一种InP-石墨烯太阳电池

阅读:414发布:2020-05-08

专利汇可以提供一种InP-石墨烯太阳电池专利检索,专利查询,专利分析的服务。并且本实用新型属于多孔太阳 电池 领域,公开了一种InP- 石墨 烯太阳电池。所述InP- 石墨烯 太阳电池包括由下至上依次层叠的Au背 电极 、InP 外延 层、TiO2空穴阻挡层、石墨烯层和Al2O3减反射层;围绕Al2O3减反射层设置一圈Ag 接触 电极,Ag接触电极与石墨烯层接触。本实用新型在磷化铟上设置二 氧 化 钛 空穴阻挡层,利用二氧化钛能带结构以增大光伏元件的载流子迁移率,从而增大少数载流子的寿命,并在二氧化钛上方附加高透光率、载流子传输速率快、 功函数 较高的石墨烯,利用能级梯度差进一步增大载流子的 势能 ,从而提高磷化铟电池的转化效率。(ESM)同样的 发明 创造已同日 申请 发明 专利,下面是一种InP-石墨烯太阳电池专利的具体信息内容。

1.一种InP-石墨烯太阳电池,其特征在于:所述InP-石墨烯太阳电池包括由下至上依次层叠的Au背电极、InP外延层、TiO2空穴阻挡层、石墨烯层和Al2O3减反射层;围绕Al2O3减反射层设置一圈Ag接触电极,Ag接触电极与石墨烯层接触。
2.根据权利要求1所述的一种InP-石墨烯太阳电池,其特征在于:所述Au背电极的厚度为100~200nm,InP外延层的厚度为0.35~1.2mm,TiO2空穴阻挡层的厚度为10~20nm,石墨烯层的厚度为5~6层原子厚度,Al2O3减反射层厚度为20~100nm。

说明书全文

一种InP-石墨烯太阳电池

技术领域

[0001] 本实用新型属于多孔太阳电池领域,具体涉及一种InP-石墨烯太阳电池。

背景技术

[0002] 能源问题是世界各国共同面对的巨大挑战,高效太阳能光伏技术作为支撑国民经济、可持续发展战略以及提高我国国际竞争的重要先进生产力,已成为国家科学技术长期发展规划中至关重要的发展方向。因此,发展高效太阳能光伏技术、提高太阳电池光电转换效率,增强太阳电池实用性刻不容缓。
[0003] 迄今为止,采用Si基、Ge基等间接带隙半导体材料为主的太阳电池工艺日趋成熟,此外,由于材料本身的性质,光电转换效率提升受到了很大限制。以GaAs为主的Ⅲ-Ⅴ族化合物半导体材料在光伏领域的应用得到了充分的重视与推广。然而,由于GaAs表面具有高的载流子复合速率,导致GaAs太阳电池的光电转效率低,GaAs基太阳电池的高转换效率必须要有复杂的结构和繁琐的工艺支撑,大大限制了以GaAs基为主的Ⅲ-Ⅴ族化合物半导体材料太阳电池的生产和应用。经过本团队前期在太阳电池领域的研究发现,相对于GaAs,InP基材料具有高光吸收系数和低表面复合速率,因此在光伏电池中能够得到有效的应用。然而,InP内部对少数载流子寿命的限制制约了InP基太阳能电池的发电效率。
实用新型内容
[0004] 针对以上现有技术存在的缺点和不足之处,本实用新型的首要目的在于提供一种InP-石墨烯太阳电池。
[0005] 本实用新型的另一目的在于提供上述InP-石墨烯太阳电池的制备方法。
[0006] 本实用新型目的通过以下技术方案实现:
[0007] 一种InP-石墨烯太阳电池,包括由下至上依次层叠的Au背电极、InP外延层、TiO2空穴阻挡层、石墨烯层和Al2O3减反射层;围绕Al2O3减反射层设置一圈Ag接触电极,Ag接触电极与石墨烯层接触。
[0008] 进一步地,所述InP外延层是指Zn掺杂InP外延层,晶向为(100),Zn掺杂浓度为6×1017~6×1018/cm3,载流子迁移率为100~200cm2/(v·s)。
[0009] 进一步地,所述Au背电极的厚度为100~200nm,InP外延层的厚度为0.35~1.2mm,TiO2空穴阻挡层的厚度为10~20nm,石墨烯层的厚度为5~6层原子厚度,Al2O3减反射层厚度为20~100nm。
[0010] 上述InP-石墨烯太阳电池可通过如下方法制备得到:
[0011] (1)将InP外延层基片经清洗后退火处理,然后在基片背面蒸一层金作为背电极层,蒸镀结束后退火处理;
[0012] (2)在步骤(1)的基片正面蒸镀一层二作为空穴阻挡层;
[0013] (3)将石墨烯转移到空穴阻挡层上,烘干处理后,得到石墨烯层;
[0014] (4)在石墨烯层上蒸镀一层氧化作为减反射层;
[0015] (5)围绕Al2O3减反射层注射一圈液态并保证液态银与石墨烯层接触,再次进行烘干,得到所述InP-石墨烯太阳电池。
[0016] 进一步地,步骤(1)中所述清洗是指依次经AR级丙乙醇和超纯进行超声清洗,然后用盐酸润洗,最后用去离子水进行冲洗。
[0017] 进一步地,步骤(1)中所述背电极层的蒸镀速率为0.7~1.5nm/s。
[0018] 进一步地,步骤(1)中所述退火处理是指升温至600~1200℃退火处理15~25min。
[0019] 进一步地,步骤(2)中所述空穴阻挡层的蒸镀速率为0.3~0.7nm/s,蒸镀旋转速率为3~7s/圈,蒸镀温度控制在20~40℃。
[0020] 进一步地,步骤(3)中所述烘干处理的温度为100~140℃。
[0021] 进一步地,步骤(4)中所述减反射层的蒸镀速率为0.1~0.4nm/s。
[0022] 进一步地,步骤(5)中所述烘干温度为100~120℃。
[0023] 本实用新型的原理如下:
[0024] p型InP与石墨烯之间形成了肖特基结构,受光激发产生电子空穴对,电子通过石墨烯薄膜层通往外电路从而使内电路保持电势差,产生电池效应,同时二氧化钛层作为空穴阻挡层,通过在价带中引入势垒,阻止空穴向石墨烯层方向的扩散,有利于内电路维持电势差,从而提高了太阳能电池的光伏转换效率。另外,通过在InP表面蒸镀一层折射率处于基底材料与空气折射率间的材料,利用光干涉相消的原理使某一波长的光反射降到最低。对于InP而言,其在可见光波段范围内的折射率在3.4附近,而空气的折射率为1.0,减反膜最适合的折射率为两种乘积的0.5次方,也就是1.8附近。此外,为了获得好的减反射效果,减反膜不要吸收或者尽可能少吸收半导体吸收范围内的光,对于InP而言,减反膜的光吸收边一般小于400nm,也就是说减反膜材料的带隙一般需要大于3.0eV,因此Al2O3为适合的减反射层。
[0025] 相对于现有技术,本实用新型具有如下优点及有益效果:
[0026] (1)在p型磷化铟与上方电极之间以一层二氧化钛作为空穴阻挡层,并且在二氧化钛层上方附加一层石墨烯作为太阳电池高透光率与高电子迁移率的透明导电层,同时实现p-InP基区层的能带弯曲,实现光伏效应,同时以提高太阳电池的光吸收率和载流子传输速率,从而整体提高太阳电池的光伏转换效率。
[0027] (2)本实用新型取代了传统的Ⅲ-Ⅴ族砷化镓基电池与少数载流子寿命短的普通p型磷化铟基电池,其结构简单,同时本实用新型利用磷化铟的高光吸收率、电子输送层对载流子传输效率的提升以及石墨烯透明导电层的高光透过率以及高载流子迁移速率,以及Al2O3减反射层的设置,增加了电池的光吸收率和减少了电池光生载流子内耗,大大提高了Ⅲ-Ⅴ族太阳能电池的光电转换效率。附图说明
[0028] 图1为本实用新型实施例中InP-石墨烯太阳电池的结构示意图。
[0029] 图2为本实用新型实施例1中所得InP-石墨烯太阳电池的实物图。

具体实施方式

[0030] 下面结合实施例及附图对本实用新型作进一步详细的描述,但本实用新型的实施方式不限于此。
[0031] 实施例1
[0032] 本实施例的一种InP-石墨烯太阳电池,其结构示意图如图1所示。包括由下至上依次层叠的Au背电极、InP外延层、TiO2空穴阻挡层、石墨烯层和Al2O3减反射层;围绕Al2O3减反射层设置一圈Ag接触电极,Ag接触电极与石墨烯层接触。
[0033] 所述InP-石墨烯太阳电池通过如下方法制备:
[0034] (1)采用低掺杂p型InP外延片为基区材料,(Zn掺杂InP,厚度为350μm,晶向为18 3 2
(100),Zn掺杂浓度在2×10 /cm,载流子迁移率为140cm/(v·s))。使用AR级别的丙酮、乙醇以及超纯水依次对基片进行5分钟的超声清洗,其后用6%的盐酸润洗3分钟,之后用去离子水进行冲洗;将经过清洗的基片放入退火炉中,设置退火温度为700℃,进行14分钟升温后进行24分钟退火。
[0035] (2)利用电子束蒸镀系统在步骤(1)处理后的基片背面蒸镀一层金作为背电极层,速率为1.5nm/s,厚度为150nm,蒸镀结束后进行退火处理。
[0036] (3)在已镀上背电极的基片正面利用电子束蒸镀系统镀上一层二氧化钛作为空穴阻挡层,速率为0.7nm/s,底盘旋转速率为3秒/圈,底盘控制温度在32℃,厚度为12nm;
[0037] (4)将“泡-取”式石墨烯使用PMMA陪片进行反复去离子水漂洗后转移到已经蒸镀二氧化钛层的InP基片上,厚度为5层原子厚度,随后使用丙酮溶剂将残余的PMMA材料溶解,其中为了防止石墨烯在除去PMMA过程中过冷破裂,丙酮在使用前需先加热到40~60℃,120℃烘干,得到石墨烯层。
[0038] (5)将步骤(4)得到的基片于电子束蒸镀系统中沉积一层氧化铝作为减反射层,速率为0.3nm/s,厚度为28nm。
[0039] (6)在基片上层石墨烯薄膜周围贴上绝缘胶,在绝缘胶上方围绕氧化铝减反射层注射一圈液态银,并保证液态银与石墨烯接触,再次进行烘干,烘干温度为100℃,得到InP-石墨烯太阳电池。
[0040] 本实施例所得InP-石墨烯太阳电池的实物图如图2所示。
[0041] 本实施例中提供了一种垂直结构的单结太阳电池元件,入射光透过高透光率的减反射膜和石墨烯层,大大提升了太阳电池的光吸收率,同时在磷化铟与石墨烯形成的肖特基结构中产生光生电子,电子经过磷化铟-二氧化钛-石墨烯结构,有效降低了光生电子在磷化铟内部的复合,增加了光生电子的寿命,并且大大减小了电池元件内部电阻,从而显著提高了该太阳能电池的外电压和和短路电流,其理论总光电转换效率较普通的磷化铟pn结电池提升57%到60%。证明该磷化铟石墨烯太阳能电池中二氧化钛空穴阻挡层对空穴阻挡并增加光生电子迁移率以及光生电子寿命起到了有效的作用,也证明了石墨烯的高光透过率对光吸收量的提升以及其与磷化铟形成的肖特基结构对减小光生电流内阻、提高光伏响应效率起到了明显的影响。同时该电池结构简单,制作周期短,易于实现,工艺过程中产生的污染物少,可见此结构为一种具有实用性的高效新型太阳电池结构。
[0042] 实施例2
[0043] 本实施例的一种InP-石墨烯太阳电池,其结构示意图如图1所示。包括由下至上依次层叠的Au背电极、InP外延层、TiO2空穴阻挡层、石墨烯层和Al2O3减反射层;围绕Al2O3减反射层设置一圈Ag接触电极,Ag接触电极与石墨烯层接触。
[0044] 所述InP-石墨烯太阳电池通过如下方法制备:
[0045] (1)采用低掺杂p型InP外延片为基区材料(Zn掺杂InP,厚度为350μm,晶向为(100),掺杂浓度在4×1018/cm3,载流子迁移率为120cm2/(v·s))。使用AR级别的丙酮、乙醇以及超纯水依次对基片进行5分钟的超声清洗,其后用6%的盐酸润洗3分钟,之后用去离子水进行冲洗;将经过清洗的基片放入退火炉中,设置退火温度为1000℃,进行10分钟升温后进行20分钟退火。
[0046] (2)利用电子束蒸镀系统在步骤(1)处理后的基片背面蒸镀一层金作为背电极层,速率为1nm/s,厚度为100nm,蒸镀结束后进行退火处理。
[0047] (3)在已镀上背电极的基片正面利用电子束蒸镀系统镀上一层二氧化钛作为空穴阻挡层,速率为0.5nm/s,底盘旋转速率为5秒/圈,底盘控制温度在32℃,厚度为12nm;
[0048] (4)将“泡-取”式石墨烯使用PMMA陪片进行反复去离子水漂洗后转移到已经蒸镀二氧化钛层的InP基片上,厚度为5层原子厚度,随后使用丙酮溶剂将残余的PMMA材料溶解,其中为了防止石墨烯在除去PMMA过程中过冷破裂,丙酮在使用前需先加热到40~60℃,110℃烘干,得到石墨烯层。
[0049] (5)将步骤(4)得到的基片于电子束蒸镀系统中沉积一层氧化铝作为减反射层,速率为0.2nm/s,厚度为25nm。
[0050] (6)在基片上层石墨烯薄膜周围贴上绝缘胶,在绝缘胶上方围绕氧化铝减反射层注射一圈液态银,并保证液态银与石墨烯接触,再次进行烘干,烘干温度为120℃,得到InP-石墨烯太阳电池。
[0051] 上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受上述实施例的限制,其它的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈