卷盘(4)上进行开卷,复合基材通过紫外交联箱(5)光照一段时间后,浸入盛有纳米水溶胶的胶槽(6)中,提升后在声波设备(7)中进行超声处理,然后在第一烘箱(8)中烘干,如此反复进行多次浸胶超声烘干处理,使纳米水溶胶中的纳米颗粒均匀牢固地负载于复合基材表面;
第五步、冲洗焙烘:将第四步处理后负载有纳米颗粒的复合基材用去离子水进行冲洗,去除表面未固着的纳米颗粒,然后进入第二烘箱(9)中进行烘干并通过收卷盘(10)收卷,最后将收卷后的成品在未凉透之前置于真空箱(11)内真空处理;
第六步、分切、计量并封装。
2.如权利要求1所述的一种自清洁抗菌抗紫外的复合织物的制备方法,其特征在于:所述的第四步中浸胶超声烘干处理进行2~3次,第一烘箱(8)内的温度设定为65~70℃。
3.如权利要求1所述的一种自清洁抗菌抗紫外的复合织物的制备方法,其特征在于:所述的第五步中第二烘箱(9)的温度设定为120~135℃,所述的真空箱(11)内的真空度为-
0.1atm。
4.如权利要求1所述的一种自清洁抗菌抗紫外的复合织物的制备方法,其特征在于:所述的复合生产流水线包括开卷盘(4),紫外交联箱(5),由胶槽(6)、超声波设备(7)、第一烘箱(8)构成的浸胶超声烘干机组,第二烘箱(9)、收卷盘(10)和真空箱(11),所述的开卷盘(4)、紫外交联箱(5)、浸胶超声烘干机组、第二烘箱(9)、收卷盘(10)、真空箱(11)顺次设置。
5.如权利要求4所述的一种自清洁抗菌抗紫外的复合织物的制备方法,其特征在于:所述的浸胶超声烘干机组为2~3组。

说明书全文

一种自清洁抗菌抗紫外的复合织物及其制备方法

【技术领域】

[0001] 本发明涉及纺织的技术领域,特别涉及一种自清洁抗菌抗紫外的复合织物及其制备方法。【背景技术】
[0002] 随着生活平及纺织技术的发展,人们对于服装等面料的需要不再局限于服用的要求,更多地追求功能性。而纳米级结构材料简称为纳米材料,是指其结构单元的尺寸介于1纳米~100纳米范围之间,是当今科技领域发展迅速的一种材料。由于其优异的特殊性能,纺织领域将纳米材料与织物结合,将纳米原料融入面料纤维中,在普通织物上形成一层保护层,提升面料的防污、防油、防水、抑菌、透气、环保、固色等功能。但是目前纳米材料与织物结合牢度较低,且随着水资源的紧缺,有必要提出一种自清洁抗菌抗紫外的复合织物及其制备方法,提高纳米材料与织物的结合强度,同时赋予织物自清洁抗菌抗紫外的功能,节约服装的清洁用水,以满足对功能性服装面料的需求。
【发明内容】
[0003] 本发明的目的在于克服上述现有技术的不足,提供一种自清洁抗菌抗紫外的复合织物及其制备方法,其旨在解决现有技术中织物功能性较低,纳米材料与织物结合牢度较低,清洗需要大量清洁用水的技术问题。
[0004] 为实现上述目的,本发明提出了一种自清洁抗菌抗紫外的复合织物,包括复合基材和纳米膜,所述的复合基材由织物基材和功能层复合而成,所述的纳米膜负载于复合基材的表面,所述的纳米膜中均匀密布有纳米颗粒。
[0005] 作为优选,所述的纳米颗粒包括纳米TiO2颗粒和纳米颗粒,所述的纳米TiO2颗粒和纳米银颗粒的粒径为2~7nm。
[0006] 作为优选,所述的功能层为吸水层、绝热层、导电层、过滤层、防水透气高分子薄膜层中的一种或者几种组合。
[0007] 作为优选,所述的功能层为单层或者多层级结构。
[0008] 本发明还提出了一种自清洁抗菌抗紫外的复合织物的制备方法,在复合生产流水线上进行生产,包括如下步骤:
[0009] 第一步、前处理:对织物基材和功能层进行退浆,然后充分清洗,以去除油剂,收缩织物基材和功能层的幅,并晾干;
[0010] 第二步、制备复合基材:将织物基材和功能层通过双点涂层进行复合,得到复合基材,烘干后收卷备用;
[0011] 第三步、制备纳米胶液:将纳米TiO2颗粒和纳米银颗粒加入到去离子水中,先磁搅拌后超声搅拌,得到纳米水溶胶,备用;
[0012] 第四步、浸胶超声处理:将第二步中制备好的复合基材卷安装在复合生产流水线的开卷盘上进行开卷,复合基材通过紫外交联箱光照一段时间后,浸入盛有纳米水溶胶的胶槽中,提升后在声波设备中进行超声处理,然后在第一烘箱中烘干,如此反复进行多次浸胶超声烘干处理,使纳米水溶胶中的纳米颗粒均匀牢固地负载于复合基材表面;
[0013] 第五步、冲洗焙烘:将第四步处理后负载有纳米颗粒的复合基材用去离子水进行冲洗,去除表面未固着的纳米颗粒,然后进入第二烘箱中进行烘干并通过收卷盘收卷,最后将收卷后的成品在未凉透之前置于真空箱内真空处理;
[0014] 第六步、分切、计量并封装。
[0015] 作为优选,所述的第三步中磁力搅拌时间为3~4h,超声搅拌时间为1~1.5h,所述的纳米TiO2颗粒和纳米银颗粒的重量比为1:(0.5~1)。
[0016] 作为优选,所述的第四步中浸胶超声烘干处理进行2~3次,第一烘箱内的温度设定为65~70℃。
[0017] 作为优选,所述的第五步中第二烘箱的温度设定为120~135℃,所述的真空箱内的真空度为-0.1atm。
[0018] 作为优选,所述的复合生产流水线包括开卷盘,紫外交联箱,由胶槽、超声波设备、第一烘箱构成的浸胶超声烘干机组,第二烘箱、收卷盘和真空箱,所述的开卷盘、紫外交联箱、浸胶超声烘干机组、第二烘箱、收卷盘、真空箱顺次设置。
[0019] 作为优选,所述的浸胶超声烘干机组为2~3组。
[0020] 本发明的有益效果:与现有技术相比,本发明提供的一种自清洁抗菌抗紫外的复合织物,复合基材由织物基材和功能层复合而成,功能层为吸水层、绝热层、导电层、过滤层、防水透气高分子薄膜层中的一种或者几种组合,可根据复合基材的应用场合对功能层进行设计,以满足不同的使用需求,且复合基材的表面均匀负载由纳米颗粒形成的纳米膜,通过多次浸胶超声处理,纳米TiO2颗粒和纳米银颗粒能大量与复合基材织物牢固结合,不易脱落,提高耐洗度,纳米TiO2颗粒具有优异的光催化活性,在光照下能光催化降解有机污染物,还具有杀菌防紫外的功能,配合纳米银颗粒进行改性,能明显提升纳米TiO2颗粒的光催化效果,同时还能进一步增强织物杀菌防紫外的功能。
[0021] 本发明的特征及优点将通过实施例结合附图进行详细说明。【附图说明】
[0022] 图1是本发明实施例一种自清洁抗菌抗紫外的复合织物的结构示意图;
[0023] 图2是本发明实施例的复合生产流水线的结构示意图。
[0024] 图中:1-织物基材、2-功能层、3-纳米膜、4-开卷盘、5-紫外交联箱、6-胶槽、7-超声波设备、8-第一烘箱、9-第二烘箱、10-收卷盘、11-真空箱、12-清洗池。【具体实施方式】
[0025] 为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图及实施例,对本发明进行进一步详细说明。但是应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
[0026] 参阅图1和图2,本发明实施例提供一种自清洁抗菌抗紫外的复合织物,包括复合基材和纳米膜3,所述的复合基材由织物基材1和功能层2复合而成,所述的纳米膜3负载于复合基材的表面,所述的纳米膜3中均匀密布有纳米颗粒。
[0027] 具体地,所述的纳米颗粒包括纳米TiO2颗粒和纳米银颗粒,所述的纳米TiO2颗粒和纳米银颗粒的粒径为2~7nm。
[0028] 进一步地,所述的功能层2为吸水层、绝热层、导电层、过滤层、防水透气高分子薄膜层中的一种或者几种组合。
[0029] 在本发明实施例中,功能层2可根据特定的应用场合进行设计,当应用于吸水材料时,功能层2可以是吸水层;当应用于绝热材料时,功能层2可以是绝热层;当应用于导电材料时,功能层2可以是导电层;当应用于过滤材料时,功能层2可以是过滤层;当应用于防水透气材料时,功能层2可以是防水透气高分子薄膜层,同时,也可以根据上述功能层进行组合配伍,达到多功能的目的,以满足不同场合的使用需求。
[0030] 更进一步地,所述的功能层2为单层或者多层级结构。多层级结构时,可以是不同功能的功能层2组合,也可以是相同功能的功能层2组合,加强提高功能的目的。
[0031] 本发明实施例还提出了一种自清洁抗菌抗紫外的复合织物的制备方法,在复合生产流水线上进行生产,包括如下步骤:
[0032] 第一步、前处理:对织物基材1和功能层2进行退浆,然后充分清洗,以去除油剂,收缩织物基材1和功能层2的门幅,并晾干。
[0033] 第二步、制备复合基材:将织物基材1和功能层2通过双点涂层进行复合,得到复合基材,烘干后收卷备用。
[0034] 第三步、制备纳米胶液:将纳米TiO2颗粒和纳米银颗粒加入到去离子水中,纳米TiO2颗粒和纳米银颗粒的重量比为1:(0.5~1),先磁力搅拌后超声搅拌,得到纳米水溶胶,备用,其中,磁力搅拌时间为3~4h,超声搅拌时间为1~1.5h。
[0035] 第四步、浸胶超声处理:将第二步中制备好的复合基材卷安装在复合生产流水线的开卷盘4上进行开卷,复合基材通过紫外交联箱5光照一段时间后,浸入盛有纳米水溶胶的胶槽6中,提升后在超声波设备7中进行超声处理,然后在第一烘箱8中烘干,如此反复进行2~3次浸胶超声烘干处理,使纳米水溶胶中的纳米颗粒均匀牢固地负载于复合基材表面,第一烘箱8内的温度设定为65~70℃。
[0036] 第五步、冲洗焙烘:将第四步处理后负载有纳米颗粒的复合基材用去离子水进行冲洗,去除表面未固着的纳米颗粒,然后进入第二烘箱9中进行烘干并通过收卷盘10收卷,最后将收卷后的成品在未凉透之前置于真空箱11内真空处理,其中,第二烘箱9的温度设定为120~135℃,真空箱11内的真空度为-0.1atm,其中,复合基材的冲洗在清洗池12中进行,清洗池12内盛装有去离子水,清洗池12设置于第一烘箱8与第二烘箱9之间。
[0037] 第六步、分切、计量并封装。
[0038] 在本发明实施例中,通过纳米TiO2颗粒和纳米银颗粒来制备纳米胶液,可以达到纳米银颗粒改性纳米TiO2颗粒的效果,加强纳米TiO2颗粒的光催化性能,提高复合织物的自清洁性能,且两者均具有抗菌抗紫外的功能;复合基材在浸胶前先进行紫外辐照,使其表面产生活性点,增加复合基材与纳米颗粒的反应点,从而达到提高纳米颗粒的有效负载率;纳米水溶胶中纳米TiO2颗粒和纳米银颗粒均一性分散,通过多次浸胶超声烘干处理,可使大量纳米颗粒负载于复合基材上,并且具有较高的固结牢度,增强了纳米膜3的耐久性,防止脱落;最后进行真空处理,进一步加强了纳米颗粒的固牢度。
[0039] 进一步地,所述的复合生产流水线包括开卷盘4,紫外交联箱5,由胶槽6、超声波设备7、第一烘箱8构成的浸胶超声烘干机组,第二烘箱9、收卷盘10和真空箱11,所述的开卷盘4、紫外交联箱5、浸胶超声烘干机组、第二烘箱9、收卷盘10、真空箱11顺次设置,浸胶超声烘干机组为2~3组。
[0040] 在本发明实施例中,复合基材可通过复合生产流水线进行连续性纳米膜负载,生产效率高。
[0041] 本发明一种自清洁抗菌抗紫外的复合织物,复合基材由织物基材1和功能层2复合而成,功能层2为吸水层、绝热层、导电层、过滤层、防水透气高分子薄膜层中的一种或者几种组合,可根据复合基材的应用场合对功能层2进行设计,以满足不同的使用需求,且复合基材的表面均匀负载由纳米颗粒形成的纳米膜3,通过多次浸胶超声处理,纳米TiO2颗粒和纳米银颗粒能大量与复合基材织物牢固结合,不易脱落,提高耐洗度,纳米TiO2颗粒具有优异的光催化活性,在光照下能光催化降解有机污染物,还具有杀菌防紫外的功能,配合纳米银颗粒进行改性,能明显提升纳米TiO2颗粒的光催化效果,同时还能进一步增强织物杀菌防紫外的功能。
[0042] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈