首页 / 专利库 / 防辐射 / 戈瑞 / 一种治疗肝癌的药物组合及其应用

一种治疗肝癌的药物组合及其应用

阅读:160发布:2020-05-08

专利汇可以提供一种治疗肝癌的药物组合及其应用专利检索,专利查询,专利分析的服务。并且本 发明 公开了瑞戈非尼和PD-1/PD-L1 抑制剂 的联合使用在制备 治疗 肝癌的药物中的应用。本发明的药物组合(瑞戈非尼和PD-1/PD-L1抑制剂)能产生协同抗肝癌的作用,二者联合 给药 的方案不仅能提高肝癌细胞对瑞戈非尼的敏感性,增加对肝癌细胞的抑制作用,还能减少瑞戈非尼的用药剂量,直接降低每个肝癌患者的治疗成本,让更多的肝癌患者获益;本发明的药物组合价格低廉,安全性高,疗效肯定;本发明的药物组合生产方便,便于大规模投入生产,良好的疗效、低廉的成本也有益于社会公共利益。,下面是一种治疗肝癌的药物组合及其应用专利的具体信息内容。

1.瑞戈非尼和PD-1/PD-L1抑制剂的联合使用在制备治疗肝癌的药物中的应用。
2.权利要求1的应用,其中所述PD-1/PD-L1抑制剂为BMS-1。
3.一种治疗肝癌的药物组合,其特征在于,所述药物组合包括瑞戈非尼和PD-1/PD-L1抑制剂。
4.根据权利要求3所述的药物组合,其特征在于,所述PD-1/PD-L1抑制剂为BMS-1。
5.根据权利要求4所述的药物组合,其特征在于,所述瑞戈非尼和BMS-1的摩尔比为2~
6:30~40。
6.根据权利要求5所述的药物组合,其特征在于,所述瑞戈非尼浓度为2μM,BMS-1浓度为30μM。
7.根据权利要求5所述的药物组合,其特征在于,所述瑞戈非尼浓度为4μM,BMS-1浓度为30μM。
8.根据权利要求5所述的药物组合,其特征在于,所述瑞戈非尼浓度为6μM,BMS-1浓度为30μM。
9.根据权利要求5所述的药物组合,其特征在于,所述瑞戈非尼浓度为2μM,BMS-1浓度为40μM。
10.根据权利要求5所述的药物组合,其特征在于,所述瑞戈非尼浓度为4μM或6μM,BMS-
1浓度为40μM。

说明书全文

一种治疗肝癌的药物组合及其应用

技术领域

[0001] 本发明涉及肝癌治疗技术领域,具体涉及是一种治疗肝癌的药物组合及其应用,特别涉及瑞戈非尼联合PD-1/PD-L1抑制剂BMS-1在制备治疗肝癌的药物中的应用。

背景技术

[0002] 原发性肝细胞肝癌(Hepatocellular carcinoma,HCC)是肝脏最常见的恶性肿瘤,发展隐蔽且迅速,2018年全球癌症统计结果表明,肝癌发病率位居恶性肿瘤的第6位,死亡率位居恶性肿瘤相关死亡的第4位[1]。我国是肝癌的高发地区,最新数据显示2015年我国肝癌的发病率位居肿瘤相关疾病的第4位,死亡率位居恶性肿瘤第3位,发病率和死亡率均超[2]过全球总数的一半以上,正严重威胁着我国人民的生命健康 。早期肝癌的治疗遵循完善的指南,手术切除、肝脏移植和局部射频消融是早期疾病的主要治疗选择,化疗栓塞治疗建议用于肝功能受限和病灶没有累及血管侵犯的患者[3,4]。临床上大多数肝癌患者确诊时已处于中晚期,丧失了治疗的机会,患者只能通过非根治性治疗方式来延长生存期和改善生[5]
质量,主要包括化疗、药物治疗、免疫治疗等 。对于没有或不再适合进行局部治疗的肝癌患者,口服药物多激酶抑制剂索拉非尼是第一个被FDA批准的能显著提高总体生存率的全身治疗方法[6,7]。但是,自索拉非尼治疗结果发表10年以来,所有评估新型系统药物的3期试验均未能改善索拉非尼在第一线[8-11]或索拉非尼后第二线治疗的结果[12-15],在索拉非尼治疗失败患者的二线试验中,安慰剂组的总生存期约为8个月[6]。因此,患者对肝癌的有效全身性治疗效果存在不满足的现状,迫切期望新药物或新辅助药物联合治疗方案的出现,特别是接受索拉非尼治疗后效果不佳的患者。
[0003] 瑞戈非尼(Regorafenib)是一种新型的口服多激酶抑制剂,具有独特的分子靶点,临床前研究结果显示它比索拉非尼具有更强的药理活性[16,17],可阻断血管生成,肿瘤发生、转移和肿瘤免疫调节[17,18]。研究结果显示,瑞戈非尼能延长索拉非尼治疗失败后HCC患者的生存时间,于2017年被FDA批准用于无法切除肝细胞癌患者的二线治疗[19,20]。瑞戈非尼治疗后的中位总生存期从安慰剂组7.8个月提高到10.6个月,效果虽然有限,但是瑞戈非尼甚至在索拉非尼耐药的患者中也产生了反应和生存效益[19]。尽管如此,药物毒性、耐药性和随后的疾病进展仍然是肝癌治疗中的一个棘手问题[21,22],同时由于瑞戈非尼的售价极高,使得很多肝癌患者望而却步,所以患者迫切需要一个新辅助药物的联合治疗方案,降低瑞戈非尼药物剂量的同时提高药物治疗效果[20,23-25]。
[0004] 基于近几年在不同实体肿瘤中抑制免疫检查点抗癌疗法的成功,诺贝尔大会授予Tasuko Honjo和James P.Allison 2018年诺贝尔医学奖。与传统直接针对癌细胞的化疗或分子疗法相比,免疫疗法是使用免疫检查点抑制剂阻断肿瘤的免疫逃逸机制、抑制肿瘤信号传递,并连续诱导以T细胞为主的强免疫应答,从而实现抗肿瘤作用[26]。迄今为止最成功的免疫治疗形式是阻断免疫检查点程序性细胞死亡蛋白1/程序性死亡配体1(PD-1/PD-L1[27-31]受体)和细胞毒性T淋巴细胞蛋白4(CTLA-4) 。其中,积极开发阻断PD-1/PD-L1途径进行癌症免疫治疗的主要原因是发现了PD-L1是许多实体瘤中表达的主要配体,而PD-1在肿瘤浸润的淋巴细胞上高度表达[32-35]。阻断PD-1/PD-L1的药物能阻断肿瘤的PD-L1与免疫细胞的PD-1结合,从而避免了肿瘤的免疫逃逸、维持了免疫细胞的持续激活,因此能在治疗多种不同癌症方面显示出巨大的前景,进而促进了对越来越多的独特检查点分子作为潜在治疗目标的深入研究,这为患者提供了新的治疗方案。但是,抗体类药物在生产成本高、稳定性低和免疫原性等方面存在诸多不足[36,37],而新型小分子抑制剂则可以在药物动学和药物性方面提供固有的优势,从而为癌症的治疗取得更好的治疗效果[38]。据报道,Bristol-Myers Squibb于2015年提交了一系列具有抑制PD-1与PD-L1相互作用活性的化合[39-41]
物(专利WO 2015/034820 A1),BMS-1就是其中的一个小分子PD-1/PD-L1抑制剂 。据分析,BMS-1可与PD-1/PD-L1蛋白-蛋白相互作用表面高度重叠,因此具有使PD-1和PD-L1无法发挥其正常的相互作用和阻断信号通路的潜在作用,可应用于治疗肿瘤的进展[42]。由于是小分子化合物,因此具有价格低,稳定性高,免疫原性低,安全性高等优势。
[0005] 中国专利文献CN104994876A公开了一种包含瑞戈非尼和乙酰杨酸、或其水合物、溶剂化物、代谢物或可药用盐、或其多晶型物的药物组合物和组合,其用于治疗、预防或控制人类和其他哺乳动物中的疾病和疾病状态,包括过度增殖性病症如癌症。中国专利文献CN109069509A公开了索拉非尼或瑞戈非尼与具有下式的曲沙他滨的磷酸酯前药或其可药用盐的组合治疗在肝癌或肝转移的治疗中显示出出乎意料的效用。中国专利文献CN105879049A公开了一种以瑞戈非尼作为药物活性成分,β-环糊精作为主体分子(host),摩尔比为1:1,形成的包合物,生物利用度大大提高,制备方法简便易行,条件温和,适合工业化生产,制得的包合物对结肠癌靶向给药具有极好的针对性,且安全性好,可有效克服瑞戈非尼本身水溶性差和生物利用度低的缺点。但是关于本发明一种用于治疗肝癌的药物组合物及其联合应用目前还未见报道。

发明内容

[0006] 基于上述问题,本发明的目的在于克服上述现有技术的不足之处而提供一种用于治疗肝癌的药物组合物,该组合物不仅能产生协同抑制肝癌细胞生长作用,还能提高肝癌细胞对瑞戈非尼的敏感性,增加对肝癌细胞的抑制作用,而且能减少瑞戈非尼的用药剂量,直接降低每个肝癌患者的治疗成本,让更多的肝癌患者获益。
[0007] 为实现上述目的,本发明采取的技术方案包括以下两个方面:
[0008] 在第一个方面,本发明提供了瑞戈非尼和PD-1/PD-L1抑制剂的联合使用在制备治疗肝癌的药物中的应用。
[0009] 优选地,所述PD-1/PD-L1抑制剂为BMS-1。
[0010] 在另一个方面,本发明提供了一种治疗肝癌的药物组合,所述药物组合包括瑞戈非尼和PD-1/PD-L1抑制剂。
[0011] 优选地,所述PD-1/PD-L1抑制剂为BMS-1。
[0012] 优选地,所述瑞戈非尼和BMS-1的摩尔比为2~6:30~40。
[0013] 优选地,所述瑞戈非尼浓度为2μM,BMS-1浓度为30μM。
[0014] 优选地,所述瑞戈非尼浓度为4μM,BMS-1浓度为30μM。
[0015] 优选地,所述瑞戈非尼浓度为6μM,BMS-1浓度为30μM。
[0016] 优选地,所述瑞戈非尼浓度为2μM,BMS-1浓度为40μM。
[0017] 优选地,所述瑞戈非尼浓度为4μM或6μM,BMS-1浓度为40μM。
[0018] 综上所述,本发明的有益效果为:
[0019] 1)本发明的药物组合(瑞戈非尼和PD-1/PD-L1抑制剂)能产生协同抗肝癌的作用,二者联合给药的方案不仅能提高肝癌细胞对瑞戈非尼的敏感性,增加对肝癌细胞的抑制作用,还能减少瑞戈非尼的用药剂量,直接降低每个肝癌患者的治疗成本,让更多的肝癌患者获益;
[0020] 2)本发明的药物组合价格低廉,安全性高,疗效肯定;
[0021] 3)本发明的药物组合生产方便,便于大规模投入生产,良好的疗效、低廉的成本也有益于社会公共利益。附图说明
[0022] 图1是瑞戈非尼单药对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的生长抑制率曲线;
[0023] 图2是BMS-1单药对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的生长抑制率曲线;
[0024] 图3是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的抑制作用对比图;
[0025] 图4是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的联合指数CI值图;
[0026] 图5是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1不同作用时间对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的抑制作用对比图;
[0027] 图6是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的EdU染色图和统计柱状图;
[0028] 图7是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的TUNEL染色图和统计柱状图;
[0029] 图8是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1凋亡的散点图和统计柱状图;
[0030] 图9是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的细胞凋亡分析结果图;
[0031] 图10是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的细胞周期分析结果图;
[0032] 图11是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的细胞迁移结果图;
[0033] 图12是瑞戈非尼单药、BMS-1单药、瑞戈非尼联合BMS-1对肝癌细胞株SMMC-7721、Hep3B和SK-Hep1的细胞侵袭结果图。

具体实施方式

[0034] 本发明将瑞戈非尼与BMS-1联合作用于肝癌细胞上,研究发现,二者联合给药能产生协同抑制肝癌细胞生长作用。研究表明,分子靶向药物可抑制维持免疫抑制环境的信号通路,检查点抑制剂与分子靶向药物联合可引起肿瘤微环境的改变,从而促进细胞毒性T淋巴细胞进入肿瘤组织并使其渗透[43]。因此,免疫治疗与靶向治疗的联合应用可能是肝癌治疗的新思路。二者联合用药的方案不仅能提高肝癌细胞对瑞戈非尼的敏感性,增加对肝癌细胞的抑制作用,还能减少瑞戈非尼的用药剂量,直接降低每个肝癌患者的治疗成本,让更多的肝癌患者受益于此,它所带来的市场前景以及经济和社会收益将无法估量。
[0035] 在一些实施例中,本发明提供了一种用于治疗肝癌的药物组合,所述药物组合组分摩尔浓度为瑞戈非尼2μM和BMS-1 30μM、瑞戈非尼4μM和BMS-1 30μM、瑞戈非尼6μM和BMS-1 30μM、瑞戈非尼2μM和BMS-1 40μM、瑞戈非尼4μM和BMS-1 40μM、或者瑞戈非尼6μM和BMS-1 
40μM。
[0036] 为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。如无特别说明,本发明中的试剂浓度均为质量浓度。如无特别说明,本发明中的试剂、材料或细胞株均可从市场上或其它公开渠道获得。
[0037] 实施例1
[0038] 1.实验目的:选用肝癌细胞株SMMC-7721、Hep3B和SK-Hep1,检测瑞戈非尼和BMS-1单独对肝癌细胞的抑制作用。
[0039] 2.采用肝癌细胞株SMMC-7721、Hep3B和SK-Hep1铺到96孔板中,24h后分别加入不同浓度的瑞戈非尼(0.75、1.5、3、6、12、24、48μM)和BMS-1(3.25、7.5、15、30、60、120、240μM),培养36h后采用CCK-8实验方法检测了瑞戈非尼和BMS-1单独对三种肝癌细胞株活性的影响,根据OD值绘制生长抑制率曲线和计算两种药物分别对应三种肝癌细胞株的IC50。
[0040] 3.实验方法:CCK8检测药物对细胞的活性实验
[0041] ①选取状态良好且增殖生长至70%~85%密集度的肝癌细胞使用胰酶消化、水平离心后用新鲜培养基重悬混匀,并采用细胞计数板计数5×10^3/孔于96孔板中均匀种板,设置4复孔/组,放置于37℃培养箱过夜。
[0042] ②细胞贴壁后,根据药物浓度梯度或不同药物组合设计分成若干组,给予200μL对应浓度的药物作用肝癌细胞一定时间。
[0043] ③药物作用时间到后,在生物安全柜内弃除细胞含药物的培养液。同时配制CCK8试剂:无血清DMEM培养基与CCK8原液以10:1的比例在室温下避光配制,110μL/孔的CCK8混合液加入复孔中,并设置4个无细胞的空白对照孔,也加入110μL/孔的CCK8混合液。使用箔纸包裹后放于37℃细胞培养箱中避光孵育2h。
[0044] ④孵育时间完成后,室温状态下在水平摇床上以300rpm的速度摇晃1min,除去孔内气泡后使用酶联免疫检测仪检测波长450nm的OD值。
[0045] ⑤计算细胞活性百分比=(实验组OD值-空白组OD值)/(对照组OD值-空白组OD值)×100%,统计分析并使用GraphPad Prism7作图。细胞半数生长抑制浓度(IC50),根据不同药物浓度对细胞生长的抑制率,采用GraphPad Prism7软件进行计算。
[0046] 4.实验结果:参见图1和图2,瑞戈非尼可剂量依赖性地抑制三种肝癌细胞株的活性,SMMC-7721、Hep3B和SK-Hep1的IC50分别为13.50μM、13.20μM、9.05μM。如图2B所示,BMS-1随浓度增高抑制肝癌细胞的活性作用越强,SMMC-7721、Hep3B和SK-Hep1的IC50分别为74.11μM、73.08μM、53.76μM。
[0047] 实施例2
[0048] 1.实验目的:选用肝癌细胞株SMMC-7721、Hep3B和SK-Hep1,检测瑞戈非尼联合BMS-1对肝癌细胞的抑制作用。
[0049] 2.采用肝癌细胞株SMMC-7721、Hep3B和SK-Hep1铺到96孔板中,24h后分别加入不同浓度的瑞戈非尼(2、4、6μM)联合BMS-1(30、40μM),培养36h后采用CCK-8实验方法检测了瑞戈非尼和BMS-1联合处理以及单独处理对三种肝癌细胞活性的影响。
[0050] 3.实验方法:CCK8检测药物对细胞的活性实验
[0051] ①选取状态良好且增殖生长至70%~85%密集度的肝癌细胞使用胰酶消化、水平离心后用新鲜培养基重悬混匀,并采用细胞计数板计数5×10^3/孔于96孔板中均匀种板,设置4复孔/组,放置于37℃培养箱过夜。
[0052] ②细胞贴壁后,根据药物浓度梯度或不同药物组合设计分成若干组,给予200μL对应浓度的药物作用肝癌细胞一定时间。
[0053] ③药物作用时间到后,在生物安全柜内弃除细胞含药物的培养液。同时配制CCK8试剂:无血清DMEM培养基与CCK8原液以10:1的比例在室温下避光配制,110μL/孔的CCK8混合液加入复孔中,并设置4个无细胞的空白对照孔,也加入110μL/孔的CCK8混合液。使用锡箔纸包裹后放于37℃细胞培养箱中避光孵育2h。
[0054] ④孵育时间完成后,室温状态下在水平摇床上以300rpm的速度摇晃1min,除去孔内气泡后使用酶联免疫检测仪检测波长450nm的OD值。
[0055] ⑤计算细胞活性百分比=(实验组OD值-空白组OD值)/(对照组OD值-空白组OD值)×100%,统计分析并使用GraphPad Prism7作图。细胞半数生长抑制浓度(IC50),根据不同药物浓度对细胞生长的抑制率,采用GraphPad Prism7软件进行计算。
[0056] 4.实验结果:参见图3、图4、图5,瑞戈非尼联合BMS-1能产生协同抗肝癌作用,瑞戈非尼和BMS-1联合给药物组比瑞戈非尼单药组和BMS-1单药组有更强的抗肝癌作用。
[0057] 实施例3
[0058] 1.实验目的:选用肝癌细胞株SMMC-7721、Hep3B和SK-Hep1,检测瑞戈非尼联合BMS-1对肝癌细胞的抑制增殖作用。
[0059] 2.采用EdU染色检测不同处理组作用肝癌细胞36h后处于细胞分裂间期S期的细胞染色情况。
[0060] 3.实验方法:EdU染色检测细胞增殖实验
[0061] 根据EdU试剂盒(购自于广州市锐博生物科技有限公司,货号:C10310-1)的染色方法对不同药物处理后的细胞进行EdU染色,进而观察细胞的增殖情况。
[0062] ①选取状态良好且增殖生长至70%~85%密集度的肝癌细胞使用胰酶消化、水平离心后用新鲜培养基重悬混匀,并采用细胞计数板计数1×10^4/孔于96孔板中均匀种板,设置4复孔/组,放置于37℃培养箱过夜。
[0063] ②细胞贴壁后,根据不同药物组合设计分成若干组,给予200μL对应浓度的药物作用肝癌细胞36h时间。
[0064] ③EdU标记(生物安全柜内无菌操作):a.EdU溶液(试剂A)用新鲜培养基按1000:1的比例稀释,配制适量高浓度50μM EdU培养液;b.弃陈旧培养基,加入100μL/孔的50μM EdU培养液,在37℃细胞培养箱中孵育2小时后,弃培养液;c.用无菌PBS洗涤细胞2次,5min/次。
[0065] ④细胞固定化:a.弃PBS,加入100μL/孔的4%多聚甲室温固定细胞15min;b.弃固定液,加入50μL/孔的2mg/mL甘氨酸,在低速脱色摇床上孵育5min;c.弃甘氨酸,加入100μL/孔的PBS,在低速脱色摇床上清洗5min;d.弃PBS,加入100μL/孔的渗透剂(0.5%TritonX-100的PBS)于低速脱色摇床上孵育10min;e.弃渗透剂,加入100μL/孔的PBS,在低速脱色摇床上清洗5min。
[0066] ⑤Apollo染色:a.室温避光配制1×Apollo染色反应液(500μL用量):去离子水469μL+Apollo反应缓冲液(试剂B)25μL+Apollo催化剂溶液(试剂C)5μL+Apollo荧光染料溶液(试剂D)1.5μL+Apollo缓冲添加剂(试剂E)5mg;b.弃PBS,加入100μL/孔的1×Apollo染色反应液,在室温、避光、低速脱色摇床上孵育30min;c.弃染色反应液,加入100μL/孔的渗透剂(0.5%TritonX-100的PBS),在低速脱色摇床上清洗2~3次,10min/次;d.,弃渗透剂,加入100μL/孔的甲醇清洗1~2次,5min/次;e.弃甲醛,加入100μL/孔的PBS,在低速脱色摇床上清洗5min。
[0067] ⑥DNA染色:a.室温避光下DAPI试剂用PBS按20000:1的比例稀释,制备适量1×DAPI反应液;b.弃PBS,加入100μL/孔的1×DAPI反应液,在室温、避光、低速脱色摇床上孵育1~2min,弃染色反应液;c.加入100μL/孔的PBS,在低速脱色摇床上清洗3次,5min/次。
[0068] ⑦荧光倒置显微镜图像获取:在染色完成后短时间内进行拍照(可在4℃避光和PBS浸泡的条件下储存72h,但亮度有所下降),100×倍镜下拍摄3张/孔(每张含红光EdU和蓝光DAPI),200×倍镜下拍摄5张/孔。一次实验中所有组别拍摄图片的参数保持一致,整个过程中调整好参数后不可修改
[0069] ⑧统计分析及作图(选做):实验需独立重复3次,Excel和Photoshop计数200×倍镜下拍摄的每张图红光(EdU)和蓝光(DAPI)的数目,根据各组别的计数结果,计算细胞增殖率=EdU/DAPI×100%,统计分析并使用GraphPad Prism7作图。
[0070] 4.实验结果:参见图6,瑞戈非尼联合BMS-1能产生协同抑制肝癌增殖作用,减少处于细胞分裂间期S期的细胞数。
[0071] 实施例4
[0072] 1.实验目的:选用肝癌细胞株SMMC-7721、Hep3B和SK-Hep1,检测瑞戈非尼联合BMS-1对肝癌细胞的抑制增殖作用。
[0073] 2.采用TUNEL染色法和流式细胞术检测瑞戈非尼联合BMS-1对肝癌细胞凋亡的影响。
[0074] 3.实验方法:TUNEL染色检测细胞增殖凋亡
[0075] 根据TUNEL试剂盒说明书(购自于美国Promega公司,货号:G3250)在生物安全柜内无菌操作进行,检测不同药物组合处理作用后肝癌细胞的凋亡情况:
[0076] ①选取状态良好且增殖生长至70%~85%密集度的肝癌细胞使用胰酶消化、水平离心后用新鲜培养基重悬混匀,并采用细胞计数板计数1×10^4/孔于96孔板中均匀种板,设置4复孔/组,放置于37℃培养箱过夜;
[0077] ②细胞贴壁后,根据不同药物组合设计分成若干组,给予200μL对应浓度的药物作用肝癌细胞36h时间;
[0078] ③弃陈旧培养基,加入100μL/孔的4%多聚甲醛室温固定细胞15min;弃除固定液,加入100μL/孔的PBS洗涤细胞2次,5min/次;
[0079] ④弃PBS,加入100μL/孔的渗透剂(0.2%TritonX-100的PBS),在室温、避光、低速脱色摇床上孵育5min;弃渗透剂,加入100μL/孔的PBS,在低速脱色摇床上清洗3次,5min/次;
[0080] ⑤弃PBS,上解冻TUNEL试剂盒内试剂,加入30μL/孔的Equilibration Buffer室温孵育10min;
[0081] ⑥室温避光配制适量TdT反应混合液(Equilibration Buffer:Nucleotide Mix:rTdT Enzyme=45:5:1),加入25μL/孔的混合液37℃细胞培养箱内孵育1h,根据实验差异可适当延长孵育时间,一般不应超过2h;
[0082] ⑦避光下加入100μL/孔的2×SSC液体(20×SSC用超纯水10:1稀释)孵育15min;弃SSC液体,加入100μL/孔的PBS清洗细胞3次,5min/次;
[0083] ⑧弃PBS,DAPI染色储存液用PBS按20000:1稀释后,加入100μL/孔;弃DAPI,加入100μL/孔的PBS,在低速脱色摇床上清洗3次,5min/次。
[0084] ⑨荧光倒置显微镜图像获取:在染色完成后短时间内进行拍照(可在4℃避光和PBS浸泡的条件下储存72h,但亮度有所下降),100×倍镜下拍摄3张/孔(每张含绿光TUNEL和蓝光DAPI),200×倍镜下拍摄5张/孔。一次实验中所有组别拍摄图片的参数保持一致,整个过程中调整好参数后不可修改。
[0085] ⑩统计分析及作图(选做):实验需独立重复3次,Excel和Photoshop计数200×倍镜下拍摄的每张图绿光(TUNEL)和蓝光(DAPI)的数目,根据各组别的计数结果,计算细胞凋亡率=TUNEL/DAPI×100%,统计分析并使用GraphPad Prism7作图。
[0086] 流式细胞术检测细胞凋亡水平
[0087] 利用流式细胞技术检测细胞凋亡的表达情况,根据eBioscienceTM Annexin V Apoptosis Detection Kit eFluorTM 450和eBioscienceTM Propidium Iodide(均购自于美国Thermo Fisher Scientific公司eBioscienceTM Annexin V Apoptosis Detection Kit eFluorTM 450货号:88-8006-74,eBioscienceTM Propidium Iodide货号:BMS500PI)说明书于流式细胞仪上机操作,检测不同药物组合处理作用后各组的细胞凋亡率。
[0088] ①选取状态良好且增殖生长至70%~85%密集度的肝癌细胞使用胰酶消化、水平离心后用新鲜培养基重悬混匀,并采用细胞计数板计数2×10^5/孔于6孔板中均匀种板,设置2复孔/组,放置于37℃培养箱过夜;
[0089] ②细胞贴壁后,根据不同药物组合设计分成若干组,给予2mL对应浓度的药物作用肝癌细胞36h时间;
[0090] ③处理时间结束后,收集孔内陈旧培养基,放置于标记好组别名称的流式管内,同时使用胰酶消化孔内贴壁细胞加入对应流式管内,水平离心机以1000rpm的速度常温离心5min,弃上清,加入3mL/管的PBS后使用振荡器轻微振荡混匀5s,水平离心机以1000rpm的速度常温离心5min,弃PBS,加入3mL/管的PBS后使用振荡器轻微振荡混匀5s,水平离心机以
1000rpm的速度常温离心5min;
[0091] ④弃PBS,每管内加入400μL Binding buffer后使用振荡器轻微振荡混匀5s,移液枪吸200μL/管至新的对应编号离心管中作为试剂组。试剂组每管加入5μL的Annexin V-450,使用振荡器轻微振荡混匀5s,常温、避光孵育20min。孵育时间结束后,试剂组每管加入
10μL的PI,使用振荡器轻微振荡混匀5s。上机检测设置P1(单一细胞群)和十字门(Annexin V-450(-)、PI(-)为活细胞群;Annexin V-450(+)、PI(-)为早期凋亡细胞群;
Annexin V-450(+)、PI(+)为晚期凋亡细胞群;Annexin V-450(-)、PI(+)为坏死细胞群),记录各象限细胞群比例;
[0092] ⑤实验需独立重复3次,根据各象限细胞群比例,统计根据各组别中早期凋亡和晚期凋亡细胞群比例之和,统计分析并使用GraphPad Prism7作图。
[0093] 4.实验结果:参见图7、图8,瑞戈非尼联合BMS-1组比瑞戈非尼单药组和BMS-1单药组能更加促进肝癌细胞的凋亡发生。
[0094] 实施例5
[0095] 1.实验目的:瑞戈非尼与BMS-1联合用药对肝癌细胞的蛋白表达影响。
[0096] 2.Western Blot法检测各组药物作用肝癌细胞36h后,相关蛋白的表达。
[0097] 3.实验方法:
[0098] Western Blot实验
[0099] ①蛋白样品制备:
[0100] 选取状态良好且增殖生长至70%~85%密集度的肝癌细胞使用胰酶消化、水平离心后用新鲜培养基重悬混匀,并采用细胞计数板计数2×10^5/孔于6孔板中均匀种板,根据不同药物组合设计分组,放置于37℃培养箱过夜。细胞贴壁后,根据不同药物组合设计分成若干组,给予2mL对应浓度的药物作用肝癌细胞36h时间。处理时间结束后,收集陈旧培养基中的细胞,孔内贴壁细胞使用PBS轻柔洗涤细胞1次,倾斜6孔板5min后尽弃PBS。根据需要配制适量新鲜细胞裂解液混合物(配制比例为PMSF:磷酸酶抑制剂:蛋白酶抑制剂:RIPA裂解液=1:1:1:100),使用振荡器振荡混匀。加入80μL/孔的加入细胞裂解液混合物,冰上裂解10min后于冰盒上用细胞铲充分刮取细胞,倾斜培养板5min,吸取细胞裂解产物于1.5mL EP管中,在冰水环境下用30%强度超声蛋白样品10s,每次间歇1s,每次超声前需用超纯水清洗超声头并且擦干。于4℃预冷的超速离心机上以12000g的速度离心15min,轻拿EP管,尽取蛋白样品上清于新标记的EP管中,避免吸取沉淀。样品可在-80℃短时间存放,建议使蛋白变性后储存以防止蛋白降解。根据BCA试剂盒(购自于Thermo Fisher公司,货号:23228)的操作说明制作标准曲线(BCA蛋白梯度浓度与562nm波长的OD值呈正相关),检测蛋白样品浓度,吸取蛋白样品2μL,2复孔/组,A液与B液为50:1,加入200μL/孔的AB混合液,放置于37℃恒温箱30min,用酶联免疫检测仪检测波长562nm的OD值,根据标准曲线计算出蛋白样品浓度,并用RIPA细胞裂解混合液和5×loading buffer将蛋白样品原液配制成含1×loading buffer的蛋白样品(一般为2ug/μL),标记蛋白样品的组别、浓度和日期,振荡器振荡混匀后低速离心,于100℃金属浴10min,即刻冰上冷却,低速离心30s后放置-80℃保存备用。
[0101] ②SDS-PAGE凝胶电泳
[0102] a.准备主要仪器及试剂:SDS-PAGE试剂盒,1.5mm厚玻璃板,薄玻璃板,海绵密封垫,15孔梳子,玻璃固定夹,灌胶架,双蒸水,电泳架,电泳槽,电泳液,冰盒,移液枪和枪头等;
[0103] b.配胶:薄厚玻璃板用洗洁精刷洗后双蒸水清洗干净,再用超纯水冲洗表面,烘干箱内烘干备用;用玻璃固定夹固定1.5mm厚玻璃板与薄玻璃板,尽量使两玻璃板得下缘在同一水平面。把玻璃固定夹扣压在灌胶架上,玻璃板下缘紧压海绵密封垫;根据目的蛋白分子量大小选择分离胶的浓度,按照固定比例配制分离胶(依次添加所需试剂,充分混匀,沿厚玻璃板中点,加至绿框下方0.5-1.0cm处(约6.3mL)。用1mL枪头沿厚玻璃板中点缓慢加满双蒸水封口),室温放置约45min可凝固温度较低时适当延长。当分离胶凝固至与双蒸水出现明显分界时,倒掉双蒸水,用滤纸吸干,不可接触到胶面。按固定比例配制浓缩胶,缓慢沿厚玻璃板中点灌入浓缩胶,直至灌满,将15孔梳子垂直插入,应避免产生气泡,室温放置约30min可凝固;
[0104] c.上样前准备:浓缩胶凝固且无气泡和缺损时,取下配好的胶,两块胶装在电泳架上,薄玻璃板面朝内。电泳架对应正负极后放置电泳槽内。配电泳液:1000mL 1×电泳液=100mL 10×电泳液+900mL双蒸水,混匀,室温存放。向内槽加电泳液,没过薄玻璃板2cm以上并无气泡,注意槽内无漏液后,垂直取出梳子;
[0105] d.上样:-80℃取蛋白样品后,金属浴10min后低速离心30s后置于冰上;用10μL枪头或20μL枪头按组别顺序从左往右依次加入3.5μL marker PM5100和20-40μg混匀的蛋白样品(1.5mm的15孔玻璃板不超过30μL)。按需要在两侧多余泳道,加入适量1×loading buffer防止蛋白跑偏。
[0106] e.电泳:向电泳架外槽内加入1×电泳液至对应刻度线,盖上电源盖和正确连接正负极,连接电源,设置80V恒压,开始电泳,当蛋白样品完全从浓缩胶电泳至分离胶后(约30-45min),调电压至120V,跑至所有分子量的marker条带分离清晰出现,于最小分子量marker接近胶的下缘时停止电泳。
[0107] ③转膜:
[0108] a.主要仪器及试剂:新鲜转膜液,电源,电泳槽,转印槽,转膜夹,黑色密制海绵、托盘,撬玻片,滚轮,玻璃棒,冰袋,铅笔,PVDF膜,滤纸,镊子剪刀等。
[0109] b.转膜前准备:新鲜配制转膜液(1×转膜液=10×转膜液:100%甲醇:双蒸水=1:2:7),4℃预冷。裁取4.5cm×5.5cmPVDF膜后左上方标记日期、分离胶浓度、蛋白样品组别等,甲醇浸泡5min(激活膜上正电荷以利于和蛋白结合)。海绵、滤纸和转膜夹完全浸泡于4℃回收转膜液中备用。
[0110] c.转膜:电泳结束后,将玻璃板取出,左手四指托住,厚玻璃板朝上,薄玻璃板朝下,在湿润的状态下用撬玻片小心撬去厚玻板,垂直切断浓缩胶。托盘中依次放置浸泡着回收转膜液的转膜夹、黑色密制海绵、滤纸,将胶朝下放置于滤纸上,紧接着放置PVDF膜,标记面朝下,再依次放上滤纸、黑色密制海绵,用滚轮来回轻柔滚动排出气泡,不可用力过度使胶变形,影响转膜效果。合上转膜夹,垂直推入转印槽中,将转印槽按黑对黑(负极),白对红(正极)的方向放入电泳槽内,同时放入冰盒,加入新鲜配制的转膜液至对应刻度,盖上电源盖,电泳槽放于冰盆内。正确连接电极和电源,设置280mA恒流转膜100min,记录起始及终止电压,排除干扰因素。
[0111] ④封闭:
[0112] 配制适量5%的奶封闭液(20mL 5%封闭液=1g脱脂奶粉+20mL 1×TBST),振荡混匀。转膜时间结束后,PVDF膜放置于封闭盒中,膜的标记面朝上,1×TBST洗涤一次,弃TBST,加5%封闭液,置水平摇床50rpm的速度室温封闭1h。回收封闭液,1×TBST清涤1次,弃TBST。
[0113] ⑤抗体孵育:
[0114] 用一抗稀释液配制适量合适浓度的一抗,放置于水平摇床40rpm,4℃孵育12-24h。回收一抗后,用1×TBST水平摇床100rpm,清洗3次,10min/次。按所需浓度和对应一抗种属用回收封闭液配制适量二抗,放置于水平摇床50rpm,常温孵育1h。弃二抗后,1×TBST于水平摇床100rpm,清洗3次,10min/次。
[0115] ⑥曝光显影:
[0116] a.准备主要仪器及试剂:洗片机,曝光盒,胶片,HRP发光底物,吸水纸,离心管,锡箔纸,计时器,移液枪及枪头,镊子等;检查洗片机状态,开机预热。提前5-10min取出HRP发光底物复温;
[0117] b.暗室内,开红光灯操作。夹取PVDF膜,用吸水纸吸干膜上残余液体后置于曝光盒保鲜膜上。HRP发光底物A液和B液1:1的比例在避光离心管中配制适量发光液,用移液枪均匀滴加发光工作液于PVDF膜上,盖上保鲜膜,观察发光效果。取1-3张胶片,折叠右上后整齐沿暗盒左下方放入,快速关闭曝光盒,并根据发光亮度强弱设置曝光时间。到预设时间后取出胶片放入洗片机,根据曝光结果调整曝光时间,直至目的蛋白均有不同强弱程度、清晰且无杂带的条带。
[0118] c.标记marker分子量大小、抗体、实验名称、曝光时间、曝光日期等信息后,用扫描仪获取电子扫描图片。
[0119] d.独立多次重复实验后,计算条带灰度值,并截取所需条带作图,同时保留原始胶片和电子版胶片结果。
[0120] 4.实验结果:参见图9、图10,瑞戈非尼、BMS-1单药可轻微上调凋亡蛋白cleaved PARP的表达,但对增殖蛋白PCNA的影响不明显。当两药联合后cleaved PARP蛋白水平明显高于对照组和瑞戈非尼、BMS-1单药组,而且能下调PCNA的表达水平。瑞戈非尼联合BMS-1组可下调周期蛋白Cyclin A2、Cyclin B1、Cyclin D1、Cyclin D3的表达,影响肝癌细胞的增殖周期。与单药组对比,联合组对三株肝癌细胞Cyclin A2、Cyclin B1的表达下调最为明显,主要影响细胞G1/S期和G2/M期进展。瑞戈非尼联合BMS-1是通过调控细胞周期进展从而抑制肝癌细胞的增殖作用。
[0121] 实施例6
[0122] 1.实验目的:瑞戈非尼联合BMS-1可以抑制肝癌细胞的迁移和侵袭能力
[0123] 2.采用Transwell试验来观察6μM瑞戈非尼联合30μM BMS-1对肝癌细胞迁移能力的影响。
[0124] 3.实验方法:
[0125] 肝癌细胞Transwell小室侵袭实验
[0126] 原理是Transwell小室上下层之间有聚酸酯膜相间隔,在上室侧铺一层Matrigel基质胶(模拟体内的细胞外基质),在基质胶环境下细胞须分泌金属蛋白酶(MMPs)降解基质胶后才能穿过聚碳酸酯膜进入下室,模拟了肿瘤细胞在机体内的侵袭运动。将无FBS培养基重悬肿瘤细胞接种于上室,下室加入含5%FBS的培养基,下室的FBS对上室的肿瘤细胞有趋向作用,利用聚碳酸酯膜的通透性,诱导上室中的肿瘤细胞分泌金属蛋白酶降解基质胶,然后穿过聚碳酸酯膜进入下室,根据进入下室的细胞数量来衡量肿瘤细胞的侵袭能力。
[0127] ①选取状态良好且增殖生长至70%~85%密集度的肝癌细胞使用胰酶消化、水平离心后用新鲜培养基重悬混匀,并采用细胞计数板计数2×10^5/孔于6孔板中均匀种板,放置于37℃培养箱过夜;
[0128] ②细胞贴壁后,根据不同药物组合设计分成若干组,给予2mL对应浓度的药物作用肝癌细胞36h时间;
[0129] ③实验前准备:Matrigel基质胶,枪头,Transwell小室及24孔放入4℃冰箱预冷;
[0130] ④包被基底膜:注意所有操作均应在冰上进行,以免Matrigel基质胶凝固。将40μL的Matrigel胶加在8μm孔径的Transwell小室聚碳酸脂膜上层,使Matrigel胶均匀覆盖膜,并放置在37℃细胞培养箱干燥凝固;
[0131] ⑤处理时间结束后,使用胰酶消化孔内贴壁细胞,水平离心机以1000rpm的速度常温离心5min,弃上清,用无血清培养基重悬,采用细胞计数板计数1×10^5个细胞加入小室的上层,上室培养基体积不超过300μL,下室加入600μL含10%FBS的培养基,放置在37℃细胞培养箱培养24h;
[0132] ⑥培养时间结束后,取出Transwell小室,用4%多聚甲醛固定10min,签轻柔擦拭上室的Matrigel基质胶和残留在上层中未侵袭的肝癌细胞,用PBS轻柔洗刷2次,然后用1%结晶紫染色10min,再用PBS轻柔冲刷2次;
[0133] ⑦待小室自然干后,使用OLYMPUS白光显微镜拍照记录不同组细胞染色情况。100×倍镜下拍摄3张/孔,200×倍镜下拍摄5张/孔。一次实验中所有组别拍摄图片的参数保持一致,整个过程中调整好参数后不可修改;
[0134] ⑧统计分析及作图(选做):实验需独立重复3次,Excel和Photoshop计数200×倍镜下拍摄的每张图的细胞数目。
[0135] 肝癌细胞Transwell小室迁移实验
[0136] 原理是Transwell小室上下层之间有聚碳酸酯膜相间隔,细胞穿过聚碳酸酯膜进入下室,模拟了肿瘤细胞在机体内的运动能力。将无FBS培养基重悬肿瘤细胞接种于上室,下室加入含5%FBS的培养基,下室的FBS对上室的肿瘤细胞有趋向作用,利用聚碳酸酯膜的通透性,诱导上室中的肿瘤细胞穿过聚碳酸酯膜进入下室,根据进入下室的细胞数量来衡量肿瘤细胞的运动能力。
[0137] ①选取状态良好且增殖生长至70%~85%密集度的肝癌细胞使用胰酶消化、水平离心后用新鲜培养基重悬混匀,并采用细胞计数板计数2×10^5/孔于6孔板中均匀种板,放置于37℃培养箱过夜;
[0138] ②细胞贴壁后,根据不同药物组合设计分成若干组,给予2mL对应浓度的药物作用肝癌细胞36h时间;
[0139] ③处理时间结束后,使用胰酶消化孔内贴壁细胞,水平离心机以1000rpm的速度常温离心5min,弃上清,用无血清培养基重悬,采用细胞计数板计数1×10^5个细胞加入小室的上层,上室培养基体积不超过300μL,下室加入600μL含10%FBS的培养基,放置在37℃细胞培养箱培养12h;
[0140] ④培养时间结束后,取出Transwell小室,用4%多聚甲醛固定10min,棉签轻柔擦拭残留在上层中未穿过聚碳酸酯膜的肝癌细胞,用PBS轻柔洗刷2次,然后用1%结晶紫染色10min,再用PBS轻柔冲刷2次;
[0141] ⑤待小室自然风干后,使用OLYMPUS白光显微镜拍照记录不同组细胞染色情况。100×倍镜下拍摄3张/孔,200×倍镜下拍摄5张/孔。一次实验中所有组别拍摄图片的参数保持一致,整个过程中调整好参数后不可修改;
[0142] ⑥统计分析及作图(选做):实验需独立重复3次,Excel和Photoshop计数200×倍镜下拍摄的每张图的细胞数目。
[0143] 4.实验结果,参见图11、图12,瑞戈非尼联合BMS-1可协同抑制肝癌细胞的侵袭和迁移能力。
[0144] 参考文献:
[0145] [1]MPH Rebecca L.Siegel,Kimberly D.Miller MPH,Ahmedin Jemal DVM-PhD.Cancer Statistics,2018[J].CA:A Cancer Journal for Clinicians,2018,1(68):7-30.
[0146] [2]W Chen,Zheng R,Baade P-D,et al.Cancer statistics in China,2015[J].CA Cancer J Clin,2016,66(2):115-132.
[0147] [3]J Bruix,Sherman M.Management of hepatocellular carcinoma:an update[J].Hepatology,2011,53(3):1020-1022.
[0148] [4]EASL-EORTC  clinical practice guidelines:management of hepatocellular carcinoma[J].J Hepatol,2012,56(4):908-943.
[0149] [5]AB-Rd Benson,D'Angelica M-I,Abbott D-E,et al.NCCN Guidelines Insights:Hepatobiliary Cancers,Version 1.2017[J].J Natl Compr Canc Netw,2017,15(5):563-573.
[0150] [6]J-M Llovet,Ricci S,Mazzaferro V,et al.Sorafenib in advanced hepatocellular carcinoma[J].N Engl J Med,2008,359(4):378-390.
[0151] [7]A-L Cheng,Kang Y-K,Chen Z,et al.Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma:a phase III randomised,double-blind,placebo-controlled trial[J].Lancet Oncol,2009,10(1):25-34.
[0152] [8]A-L Cheng,Kang Y-K,Lin D-Y,et al.Sunitinib versus sorafenib in advanced hepatocellular cancer:results of a randomized phase III trial[J].J Clin Oncol,2013,31(32):4067-4075.
[0153] [9]P-J Johnson,Qin S,Park J-W,et al.Brivanib versus sorafenib as first-line therapy in patients with unresectable,advanced hepatocellular carcinoma:results from the randomized phase III BRISK-FL study[J].J Clin Oncol,2013,31(28):3517-3524.
[0154] [10]C Cainap,Qin S,Huang W-T,et al.Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma:results of a randomized phase III trial[J].J Clin Oncol,2015,33(2):172-179.
[0155] [11]A-X Zhu,Rosmorduc O,Evans T-R,et al.SEARCH:a phase III,randomized,double-blind,placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma[J].J Clin Oncol,2015,33(6):559-566.
[0156] [12]J-M Llovet,Decaens T,Raoul J-L,et al.Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed:results from the randomized phase III BRISK-PS study[J].J Clin Oncol,2013,31(28):3509-3516.
[0157] [13]A-X Zhu,Kudo M,Assenat E,et al.Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib:the EVOLVE-1 randomized clinical trial[J].JAMA,2014,312(1):57-67.
[0158] [14]A-X Zhu,Park J-O,Ryoo B-Y,et al.Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib(REACH):a randomised,double-blind,multicentre,phase 3 trial[J].Lancet Oncol,2015,16(7):859-870.
[0159] [15]G-K Abou-Alfa,Qin S,Ryoo B-Y,et al.Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma[J].Ann Oncol,2018,29(6):1402-1408.
[0160] [16]S-M Wilhelm,Carter C,Tang L,et al.BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J].Cancer Res,2004,64(19):7099-7109.
[0161] [17]S-M Wilhelm,Dumas J,Adnane L,et al.Regorafenib(BAY 73-4506):a new oral multikinase inhibitor of angiogenic,stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity[J].Int J Cancer,2011,129(1):245-255.
[0162] [18]L Abou-Elkacem,Arns S,Brix G,et al.Regorafenib inhibits growth,angiogenesis,and metastasis in a highly aggressive,orthotopic colon cancer model[J].Mol Cancer Ther,2013,12(7):1322-1331.
[0163] [19]Jordi Bruix,Qin Shukui,Merle Philippe,et al.Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment(RESORCE):a randomised,double-blind,placebo-controlled,phase 3 trial[J].The Lancet,2017,389(10064):56-66.
[0164] [20]Regorafenib Approved for Liver Cancer[J].Cancer Discovery,2017,7(7):660-661.
[0165] [21]M  Kudo.Targeted and immune therapies for hepatocellular carcinoma:Predictions for 2019 and beyond[J].World J Gastroenterol,2019,25(7):789-807.
[0166] [22]M Berretta,Rinaldi L,Di Benedetto F,et al.Angiogenesis Inhibitors for the Treatment of Hepatocellular Carcinoma[J].Front Pharmacol,2016,7428.[0167] [23]Bishal Gyawali,Prasad Vinay.Me too-drugs with limited benefits—the tale of regorafenib for HCC[J].Nature Reviews Clinical Oncology,2017,15(1):62.
[0168] [24]M-G Refolo,Lippolis C,Carella N,et al.Chlorogenic Acid Improves the Regorafenib Effects in Human Hepatocellular Carcinoma Cells[J].Int J Mol Sci,2018,19(5).
[0169] [25]P-F Zhang,Li K-S,Shen Y-H,et al.Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling[J].Cell Death Dis,2016,7e2201.
[0170] [26]N Schmidt,Thimme R.Role of Immunity in Pathogenesis and Treatment of Hepatocellular Carcinoma[J].Dig Dis,2016,34(4):429-437.
[0171] [27]AHoos.Development of immuno-oncology drugs-from CTLA4 to PD1 to the next generations[J].Nat Rev Drug Discov,2016,15(4):235-247.
[0172] [28]P Sharma,Allison J-P.Immune checkpoint targeting in cancer therapy:toward combination strategies with curative potential[J].Cell,2015,
161(2):205-214.
[0173] [29]S-L Topalian,Drake C-G,Pardoll D-M.Immune checkpoint blockade:a common denominator approach to cancer therapy[J].Cancer Cell,2015,27(4):450-461.
[0174] [30]K-M Mahoney,Rennert P-D,Freeman G-J.Combination  cancer immunotherapy and new immunomodulatory targets[J].Nat Rev Drug Discov,2015,14(8):561-584.
[0175] [31]D-N Khalil,Smith E-L,Brentjens R-J,et al.The future of cancer treatment:immunomodulation,CARs and combination immunotherapy[J].Nat Rev Clin Oncol,2016,13(5):273-290.
[0176] [32]H Dong,Strome S-E,Salomao D-R,et al.Tumor-associated B7-H1 promotes T-cell apoptosis:a potential mechanism of immune evasion[J].Nat Med,
2002,8(8):793-800.
[0177] [33]K-S Sfanos,Bruno T-C,Meeker A-K,et al.Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+[J].Prostate,2009,69(15):1694-1703.
[0178] [34]M Ahmadzadeh,Johnson L-A,Heemskerk B,et al.Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1and are functionally impaired[J].Blood,2009,114(8):1537-1544.
[0179] [35]S-M Ansell,Lesokhin A-M,Borrello I,et al.PD-1blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma[J].N Engl J Med,2015,
372(4):311-319.
[0180] [36]M-APostow,Callahan M-K,Wolchok J-D.Immune Checkpoint Blockade in Cancer Therapy[J].J Clin Oncol,2015,33(17):1974-1982.
[0181] [37]J Gao,He Q,Subudhi S,et al.Review of immune-related adverse events in prostate cancer patients treated with ipilimumab:MD Anderson experience[J].Oncogene,2015,34(43):5411-5417.
[0182] [38]K Li,Tian H.Development of small-molecule immune checkpoint inhibitors  of PD-1/PD-L1 as a new  therapeutic strategy for tumour immunotherapy[J].J Drug Target,2019,27(3):244-256.
[0183] [39]K-C Ohaegbulam,Assal A,Lazar-Molnar E,et al.Human cancer immunotherapy with antibodies to the PD-1and PD-L1 pathway[J].Trends Mol Med,
2015,21(1):24-33.
[0184] [40]A-F Abdel-Magid.Inhibitors of the PD-1/PD-L1 Pathway Can Mobilize the Immune System:An Innovative Potential Therapy for Cancer and Chronic Infections[J].ACS Med Chem Lett,2015,6(5):489-490.
[0185] [41]J-R Larrubia,Benito-Martinez S,Miquel J,et al.Costimulatory molecule programmed death-1in the cytotoxic response during chronic hepatitis C[J].World J Gastroenterol,2009,15(41):5129-5140.
[0186] [42]K-M Zak,Kitel R,Przetocka S,et al.Structure of the Complex of Human Programmed Death 1,PD-1,and Its Ligand PD-L1[J].Structure,2015,23(12):2341-2348.
[0187] [43]S Mariathasan,Turley S-J,Nickles D,et al.TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells[J].Nature,2018,554(7693):544-548.
[0188] 最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈